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Abstract

Vehicle automation and smartphone app-based ride-splitting are commonly discussed topics in the transportation
literature. While these technologies have been examined for their role in transportation decarbonization through
simulation study, the motivation for such work is rarely made explicit. In this commentary, we provide a motivation
for research in this area based on our own simulation research, as well as land use and vehicle operational factors.
Specifically, land use factors such as density and the speed of its adjustment make traditional transit operations
using large vehicles cost-prohibitive in most U.S. communities (and many other communities around the world).
Automation and ride-splitting technologies may offer digitized transportation solutions that can match vehicle size
to local land development density and passenger demand. In addition, we highlight a difference in the supply-
demand relationship for freight transportation that causes additional challenges for decarbonizing that sector.
Finally, we emphasize that fleet ownership is key to ensuring timely vehicle fleet turnover as safer and more
efficient technologies enter the market.

Keywords: Transportation decarbonization, digitizing transportation, transportation-land use interactions, supply-
demand matching

Transportation surpassed electricity in the United States as the largest economic sector emitter of
greenhouse gases (GHGs) in 2018 (assuming electricity for heating is allocated to the electricity sector)".
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The potential solutions to mitigate these emissions are diverse. The United Nations sees compact urban
growth - and associated policies - as central to global climate change mitigation, including for the
transportation sector’”. However, new buildings, neighborhood designs, and land use patterns can take
decades to implement at scale” and face political and social barriers'”. At the same time, the U.S. transit
share of passenger miles traveled is under 1%", and conventional transit is not cost-effective at densities less
than about 35 dwelling units per acre'®. Taken together, these factors raise the question of how to ensure
climate goals are met for the transportation sector in a timely manner. In contrast to land use change, digital
technology can be adopted at a rapid pace. The transportation sector is currently undergoing a technology
transition driven by vehicle electrification, app-based ride-hailing, and vehicle automation. Unfortunately,
the potential roles played jointly by automation and ride-hailing in climate change policy are often lost
within technical reports and articles. For example, the U.S. Department of Energy SMART (Systems and
Modeling for Accelerated Research in Transportation) consortium is a multi-year, multi-laboratory
collaboration dedicated to understanding the energy implications and opportunities of the evolving
transportation technology ecosystem through simulation and behavioral analyses"”. We provide a climate
mitigation case for digital technologies in transportation based on our own contributions to the SMART
consortium and other related research. This commentary contributes to the Carbon Footprint Special Issue
entitled “Digitizing Carbon Footprint Management” by providing a synthesis of how digital technology (i.e.,
automation and app-based ride-hailing) might contribute to achieving net-zero climate targets within the
transportation sector.

There is a consensus that vehicle electrification is key to transportation GHG mitigation in the U.S., but
private-vehicle electrification will be insufficient without lowered vehicle use'™. Development densification,
coupled with transit investments, will be needed to shorten travel distances and encourage more active and
shared travel modes. However, as we outline below, traditional transit solutions suffer from a supply-
demand mismatch. We argue that vehicle rightsizing, made cost-viable by automation and ride-splitting
(We distinguish in this paper between ride-sharing as sharing a vehicle (but not a trip) and ride-splitting as
sharing a trip (or a portion thereof). Ride-splitting describes the sharing of travel miles by unaffiliated
travelers in a single vehicle along a common route™) technologies, is a feasible solution to this mismatch
and provides a pathway to transportation decarbonization, given land use and transportation considerations
in the U.S.

GHG emissions intensity analyses by travel mode illustrate the relationships between land use, mode choice,
and travel distance. Several studies have compared the life-cycle emissions of transit to those of private
vehicles"*'", highlighting the importance of vehicle occupancy (i.e., load factor). Most recently, Soukhov
and Mohamed estimate that battery-electric vehicles, relying on Canada’s power mix, need to average 2 to
2.4 passengers to be comparable to battery-electric buses carrying 15 passengers'”. Research by Wang et al.
in Toronto estimates that bus transit produces higher emissions (per passenger-mile traveled) than private
vehicles during the evening off-peak period, owing to low vehicle occupancy'’. This occupancy dilemma
represents a supply-demand mismatch. That is, vehicles cannot be sized to adapt to variable passenger
demand. In the U.S., pre-COVID, average bus occupancy varied by state from 3.9 in Wyoming to 15.6 in
New Jersey - with an average of 9.2\

While larger vehicles” emissions rates per vehicle mile can benefit from economies of scale, this benefit is
only true for a loaded vehicle, with most seats occupied - as illustrated by Schipper ef al. ASIF equation"”.
While larger vehicles’ emissions rates per vehicle mile benefit from economies of scale, this benefit is only
realized at relatively high vehicle occupancy, with most seats occupied
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GHG emissions = travel activity [A] x modal structure [S] x energy intensity [I] x fuel carbon content [F]

Realizing GHG benefits for a full-size bus requires high passenger loadings to mitigate its high energy
intensity per vehicle mile. Between the two extremes of large buses and small private vehicles, one can
imagine a transit fleet with variously sized vehicles exploiting scale benefits when made feasible by land
development density. 4- and 6-seater shared autonomous electric vehicle (SAEV) fleets are a new form of
transit, both privately and publicly incentivized for shared rides (with unaffiliated riders, called dynamic
ride-sharing (DRS), pooling, or splitting). These smaller vehicles would operate in lower-density suburban
areas. Larger SAEVs (i.e., autonomous mini-buses) operating in higher-density areas may have attendants
on board to serve riders and maintain vehicles. Competition among various SAEV fleet operators - e.g.,
Waymo, Cruise, and Argo - should also ensure lower service costs than the current U.S. average of $1.70 per
passenger mile transit operating costs for bus transit"®. In summary, a main climate mitigation benefit of
SAEVs with DRS arises from the digitization of the driving and passenger matching tasks, facilitating
efficient transit operations across a diversity of development densities.

Simulation analyses suggest that DRS services can reduce vehicle miles traveled (VMT) and GHG emissions

17-21

by as much as 20% relative to private vehicle use!”*'. There are also potential synergies with the electrical
grid using vehicles as mobile storage devices (through vehicle-to-grid discharging) or as mobile energy
l. As a complement to land use reform, SAEVs with DRS

[22,23]

could reduce parking demand by 90%, freeing up land for other uses, including less expensive housing****.

[19,21

consumers to absorb excess power generation

However, without price signals set by carbon taxes, congestion fees, and other policies, privately owned
autonomous vehicles may increase total VMT by as much as 30% relative to their current levels”**”. Fleets
of SAEVs can facilitate ride-splitting, even in places such as sprawling Orlando, Florida, where nearly 60%
of person trips could be feasibly shared with a “stranger” at less than 5 min of added travel time.

A final set of benefits associated with SAEVs with DRS stems from its fleet ownership model. By one
estimate, the introduction of managed charging for battery electric buses (BEBs) would save operators 22%
of their daily costs relative to current diesel fleets””. Fleet operators are well situated to assess and act on
these lifetime investment costs relative to individual homeowners. An understudied implication of DRS
deployment is the impact of reduced private fleet size on emissions. The benefit does not come from a
reduction in embodied emissions - the expectation being that higher vehicle turnover will not reduce long-
run vehicle requirements. Instead, benefits are of a technological nature. By reducing the time to vehicle
turnover, new technologies would quickly penetrate the fleet. SAEVs with DRS vehicles are expected to
travel 230-430 miles per day™ - or roughly 100,000 miles per year, much like a commercial truck or
traditional taxi, but with empty travel under 20% or 25% of VMT (and effectively zero with DRS). Assume
an average vehicle lifetime of 200,000 miles™ and that the average private vehicle is driven 10,200 miles per
year™. With these assumptions, a DRS vehicle will be replaced every approximately 2 years, rather than
every 15 or more years, for private vehicles. More efficient vehicles, with longer battery lives, and fewer
crash-related losses due to continually improving algorithms, cameras, and sensors will enter the vehicle
fleet under this shared ownership model than under a continuation of the current private ownership model.

Thus far, we have focused on short-distance passenger travel. Long-distance passenger travel and freight
transport are more difficult to decarbonize the components of the transportation system™. We leave this
discussion for other venues but will highlight one difference between technology-based decarbonization
pathways in passenger and freight transportation. Vehicle rightsizing in the freight context exhibits a non-
monotonic relationship that is not present in the passenger case [Figure 1]. Delivery cost efficiency tends to
be highest at middling densities, with increasing density leading to inefficiencies because smaller vehicles
must be used for delivery. The solutions for freight will differ from those outlined in this commentary.
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Figure 1. Relationship between density and commercial freight delivery unit costs.

Vehicle electrification and automation rely on individual and industry actions through technology
development and deployment. Government and community policies such as credit-based congestion
pricing® can help ensure those actions deliver climate mitigation, by promoting SAEV rides in right-sized
vehicles, land use mixing at higher densities, and active modes of travel, while prohibiting empty travel by
privately owned autonomous vehicles (AVs) and limiting empty travel by SAEV fleets. Private technological
advances are often at odds with public policy, but private innovation in vehicle technology (i.e.,
electrification and automation) can complement and support land use and public transport policies. On the
path to net zero, fleet automation facilitates vehicle rightsizing to match passenger loads and travel
demands, while denser and more varied land use patterns remain fundamental to long-term urban
sustainability. Vehicle fleets benefit from scale economies in both vehicle sizing and contracting, and higher
rates of fleet-vehicle replacement can ensure faster adoption of more efficient transportation technologies.
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