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Abstract
This article investigates the practical stabilization problem of random quarter-car active suspension systems. An
adaptive dynamic event-trigger strategy is proposed to stabilize the states of vehicle suspension in response to system
uncertainty and controller area network resource constraints. Moreover, the model of random active suspension
systems is extended to the general random robot systems; the controller is developedwith the aid of a double dynamic
surface filter, immersion and invariance (I&I) techniques, and event-triggeredmechanisms. The results show that the
semi-global stability of error systems is achieved, and there are some improvements in triggering times and adaptive
estimation performance under the control framework. Finally, simulation comparison results are provided to prove
the advantages of the proposed scheme.

Keywords: Random active suspension system, immersion and invariance, double dynamic surface filter, dynamic
event-triggered control

1. INTRODUCTION
With the rapid development of science and technology, vehicles have become a commonly used means of
transportation. The suspension system is a force transmission connection device between the vehicle body
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and the wheels. Due to their ability to effectively alleviate impacts and body vibrations caused by uneven road
surfaces to ensure ride comfort, the suspension systems have received great attention from researchers [1,2]. As
a type of suspension system, active suspension systems (ASS) were often used to improve vehicle damping
characteristics. Subsequently, some novel controllers were designed to achieve the expected performance of
ASS, such as robust sampled-data 𝐻∞ Control [3], adaptive fuzzy sliding mode control [4], saturated control [5],
fault-tolerant control [6,7], performance constraint control [8–10]. The adaptive finite time filtering control prob-
lem of a nonlinear quarter ASS subjected to actuator failure was studied in [7]. A new integral barrier Lyapunov
function is proposed in [10]; on the one hand, it satisfies the vertical displacement constraint condition, and on
the other hand, it stabilizes the suspension position within the neighborhood of the expected position in a
finite time.

Due to the lack of accurate identification of model parameters and partial measurement of the system states,
nonlinear adaptive control must cope with high levels of uncertainty. For ASS with uncertain parameters,
adaptive schemes are proposed in [8,11,12]. As is well known, the two basic methods for dealing with nonlin-
earity are certain equivalence (CE) [13] and immersion and invariance (I&I) [14]. In principle, CE is to design
Lyapunov functions for the error dynamic equation and obtain the update law of parameter estimation, which
takes the form of an error nonlinear integrator, while I&I indirectly introduced unknown parameters into
the estimation with the aid of state correction terms, which means incorporating system dynamics into lower
order expected behavior to achieve control objectives [15]. Whereafter, the I&I technology has been verified in
practical robot systems, such as quadrotors [16–18], balls, beam systems [19], and so on. In addition, as a typical
nonlinear system, ASS inevitably suffers from the problem of explosion of terms caused by the analytic calcu-
lation on the command derivative of stabilizing function. To overcome this difficulty, the command derivative
was approximated by a dynamic surface filter (DSF) [20], and then a command filter with compensated dynam-
ics was proposed by [21], which revealed the relation of command filter control with traditional backstepping
approaches. This technology is further applied to theoretical development [22–24] and practical systems [25–27].

With the continuous deepening of research on network systems and electronic control components, saving
limited bandwidth resources has become an important topic. Usually, it is required that the sensors, controllers,
and actuators of the suspension system can continuously obtain information from each other. It is worth
mentioning that event-triggered control (ETC) is an effective way to reduce the communication burden on
the controller area network [28] proposed a new adaptive event-triggered tracking scheme that can not only
offset severe uncertainty but also ensure any pre-set tracking accuracy. Nowadays, a number of results have
been presented on ASS under the ETC condition [29–31].

In addition, the event-triggered communicationmechanism is widely used inmulti-agent systems [32–35]. Only
when the event-triggering conditions are satisfied the information of each agent will propagate to adjacent
agents, greatly reducing the communication burden [34] proposed two different position controllers to handle
the time-varying formation problem of multi-rotor systems based on an event-triggered integral sliding mode
method. Further consideration still needs to be given to the collaborative control problem of unmanned aerial
vehicle systems in the case of hybrid active interactions between humans [36]. This is a questionworth exploring,
once again discussing the suspension system.

In real life, the impact of rough roads on vehicles cannot be ignored. In order to improve passenger comfort, the
suspension system must absorb road vibrations and prevent them from being transmitted to the vehicle body.
Therefore, there are sufficient reasons to consider the control of random nonlinear ASS on rough road surfaces.
The random model of ASS was given in [37]; however, it does not consider the issues of unknown parameters
and reduced system signal transmission frequency. Motivated by the aforementioned papers, the dynamic
event-triggered practical stabilization of uncertain random quarter-car ASS is devoted and even extended to
general random nonlinear systems to deal with a class of robot control problems.
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Figure 1. Quarter active suspension model.

Themain contributions of this paper are as follows: First, the application of I&I techniques and dynamic event-
trigger mechanisms (DETM) to random nonlinear systems has achieved practical stabilization of randomASS.

Compared with [11], it is not necessary to invoke CE and Lyapunov functions. I&I indirectly introduced un-
known parameters into the estimation by state correction terms, avoiding the coupling between estimation
law and error terms from the perspective of nonlinear regulation, which, to some extent, improves estimation
performance.

Second, the double DSF proposed in this paper removes the compensation signals and achieves awesome
properties calculated by double integration. Another advantage of DSF is that compared to [38,39], it eliminates
the boundedness assumption of prior filter errors and provides a reasonable stability analysis process.

The paper is divided into six parts. The first section is the introduction of relevant background knowledge
of the research content. In the second section, the random suspension system and problem formulation are
presented. The adaptive dynamic event-trigger controller is designed in the third section, and the performance
analysis is discussed in the fourth section. The simulation results are provided in the fifth section, and the last
section is a conclusion.

Notations: R𝑛 denotes the real 𝑛-dimensional space. |𝑥 | = (∑𝑖 𝑥
2
𝑖 )

1
2 is the distance norm of vector 𝑥. The

partial differentiation of the variable is 𝜕𝑦
𝜕𝑥 . 𝑋

𝑇 represents the transposition of a vector or matrix. 𝐵(𝑥0, 𝑟) =
{𝑥 ∈ R𝑛 : |𝑥 − 𝑥0 | ≤ 𝑟} stands for a ball with 𝑥0 as the center and 𝑟 as radius.

2. MODEL DESCRIPTION AND PROBLEM SETUP
2.1. Random active suspension model
As presented in Figure 1, the quarter-car active suspension in a random environment is shown in this paper.
The masses of the wheel and car body are 𝑚𝑐 and 𝑚𝑏 , respectively, with displacements of 𝑞1 and 𝑞2. The
hydraulic controller between the wheel and the body is 𝑢, and the linear spring and nonlinear damper are in
parallel, where the spring coefficient is 𝐾𝑎 and the damping coefficient is 𝐶𝑎 . The wheel is regarded as a linear
spring with a spring coefficient of 𝐾𝑡 .

Borrowed from [37], the random model of ASS by the aid of Lagrangian principles and relative motions is
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constructed as
𝑚𝑐 ¥𝑞1 − 𝐾𝑎 (𝑞2 − 𝑞1) + 𝐾𝑡𝑞1 = 𝐶𝑎 ( ¤𝑞2 − ¤𝑞1) − 𝑢 − 𝑚𝑐𝜉1,

𝑚𝑏 ¥𝑞2 + 𝐾𝑎 (𝑞2 − 𝑞1) = −𝐶𝑎 ( ¤𝑞2 − ¤𝑞1) + 𝑢 − 𝑚𝑏𝜉2.
(1)

Let 𝑥1 = 𝑚𝑐𝑞1 + 𝑚𝑏𝑞2, 𝑥2 = ¤𝑥1, 𝑥3 = 𝑞2 − 𝑞1, 𝑥4 = ¤𝑥3, note that 𝐶𝑎 is an unknown coefficient, denoted as
𝜃 = 𝐶𝑎 . The impact of rough road surface on the wheels and body is considered as a stationary process 𝜉1 and
𝜉2, respectively.

Then, the random model (1) with an unknown damping coefficient is shown as

¤𝑥1 = 𝑥2,

¤𝑥2 = − 𝐾𝑡

𝑚𝑐+𝑚𝑏
𝑥1 + 𝐾𝑡𝑚𝑏

𝑚𝑐+𝑚𝑏
𝑥3 − 𝑚𝑐𝜉1 − 𝑚𝑏𝜉2,

¤𝑥3 = 𝑥4,

¤𝑥4 = 𝑓4 + 𝜙𝜃 + ( 1
𝑚𝑐

+ 1
𝑚𝑏

)𝑢 − 𝜉2 + 𝜉1,

(2)

where 𝑓4 = −𝐾𝑎 𝑚𝑏+𝑚𝑐

𝑚𝑏𝑚𝑐
𝑥3 + 𝐾𝑡 (𝑥1−𝑚𝑏𝑥3)

𝑚𝑐 (𝑚𝑏+𝑚𝑐) , 𝜙 = −𝑚𝑏+𝑚𝑐

𝑚𝑏𝑚𝑐
𝑥4.

2.2 Problem setup
In response to the problems of unknown parameters and high communication requirements in traditional
robot control systems, the objective of this paper is to design an adaptiveDETM for random suspension systems
(2) to achieve semi-global practical stabilization. In order to solve a type of control problem similar to a random
suspension system, system (2) is organized into the following general forms of random systems for controller
design, that is

¤𝑥𝑖 = 𝑓𝑖 (𝑥𝑖) + 𝑥𝑖+1 + 𝜙𝑖 (𝑥𝑖)𝜃𝑖 + 𝑔𝑖 (𝑥𝑖)𝜉𝑖 , 𝑖 = 1, · · · , 𝑛 − 1,
¤𝑥𝑛 = 𝑓𝑛 (𝑥) + 𝑢 + 𝜙𝑛 (𝑥)𝜃𝑛 + 𝑔𝑛 (𝑥)𝜉𝑛,

(3)

where 𝑥𝑖 = [𝑥1, . . . , 𝑥𝑖]𝑇 , 𝑢 ∈ R, and 𝑥1 ∈ R are the state, input, and output of the system (3), respectively. 𝜃𝑖 ∈ R
denotes an unknown parameter. The corresponding functions 𝑓𝑖 (𝑥𝑖), 𝑔𝑖 (𝑥𝑖), 𝜙𝑖 (𝑥𝑖) are locally Lipschitz in 𝑥.
Before achieving the objective of this paper, several assumptions on random disturbance 𝜉 (𝑡) = [𝜉1, · · · , 𝜉𝑛]𝑇
and functions 𝑔𝑖 (𝑥), 𝜙𝑖 (𝑥) need to be given.

Assumption 1 For any 𝜀 > 0 and 𝑀 > 0, the random disturbance 𝜉 (𝑡) satisfies

sup
𝑡0≤𝑠≤𝑡

𝐸 |𝜉 (𝑡) |2 ≤ 𝑀, ∀𝑡 ≥ 𝑡0. (4)

Assumption 2There exist constants 𝑑𝑔, 𝑑𝜙 > 0 such that

𝑔𝑖 (𝑥)2 ≤ 𝑑𝑔, 𝜙𝑖 (𝑥)2 ≤ 𝑑𝜙 . (5)

The purpose of introducing (4) is to consider that the disturbance energy is bounded in practical situations [40].
In order to better select parameters in stability analysis, (5) was cited, and similar considerations were also used
in coordinated control systems [41]. To facilitate the controller design, the following inequalities are presented.

Lemma 1 [32] For any vectors 𝑥, 𝑦 ∈ R𝑛, any scalars 𝜀 > 0, 𝑝 > 1 and 𝑞 = 𝑝
𝑝−1 , there holds

𝑥𝑇 𝑦 ≤ 𝜀𝑝

𝑝
|𝑥 |𝑝 + 1

𝑞𝜀𝑞
|𝑦 |𝑞 .

Lemma 2 [10] For all 𝑧 ∈ R, 𝜀 > 0 and 𝜁 = 0.2785, the inequality of hyperbolic tangent holds

0 < |𝑧 | − 𝑧 tanh
( 𝑧
𝜀

)
⩽ 𝑒−(𝜁+1)𝜀.
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3. ADAPTIVE EVENT-TRIGGERED CONTROLLER DESIGN
Compared with traditional adaptive laws, adaptive techniques based on I&I do not require linear parameter-
ization conditions or CE and can better compensate for parameter uncertainty. In order to avoid explosive
terms generated by recursive processes, inspired by [20,21], a novel double DSF is proposed:

¤𝜂𝑖1 = 𝑘𝑖 (−𝜂𝑖1 + 𝜂𝑖2),
¤𝜂𝑖2 = 𝑘𝑖 (−𝜂𝑖2 + 𝛼𝑖),
𝛼𝑐𝑖 = 𝜂𝑖1, 𝑖 = 1, · · · , 𝑛 − 1

(6)

with filter time constant 𝑘𝑖 > 0, whichmeans that ¤𝛼𝑐𝑖 = 𝑘𝑖 (𝜂𝑖2−𝜂𝑖1) can be served as a substitute of ¤𝛼𝑖 . Referring
to coordinate transformation, the tracking error can be rewritten as

𝑧𝑖 = 𝑥𝑖 − 𝛼𝑐𝑖−1 = 𝑥𝑖 − 𝛼𝑖−1 + Δ𝑖−1, 𝑖 = 1, · · · , 𝑛 (7)

where 𝛼𝑐0 = 0, Δ𝑖 = 𝛼𝑖 − 𝛼𝑐𝑖 , and Δ0 = 0 are specified for the convenience of subsequent discussions. In order
to deal with unknown items, we define estimation errors based on I&I as

𝜃𝑖 = 𝜃𝑖 − 𝜃𝑖 + 𝜌𝑖 (𝑥𝑖), 𝑖 = 1, · · · , 𝑛 (8)

where 𝜌𝑖 (𝑥𝑖) is a smooth function that will be designed later.

Step 1. From (3), (7), and (8), the dynamic of 𝑧1-subsystem is expressed as

¤𝑧1 = 𝑓1 + 𝑧2 + 𝛼1 − Δ1 + 𝑔1𝜉1 − ¤𝛼𝑐0 + 𝜙1(𝜃1 − 𝜃1 + 𝜌1).

In light of (3) and (8), one obtains
¤̃𝜃1 = ¤̂𝜃1 + 𝜕𝜌1

𝜕𝑥1
( 𝑓1 + 𝑥2 + 𝑔1𝜉1 + 𝜙1(𝜃1 − 𝜃1 + 𝜌1)).

Select the fictitious control and adaptive law as

𝛼1 = −𝑐1𝑧1 − 𝑓1 − 𝜙1(𝜃1 + 𝜌1),
¤̂𝜃1 = − 𝜕𝜌1

𝜕𝑥1
( 𝑓1 + 𝑥2 + 𝜙1(𝜃1 + 𝜌1)) − 𝜆1𝛿1(𝜃1 + 𝜌1),

(9)

where 𝜌1 = 𝜆1
𝑑𝑜

∫ 𝑥1
0 𝜙1(𝑠)d𝑠, and 𝛿1, 𝑐1, 𝑑𝑜, 𝜆1 > 0. Substituting (9) into the derivative of the Lyapunov function

𝑉1 = 1
2 𝑧

2
1 +

1
2𝜆1
𝜃2

1 yields:

¤𝑉1 =𝑧1(−𝑐1𝑧1 + 𝑧2 − Δ1 + 𝑔1𝜉1 − 𝜙1𝜃1) + 𝜃1(−
1
𝑑0
𝜙1(𝑔1𝜉1 − 𝜙1𝜃1) − 𝛿1(𝜃1 + 𝜌1))

≤ − (𝑐1 −
𝑑𝑜
4

−
𝑑𝑜𝑑𝑔

4
)𝑧21 + 𝑧1(𝑧2 − Δ1) +

2
𝑑𝑜
𝜉2

1 − ( 𝛿1

2
−
𝑑𝜙𝑑𝑔

4𝑑𝑜
)𝜃2

1 +
1
2
𝛿1𝜃

2
1,

(10)

Which used Young inequality (see Lemma 1) and (5):

𝑧1𝑔1𝜉1 ≤
𝑑𝑜𝑑𝑔

4
𝑧21 +

1
𝑑𝑜
𝜉2

1 ,

−𝑧1𝜙1𝜃1 ≤ 𝑑𝑜
4
𝑧21 +

1
𝑑𝑜
𝜙2

1𝜃
2
1,

1
𝑑0
𝜙1𝜃1𝑔1𝜉1 ≤

𝑑𝜙𝑑𝑔

4𝑑𝑜
𝜃2

1 +
1
𝑑𝑜
𝜉2

1 ,

−𝜃1𝛿1(𝜃1 + 𝜌1) ≤ − 1
2
𝛿1𝜃

2
1 +

1
2
𝛿1𝜃

2
1 .

(11)

Step i. (𝑖 = 2, · · · , 𝑛 − 1) Following the above design process, we can get the virtual control and adaptive law

𝛼𝑖 = −𝑐𝑖𝑧𝑖 − 𝑧𝑖−1 − 𝑓𝑖 − 𝜙𝑖 (𝜃𝑖 + 𝜌𝑖) + ¤𝛼𝑐𝑖−1,¤̂𝜃𝑖 = − 𝜕𝜌𝑖
𝜕𝑥𝑖

( 𝑓𝑖 + 𝑥𝑖+1 + 𝜙𝑖 (𝜃𝑖 + 𝜌𝑖)) − 𝜆𝑖𝛿𝑖 (𝜃𝑖 + 𝜌𝑖),
(12)
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where 𝜌𝑖 = 𝜆𝑖
𝑑𝑜

∫ 𝑥𝑖
0 𝜙𝑖 (𝑠)d𝑠 and 𝛿𝑖 , 𝑐𝑖 , 𝜆𝑖 > 0. Together with (12) and Lyapunov function𝑉𝑖 = 𝑉𝑖−1 + 1

2 𝑧
2
𝑖 + 1

2𝜆𝑖 𝜃
2
𝑖 ,

similar to (10), the dynamic of ¤𝑉𝑖 can be formulated as

¤𝑉𝑖 ≤ −
𝑖∑
𝑗=1

(𝑐 𝑗 −
𝑑𝑜
4

−
𝑑𝑜𝑑𝑔

4
)𝑧2𝑗 +

𝑖∑
𝑗=1

𝑧 𝑗−1Δ 𝑗−1 + 𝑧𝑖 (𝑧𝑖+1 − Δ𝑖)

+
𝑖∑
𝑗=1

2 𝑗
𝑑𝑜
𝜉2
𝑗 −

𝑖∑
𝑗=1

(
𝛿 𝑗

2
−
𝑑𝜙𝑑𝑔

4𝑑𝑜
)𝜃2

𝑗 +
𝑖∑
𝑗=1

1
2
𝛿 𝑗𝜃

2
𝑗 .

(13)

Step n. Construct the Lyapunov function

𝑉𝑧𝜃 = 𝑉𝑛−1 +
1
2
𝑧2𝑛 +

1
2𝜆𝑛

𝜃2
𝑛, (14)

where 𝜆𝑛 > 0, whose derivative can be organized as

¤𝑉𝑧𝜃 = ¤𝑉𝑛−1 + 𝑧𝑛 ( 𝑓𝑛 + 𝑢 + 𝑔𝑛𝜉𝑛 + 𝜙𝑛𝜃𝑛 − ¤𝛼𝑐𝑛−1) +
1
𝜆𝑛
𝜃𝑛 ( ¤̂𝜃𝑛 +

𝜕𝜌𝑛
𝜕𝑥𝑛

( 𝑓𝑛 + 𝑢 + 𝑔𝑛𝜉𝑛 + 𝜙𝑛𝜃𝑛)). (15)

Naturally, the adaptive law is given as

¤̂𝜃𝑛 = − 𝜕𝜌𝑛
𝜕𝑥𝑛

( 𝑓𝑛 + 𝑢 + 𝜙𝑛 (𝜃𝑛 + 𝜌𝑛) − 𝜆𝑛𝛿𝑛 (𝜃𝑛 + 𝜌𝑛), (16)

where 𝜌𝑛 = 𝜆𝑛
𝑑𝑜

∫ 𝑥𝑛
0 𝜙𝑛 (𝑠)d𝑠 and 𝛿𝑛 > 0. Drawing on the idea in [10,42], the following DETM is given

𝑢(𝑡) = 𝜈(𝑡𝑘 ),∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1),
𝑡𝑘+1 = inf{𝑡 > 𝑡𝑘

��|ℎ(𝑡) | ≥ 𝛽(𝑡) + 𝜖},
¤𝛽(𝑡) = −𝑏𝛽(𝑡) − |ℎ(𝑡) | + 𝜖,

(17)

where 𝜈(𝑡) is the control auxiliary function to be given later, and 𝛽(𝑡) is an internal dynamic variable. ℎ(𝑡) =
𝜈(𝑡) − 𝑢(𝑡) is measurement errors between the sampling control and current control, the parameters 𝜖, 𝑏 > 0.
Once the mechanism (17) is triggered, the control is updated to 𝜈(𝑡𝑘+1); otherwise, it will remain at a constant
value 𝜈(𝑡𝑘 ).

With the aid of (17), it can come to a conclusion that |𝜈(𝑡)−𝑢(𝑡) | ≤ 𝛽(𝑡)+𝜖 is always held on intervals [𝑡𝑘 , 𝑡𝑘+1),
it is easy to find two continuous functions 𝜔(𝑡) ∈ [−1, 1] to satisfy

𝑢(𝑡) = 𝜈(𝑡) − 𝜔(𝑡) (𝛽(𝑡) + 𝜖), (18)

where 𝜔(𝑡𝑘 ) = 0, 𝜔(𝑡𝑘+1) = ±1. The auxiliary control input function is selected as

𝜈(𝑡) = 𝛼𝑛 − (𝛽(𝑡) + 𝜖)tanh( 𝑧𝑛 (𝛽(𝑡) + 𝜖)
𝜎

), (19)

where 𝛼𝑛 = −𝑐𝑛𝑧𝑛 − 𝑧𝑛−1 − 𝑓𝑛 − 𝜙𝑛 (𝜃𝑛 + 𝜌𝑛) + ¤𝛼𝑐𝑛−1, parameters 𝑐𝑛, 𝜎 > 0 and 𝜖 > 𝜖 . Replacing (16)-(19) in
(15) yields

¤𝑉𝑧𝜃 = ¤𝑉𝑛−1 + 𝑧𝑛 (−𝑐𝑛𝑧𝑛 − (𝛽(𝑡) + 𝜖)tanh( 𝑧𝑛 (𝛽(𝑡) + 𝜖)
𝜎

) − 𝜔(𝑡)(𝛽(𝑡) + 𝜖) + 𝑔𝑛𝜉𝑛 − 𝜙𝑛𝜃𝑛)

+ 𝜃𝑛 (−
1
𝑑𝑜
𝜙𝑛 (𝑔𝑛𝜉𝑛 − 𝜙𝑛𝜃𝑛) − 𝛿𝑛 (𝜃𝑛 + 𝜌𝑛)),

note that the item based on Lemma 2 satisfies

−𝑧𝑛 (𝛽(𝑡) + 𝜖)tanh( 𝑧𝑛 (𝛽(𝑡) + 𝜖)
𝜎

) ≤0.2785𝜎 − |𝑧𝑛 (𝛽(𝑡) + 𝜖) |,
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and |𝑧𝑛 (𝛽(𝑡) + 𝜖) | > |𝑧𝑛𝜔(𝑡) (𝛽(𝑡) + 𝜖) |. Following the calculation process in (11) and combining (13), the
dynamic of 𝑉𝑧𝜃 turns to

¤𝑉𝑧𝜃 ≤ −
𝑛∑
𝑗=1

(𝑐 𝑗 −
𝑑𝑜
4

−
𝑑𝑜𝑑𝑔

4
)𝑧2𝑗 +

𝑛−1∑
𝑗=1

𝑧 𝑗Δ 𝑗 +
𝑛∑
𝑗=1

1
2
𝛿 𝑗𝜃

2
𝑗 −

𝑛∑
𝑗=1

(
𝛿 𝑗

2
−
𝑑𝜙𝑑𝑔

4𝑑𝑜
)𝜃2

𝑗 +
𝑛∑
𝑗=1

2
𝑑𝑜
𝜉2
𝑗 + 0.2785𝜎. (20)

Remark 1 The DETM (17) adjusts the update interval and control accuracy based on a control signal. Com-
pared with the static event-triggered mechanism (SETM), the proposed controller has a dynamically adjusted
trigger threshold and a shorter execution interval [42]. Due to the presence of the internal dynamic variable
𝛽(𝑡), triggers will not infinitely activate at 𝑢 = 0.

4. PERFORMANCE ANALYSIS
The stability properties of the random nonlinear system (3) with adaptive DETM controllers (17) and DSF
techniques are summarized in this section. Let us make some preparations for stability analysis. For 𝑖 =
1, · · · , 𝑛 − 1, define the transform

𝑒𝑖1 = 𝜂𝑖1 − 𝛼𝑖 ,
𝑒𝑖2 = 𝜂𝑖2 − 𝛼𝑖 .

(21)

Denote 𝑒 = [𝑒𝑇1 , · · · , 𝑒𝑇𝑛−1]𝑇 , and 𝑒𝑖 = [𝑒𝑖1, 𝑒𝑖2]𝑇 . From (6) and (21), we have

¤𝑒𝑖1 = 𝑘𝑖 (𝑒𝑖2 − 𝑒𝑖1) − ¤𝛼𝑖 ,
¤𝑒𝑖2 = −𝑘𝑖𝑒𝑖2 − ¤𝛼𝑖 .

(22)

Unfolding ¤𝛼𝑖 gives

¤𝛼𝑖 = − 𝑐𝑖 ¤𝑧𝑖 − ¤𝑧𝑖−1 + ¥𝛼𝑐𝑖−1 − ¤𝑓𝑖 + ¤𝜙𝑖 (𝜃𝑖 + 𝜌𝑖) + 𝜙𝑖 ( ¤̂𝜃𝑖 + ¤𝜌𝑖)

= − 𝑐𝑖 ¤𝑧𝑖 − ¤𝑧𝑖−1 −
𝑖∑
𝑗=1

𝜕 𝑓𝑖
𝜕𝑥 𝑗

¤𝑥 𝑗 + 𝜙𝑖 ( ¤̂𝜃𝑖 + ¤𝜌𝑖) + ¥𝛼𝑐𝑖−1 +
𝑖∑
𝑗=1

𝜕𝜙𝑖
𝜕𝑥 𝑗

(𝜃𝑖 + 𝜌𝑖) ¤𝑥 𝑗 ,
(23)

where 𝑧0 = 0, ¤𝑧𝑖 = −𝑐𝑖𝑧𝑖−𝑧𝑖−1+𝑧𝑖+1+𝑒𝑖1+𝑔𝑖𝜉𝑖−𝜙𝑖𝜃𝑖 , ¤𝑥 𝑗 = −𝑐 𝑗 𝑧 𝑗−𝑧 𝑗−1+𝑧 𝑗+1+𝑒 𝑗1−𝜙 𝑗𝜃 𝑗+𝑔 𝑗𝜉 𝑗+𝑘 𝑗−1(𝑒 𝑗−1,2−𝑒 𝑗−1,1),
¤̂𝜃𝑖 = 𝜆𝑖

𝑑𝑜
𝜙𝑖 ( 𝑓𝑖 + 𝑥𝑖+1 + 𝜙𝑖 (𝜃𝑖 + 𝜌𝑖) − 𝜆𝑖𝛿𝑖 (𝜃𝑖 + 𝜌𝑖), ¤𝜌𝑖 = 𝜆𝑖

𝑑𝑜
𝜙𝑖 (𝑥𝑖) ¤𝑥𝑖 , and

¥𝛼𝑐𝑖−1 =

{
0, 𝑖 = 1,
−𝑘2

𝑖−1(2𝑒𝑖−1,2 − 𝑒𝑖−1,1), 𝑖 = 2, · · · , 𝑛.

For the 𝑒-subsystem, select Lyapunov function 𝑉𝑒 = 1
2
∑𝑛−1
𝑖=1 𝑒

𝑇
𝑖 𝑒𝑖 , combining with (14), the following whole

Lyapunov function is obtained:
𝑉 (𝜒) = 𝑉𝑧𝜃 (𝑧, 𝜃) +𝑉𝑒 (𝑒), (24)

which satisfies 𝑎1 |𝜒 |2 ≤ 𝑉 (𝜒) ≤ 𝑎2 |𝜒 |2 with 𝜒 = [𝑧𝑇 , 𝑒𝑇 , 𝜃]𝑇 , 𝑎1 = 1
2 min{1, 1

𝜆𝑖
}, and 𝑎2 = 1

2 max{1, 1
𝜆𝑖
}.

For any constant 𝑣0 > 0 , define 𝑟0 =
√
𝑣0
𝑎2
, the initial value contained within a compact set 𝐵(0, 𝑟0) = {𝜒 :

|𝜒 | ≤ 𝑟0}. Since 𝑓𝑖 , 𝜙𝑖 , 𝜌𝑖 are smooth, then 𝜕 𝑓𝑖
𝜕𝑥 𝑗
, 𝜕𝜙𝑖𝜕𝑥 𝑗

, 𝜕𝜌𝑖𝜕𝑥 𝑗
are bounded in the ball 𝐵(0, 𝑟0), which, along with

(23), implies that constants 𝑏𝑖 𝑗 > 0( 𝑗 = 1, · · · , 4) can always be found such that

| ¤𝛼𝑖 | ≤ 𝑏𝑖1 |𝑒𝑖 | + 𝑏𝑖2 |𝑧𝑖+1 | + 𝑏𝑖3 |𝜃𝑖 | + 𝑏𝑖4 |𝜉𝑖 |,

where 𝑏𝑖 𝑗 ( 𝑗 = 1, · · · , 4) depends on 𝑟0, and only 𝑏𝑖1 depends on �̄�𝑖−1. With the aid of Young inequality, for
any constant 𝑑𝑜 > 0, there holds

| (𝑒𝑖1 + 𝑒𝑖2) ¤𝛼𝑖 | ≤𝜅𝑖 |𝑒𝑖 |2 +
1
𝑑𝑜

( |𝑒𝑖 |2 + |𝑧𝑖+1 |2 + |𝜉𝑖 |2 + |𝜃𝑖 |),
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where 𝜅𝑖 = 𝑑𝑜 (𝑏2
𝑖1 + 𝑏2

𝑖2 + 𝑏2
𝑖3 + 𝑏2

𝑖4), which results in

¤𝑉𝑒 =
𝑛−1∑
𝑖=1

(𝑒𝑇𝑖1 ¤𝑒𝑖1 + 𝑒𝑇𝑖2 ¤𝑒𝑖2)

≤ −
𝑛−1∑
𝑖=1

( 1
2 𝑘𝑖𝑒

𝑇
𝑖 𝑒𝑖 + (𝑒𝑖1 + 𝑒𝑖2) ¤𝛼𝑖)

≤ −
𝑛−1∑
𝑖=1

(
1
2 𝑘𝑖 − 𝜅𝑖

)
|𝑒𝑖 |2 +

𝑛−1∑
𝑖=1

1
𝑑𝑜
( |𝑒𝑖 |2 + |𝑧𝑖+1 |2 + |𝜉𝑖 |2 + |𝜃𝑖 |2)

≤ −
𝑛−1∑
𝑖=1

( 1
2 𝑘𝑖 − 𝜅𝑖) |𝑒𝑖 |2 +

𝑛−1
𝑑𝑜

( |𝑒 |2 + |𝑧 |2 + |𝜉 |2 + |𝜃 |2),

(25)

where 𝜅𝑖 , depending on �̄�𝑖−1, is independent of 𝑘𝑖 . Substituting (20) and (25) into the derivative of (24) yields
that for 𝑉 ≤ 𝑣0, one has

¤𝑉 ≤ −
𝑛∑
𝑖=1

(𝑐𝑖 − 𝑑𝑜
4 − 𝑑𝑜𝑑𝑔

4 )𝑧2𝑖 +
𝑛−1∑
𝑖=1
𝑧𝑖Δ𝑖 −

𝑛−1∑
𝑖=1

( 1
2 𝑘𝑖 − 𝜅𝑖) |𝑒𝑖 |2 +

𝑛−1
𝑑𝑜

( |𝑒 |2 + |𝑧 |2 + |𝜉 |2 + |𝜃 |2) + 2𝑛
𝑑𝑜
|𝜉 |2

−
𝑛∑
𝑖=1

( 𝛿𝑖2 − 𝑑𝜙𝑑𝑔
4𝑑𝑜 ) |𝜃𝑖 |2 +

𝑛∑
𝑖=1

1
2𝛿𝑖𝜃

2
𝑖 + 0.2785𝜎

≤ −
𝑛∑
𝑖=1

(𝑐𝑖 − 𝑑𝑜
2 − 𝑛−1

𝑑𝑜
− 𝑑𝑜𝑑𝑔

4 ) |𝑧𝑖 |2 −
𝑛−1∑
𝑖=1

( 1
2 𝑘𝑖 − 𝜅𝑖 −

𝑛
𝑑𝑜
) |𝑒𝑖 |2 −

𝑛∑
𝑖=1

( 𝛿𝑖2 − 𝑑𝜙𝑑𝑔
4𝑑𝑜 − 𝑛−1

𝑑𝑜
) |𝜃𝑖 |2 + 𝑛+1

𝑑𝑜
|𝜉 |2

+
𝑛∑
𝑖=1

1
2𝛿𝑖𝜃

2
𝑖 + 0.2785𝜎.

(26)

Let 𝑐𝑖 = 𝑐𝑖1 + 𝑐𝑖2, 𝑘𝑖 = 𝑘𝑖1 + 𝑘𝑖2, 𝛿𝑖 = 𝛿𝑖1 + 𝛿𝑖2, and define 𝑐 = min{2𝑐𝑖1, 𝑘𝑖1, 𝛿𝑖1} and 𝑐 = 2 min{𝑐𝑖2 − 𝑑𝑜
2 − 𝑛−1

𝑑𝑜
−

𝑑𝑜𝑑𝑔
4 , 1

2 𝑘𝑖2 − 𝜅𝑖 −
𝑛
𝑑𝑜
, 1

2𝛿𝑖2 −
𝑑𝜙𝑑𝑔
4𝑑𝑜 − 𝑛−1

𝑑𝑜
}. Denote 𝜁1 = 𝑛+1

𝑑𝑜
and 𝜁2 =

𝑛∑
𝑖=1

1
2𝛿𝑖𝜃

2
𝑖 + 0.2785𝜎. To let 𝑐 > 0, 𝑐 ≥ 0,

requirements on parameters are
𝑐𝑖1 > 0, 𝑐𝑖2 ≥ 𝑑𝑜

2 + 𝑛−1
𝑑𝑜

+ 𝑑𝑜𝑑𝑔
4 ,

𝑘𝑖1 > 0, 𝑘𝑖2 ≥ 2𝜅𝑖 + 2𝑛
𝑑𝑜
,

𝛿𝑖1 > 0, 𝛿𝑖2 ≥ 𝑑𝜙𝑑𝑔
2𝑑𝑜 + 2(𝑛−1)

𝑑𝑜
,

(27)

where 𝜅𝑖 depends on 𝑏𝑖 𝑗 ( 𝑗 = 1, · · · , 5), and 𝑏𝑖 𝑗 depends on 𝑣0. When 𝑐 > 0 and 𝑐 ≥ 0 are required, it is
concluded from (26) that

𝑉 ≤ 𝑣0 ⇒ ¤𝑉 ≤ −𝑐𝑉 + 𝜁1 |𝜉 |2 + 𝜁2. (28)

The error system is summarized as follows
¤𝑒𝑖1 = 𝑘𝑖 (𝑒𝑖2 − 𝑒𝑖1) − ¤𝛼𝑖 ,
¤𝑒𝑖2 = −𝑘𝑖𝑒𝑖2 − ¤𝛼𝑖 ,
¤𝑧𝑖 = −𝑐𝑖𝑧𝑖 − 𝑧𝑖−1 − 𝜙𝑖𝜃𝑖 + 𝑧𝑖+1 + 𝑒𝑖1 + 𝑔𝑖𝜉𝑖 ,
¤̃𝜃1 = 𝜕𝜌1

𝜕𝑥1
(𝑔𝑖𝜉𝑖 − 𝜙1𝜃𝑖) − 𝜆𝑖𝛿𝑖 (𝜃𝑖 + 𝜌𝑖).

(29)

Based on the above argument, we intend to summarize the following results.

Theorem 1 Consider the random ASS system described by (3), under Assumption 1 and Assumption 2, with
fictitious control law and adaptive update law in (9), (12), (16), the event-triggering rule (17), satisfying pa-
rameter requirements (27), the closed-loop system (29) has the following performance:

(1). the system (29) is semi-globally noise to state practically stable in probability (SGNSpS-P);
(2). all signals in (29) are bounded in probability;
(3). the desired performance of the stabilization error 𝑧1 can bemade arbitrarily small by adjusting parameters;
(4). the inter-execution intervals (𝑡𝑘+1 − 𝑡𝑘 ) have lower bounds.
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Proof It is clear that the closed-loop system is SGNSpES-P along (24) and (28), which means that 𝑧, 𝑒, and 𝜃
are all bounded in probability. From (7) and (9), the signals 𝑥1, 𝛼1, 𝜃1 are bounded in probability. Recalling
𝑥𝑖 = 𝑧𝑖 + 𝛼𝑖−1 + 𝑒𝑖−1,1 and (12), (16), the signals 𝑥𝑖 , 𝛼𝑖 , 𝜃𝑖 are got. Based on (17) and (19), the boundedness in
probability of the final control 𝑢 is obtained.

Regarding (28), with the aid of Gronwall inequality, we arrive at

𝑃{𝑧21 ≤ |𝜒0 |2𝑒−𝑐(𝑡−𝑡0) + 2𝑑𝑀 } ≥ 1 − 𝜀, |𝜒0 | ≤ 𝑟0,

for any 𝜀 > 0, where 𝑑𝑀 = 1
𝑐 (𝜁1𝑀 + 𝜁2) can be adjusted arbitrarily for any 𝜀 by tuning 𝑑𝑜, 𝑐 large enough.

In the following, it needs to be demonstrated that the designed trigger control can avoid the Zeno phenomenon.
The derivative of (19) becomes

¤𝜈(𝑡) = ¤𝛼𝑛 − ( ¤𝛽(𝑡) + 𝜖) tanh( 𝑧𝑛 (𝛽(𝑡) + 𝜖)
𝜎

) − (𝛽(𝑡) + 𝜖) ¤𝑧𝑛𝛽 + ¤𝛽𝑧𝑛
𝜎 cosh2( 𝑧𝑛 (𝛽(𝑡)+𝜖)𝜎 )

,

which is bounded in the compact set 𝐵(0, 𝑟0), thus, ¤𝜈(𝑡) ≤ �̄� with �̄� > 0 is established. In time interval
[𝑡𝑘 , 𝑡𝑘+1) of (17), it can obtain that |ℎ(𝑡) | = |𝑢(𝑡) − 𝜈(𝑡) | ≤ 𝛽(𝑡) + 𝜖 ≤ ℎ̄. Further, the derivative of ℎ2(𝑡)
becomes | (ℎ2(𝑡))′ | = 2|ℎ(𝑡) | · | ¤𝜈(𝑡) | ≤ 2ℎ̄�̄�. When 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1], it can be asserted that (𝑢(𝑡+𝑘 ) − 𝜈(𝑡+𝑘 ))2 = 0,
(𝑢(𝑡−𝑘+1)−𝜈(𝑡−𝑘+1))2 ≥ 𝜖2, therefore, 𝜖2 ≤ (𝑢(𝑡−𝑘+1)−𝑣(𝑡−𝑘+1))2−(𝑢(𝑡+𝑘 )−𝑣(𝑡+𝑘 ))2 =

∫ 𝑡−𝑘+1
𝑡+
𝑘

|ℎ(𝑠)2 |d𝑠 ≤ 2ℎ̄�̄�(𝑡𝑘+1−𝑡𝑘 ),

it can come to a conclusion that 𝑡𝑘+1 − 𝑡𝑘 ≥ 𝜖2

2ℎ̄�̄� , which implies that the inter-execution intervals have lower
bounds.

Remark 2 A command filter proposed in [21] is replaced with a double DSF (6) in this paper. This results in a
simpler form of Lyapunov functions used in 𝑉𝑒 (𝑒), which lightens the burden of stability analysis, while the
most important advantage of this change is that filter gains are replaced by 𝑘𝑖 to get more freedom in stability
analysis; otherwise, the last inequality in (27) may have no solution.

5. SIMULATION
For the random ASS (1), following the previous DETM controller design with I&I in section 3, we can arrive
at

𝛼1 = −𝑐1𝑧1,

𝛼2 = 𝑚𝑏+𝑚𝑐

𝐾𝑡𝑚𝑏
(−𝑐2𝑧2 − 𝑧1 + 𝐾𝑡

𝑚𝑏+𝑚𝑐
𝑧1 + ¤𝜂11),

𝛼3 = −𝑐3𝑧3 − 𝐾𝑡𝑚𝑏

𝑚𝑏+𝑚𝑐
𝑧2 + ¤𝜂21,

𝛼4 = 𝑚𝑏𝑚𝑐

𝑚𝑏+𝑚𝑐
(−𝑐4𝑧4 − 𝑧3 − 𝑓4 − 𝜙(𝜃 + 𝜌) + ¤𝜂31),

¤̂𝜃 = − 𝜕𝜌
𝜕𝑥4

( 𝑓4 + 𝜙(𝜃 + 𝜌)) − 𝜆𝛿(𝜃 + 𝜌),
𝜈(𝑡) = 𝛼4 − (𝛽(𝑡) + 𝜖)tanh( 𝑧4 (𝛽(𝑡)+𝜖)𝜎 ),
𝑢(𝑡) = 𝜈(𝑡𝑘 ),∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1),
𝑡𝑘+1 = inf{𝑡 > 𝑡𝑘

��|ℎ(𝑡) | ≥ 𝛽(𝑡) + 𝜖},
¤𝛽(𝑡) = −𝑏𝛽(𝑡) − |ℎ(𝑡) | + 𝜖,

(30)

where 𝜌 = 1
2
𝜆
𝑑𝑜

𝑚𝑏+𝑚𝑐

𝑚𝑏𝑚𝑐
𝑥2

4,
𝜕𝜌
𝜕𝑥4

= 𝜆
𝑑𝑜

𝑚𝑏+𝑚𝑐

𝑚𝑏𝑚𝑐
𝑥4. By choosing the Lyapunov function

𝑉 =
1
2

4∑
𝑖=1

𝑧2𝑖 +
1
2𝜆
𝜃2 + 1

2

3∑
𝑖=1

𝑒𝑇𝑖 𝑒𝑖 , (31)
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Figure 2. Random disturbances.

the dynamic of (31), along with the design of controllers (30) and the handling of inequalities, leads to

¤𝑉 ≤ −(𝑐1 − 3
𝑑𝑜

− 𝑑0
4 ) |𝑧1 |2 − (𝑐2 − 𝑑𝑐𝑑𝑜

4 − 3
𝑑𝑜
) |𝑧2 |2 − (𝑐3 − 3

𝑑𝑜
− 𝑑0

4 ) |𝑧3 |2 − (𝑐4 − 3
𝑑𝑜

− 𝑑0
2 ) |𝑧4 |2

−( 𝛿2 − 𝑑𝜙
2𝑑𝑜 − 3

𝑑𝑜
) |𝜃 |2 −

3∑
𝑖=1

( 1
2 𝑘𝑖 − 𝜅𝑖 −

3
𝑑𝑜
) |𝑒𝑖 |2 + 5

𝑑𝑜
(|𝜉1 |2 + |𝜉2 |2) + 1

2𝛿𝜃
2 + 0.2785𝜎(𝑚𝑏+𝑚𝑐)

𝑚𝑏𝑚𝑐
,

≤ −𝑐𝑉 + 𝜁1 |𝜉 |2 + 𝜁2,

where 𝑑𝑐 = 𝑚2
𝑏 + 𝑚2

𝑐 + ( 𝐾𝑡𝑚𝑏

𝑚𝑏+𝑚𝑐
)2, 𝑑𝜙 = ( 𝑚𝑏+𝑚𝑐

𝑚𝑏𝑚𝑐
)2, 𝜉 = max{𝜉1, 𝜉2}. In order to better select parameters and

adjust the tracking effect, let 𝑐𝑖 = 𝑐𝑖1 + 𝑐𝑖2, 𝑘𝑖 = 𝑘𝑖1 + 𝑘𝑖2, 𝛿 = 𝛿1 + 𝛿2, and define 𝑐 = min{2𝑐𝑖1, 𝑘𝑖1, 𝛿1} and
𝑐 = 2 min{𝑐12 − 𝑑𝑜

4 − 3
𝑑𝑜
, 𝑐22 − 𝑑𝑐𝑑𝑜

4 − 3
𝑑𝑜
, 𝑐32 − 𝑑𝑜

4 − 3
𝑑𝑜
, 𝑐42 − 𝑑𝑜

2 − 3
𝑑𝑜
, 1

2 𝑘𝑖2 − 𝜅𝑖 −
3
𝑑𝑜
, 1

2𝛿2 − 𝑑𝜙
2𝑑𝑜 − 3

𝑑𝑜
}. Denote

𝜁1 = 5
𝑑𝑜

and 𝜁2 = 1
2𝛿𝜃

2 + 0.2785𝜎(𝑚𝑏+𝑚𝑐)
𝑚𝑏𝑚𝑐

. To let 𝑐 > 0, 𝑐 ≥ 0, requirements on parameters are

𝑐𝑖1 > 0, 𝑘𝑖1 > 0, 𝛿1 > 0, 𝑐12 >
𝑑𝑜
4 + 3

𝑑𝑜
, 𝑐22 >

𝑑𝑐𝑑𝑜
4 + 3

𝑑𝑜
,

𝑐32 >
𝑑𝑜
4 + 3

𝑑𝑜
, 𝑐42 >

𝑑𝑜
2 + 3

𝑑𝑜
, 𝑘𝑖2 > 2𝜅𝑖 + 6

𝑑𝑜
, 𝛿2 >

𝑑𝜙
𝑑𝑜

+ 6
𝑑𝑜
.

(32)

Theorem 2 For random suspension systems (1) with control law (30) satisfying parameter requirements (32),
the closed-loop system is SGNSpS-P; the stabilization error 𝑥1 = 𝑧1 can be made arbitrarily small, and the
triggering mechanism will not cause the Zeno phenomenon.

FollowingTheorem 1, the previous properties can be obtained directly; the specific proof process was omitted.

Next, the practical stabilization problem is simulated to demonstrate the merit of the obtained feedback con-
troller (30). Choose system parameters as 𝑚𝑏 = 𝑚𝑐 = 0.4, 𝐾𝑡 = 2.5, 𝐾𝑎 = 4, 𝐶𝑎 = 0.2. With the initial
conditions 𝑞1(0) = 0.01, 𝑞2(0) = 0.02, ¤𝑞1(0) = 0.5, ¤𝑞2(0) = 0.4, 𝜃 (0) = 0.2, 𝛽(0) = 0.02, 𝜂11(0) = 𝜂21(0) =
𝜂31(0) = 0.01, 𝜂21(0) = 𝜂22(0) = 𝜂32(0) = 0.1, we have the following simulation results of (30), as shown in
Figure 2-Figure 4.

Followed by section VI of [40], the disturbances 𝜉1, 𝜉2 can be regarded as zero-mean widely stationary processes
resulting from limited bandwidth white noise, and the corresponding parameters are as follows: the sample
time is 𝑡𝑐 = 0.2, the noise powers are 𝐴1 = 0.2𝑎𝑛𝑑𝐴2 = 0.1, and corresponding gain coefficients are 𝑏1 =
0.5𝑎𝑛𝑑𝑏2 = 0.2. The random disturbances 𝜉𝑖 , (𝑖 = 1, 2) are presented in Figure 2, which shows that the
second-order moment of the disturbance is bounded in assumption 1.
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Figure 3. Estimation and stabilization results.

In addition, the parameters in controller are 𝑐1 = 0.8, 𝑐2 = 0.6, 𝑐3 = 0.4, 𝑐4 = 0.6, 𝛿 = 𝜆 = 0.4, 𝑑𝑜 = 5,
𝑏 = 0.2, 𝜎 = 4, 𝜖 = 0.04, 𝜖 = 0.05, the coefficients in DSFs are 𝑘1 = 𝑘2 = 30, 𝑘3 = 25. As shown in Figure 3,
the adaptive estimation result based on I&I and correction term 𝜌(𝑡) is presented. Meanwhile, it can be found
that the stabilization error 𝑧1 = 𝑥1 also converges to a small neighborhood of the origin under the DETM
controller, and the states of the suspension system 𝑞1, 𝑞2 are also practically stable. This indicates that the
system goals are achieved under the designed controller.

The continuous control 𝜈(𝑡) and ETC 𝑢(𝑡) are reflected in Figure 4; as time goes by, event triggers continue to
occur, and the event-triggered interval is constantly changing, obviously, the designed dynamic event-triggered
controller avoids Zeno behavior. Note that the internal dynamic variable 𝛽(𝑡) is introduced in DETM, which
is also shown in Figure 4.

Below, we will conduct a simulation comparison between DETM and SETM under I&I and DSF. As shown in
Figure 5, the relative threshold triggering strategy in [43,44] is demonstrated, that is

𝜈(𝑡) = −(1 + 𝛽)(𝛼4tanh( 𝑧4𝛼4
𝜎 ) + 𝜖 tanh( 𝑧4𝜖𝜎 )),

𝑢(𝑡) = 𝜈(𝑡𝑘 ),∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1),
𝑡𝑘+1 = inf{𝑡 > 𝑡𝑘

��|𝑢(𝑡) − 𝜈(𝑡) | ≥ 𝛽 |𝑢(𝑡) | + 𝜖},

where 𝛽 ∈ (0, 1), 𝜖 > 0, 𝜖 > 𝜖
1−𝛽 . Comparing Figure 4 and Figure 5, the control inputs of the two types of

control strategies fluctuate within the same range, and the adaptive estimation and stabilization effects are both
well. However, the DETM gives the next execution time greater than the SETM. Comparing the stem and leaf
plots in these two figures, it can draw a conclusion that the DETM has fewer triggering times, which better
illustrates the advantages of DETM in Remark 1.

In order to illustrate the difference in adaptive effects between I&I and CE under DETM and DSF, follow-
ing [11,12], an adaptive law is designed as

¤̂𝜃 = −𝜆𝑧4𝜙 + 𝜆𝛿𝜃,

http://dx.doi.org/10.20517/ces.2023.25
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Figure 4. DETM control. DETM: dynamic eventtrigger mechanisms.
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Figure 5. SETM control in [43,44]. SETM: static event-triggered mechanism.

where 𝜆, 𝛿 > 0, then the estimation effect is shown in Figure 6; by comparison, the adaptive estimation effect
is better in I&I in Figure 3 when the control changes are not significantly different.

http://dx.doi.org/10.20517/ces.2023.25


Yang et al. Complex Eng Syst 2023;3:17 I http://dx.doi.org/10.20517/ces.2023.25 Page 13 of 15

0 100 200 300

-1

0

1

0 100 200 300
-0.2

0

0.2

0 100 200 300
-40

-20

0

20

0

10

20

0 100 200 300

50 60 70 80
-0.2

0

0.2

Figure 6. CE in [11,12]. CE: certain equivalence.

6. CONCLUSION
In this work, an adaptive ETC method with double DSF has been presented for random quarter-car active
suspension models. Compared with static event-trigger, the designed dynamic event-triggered strategy can ef-
fectively reduce communication burden and save network resources. Not only automotive suspension systems
but also the research on practical stabilization problems of general random nonlinear systems have also been
provided. More importantly, for general random nonlinear systems, tracking controllers can also be designed
to achieve the tracking goals. Future work may include vehicle network control issues under network attacks
or adaptive ETC issues for stochastic under-actuated systems. The safety issues of multi-agent under-actuated
systems, such as unmanned aerial vehicles and surface vessels, are also worth further investigation.
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