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Abstract
Electrophysiology is an indispensable tool in the early diagnosis of a wide range of diseases, making the precise, 
continuous, and stable recording of electrophysiological signals critically important. Organic electrochemical 
transistors stand out among various electrophysiological recording devices, offering a high signal-to-noise ratio due 
to their intrinsic amplification capability. However, despite their inherent advantages, several challenges persist in 
practical scenarios, such as the stability of wearable devices, limited spatiotemporal resolution, and undesired 
inter-channel crosstalk in implantable systems. Addressing these challenges may require innovative approaches in 
electrolyte engineering. This perspective summarizes the latest advancements and ongoing hurdles in the 
electrolyte engineering of organic electrochemical transistors, highlighting their potential to revolutionize advanced 
electrophysiological applications.
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INTRODUCTION
Electrophysiology, depending on its application scenarios, unveils the electrical properties inherent in heart 
tissues[1,2] and living neurons[3,4]. This empowers scientists to underpin diverse heart rhythm abnormalities[5,6] 
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and decode intercellular and intracellular messages[7,8], leading to the establishment of platforms for early 
diagnosis and treatments of cardiovascular and neurodegenerative diseases[9,10]. Most electrophysiological 
techniques, e.g., electrocardiograms (ECGs)[11-13], electroencephalograms (EEGs)[14,15], electrocorticography 
(ECoG)[16,17], etc., capture signals by situating bioelectrodes on the tissue surface[18]. Conventional electrodes, 
typically termed “passive electrodes”[19], have their own sets of challenges. For instance, metal electrodes 
frequently result in undesired immune responses, making them unsuitable for chronic applications in the 
biotic environment. Organic electrodes, on the other hand, generally exhibit a low signal-to-noise ratio 
(SNR) resulting from their limited conductivity[20].

Transistors[21,22], particularly the organic electrochemical transistors (OECTs)[23,24], hold advantages in 
detecting low-amplitude signals within physiologically relevant time frames owing to their intrinsic 
amplification capabilities. OECTs excel in on-site signal processing, design flexibility, and biocompatible 
characteristics. Their unique mechanism, bulky modulation of the active layer, results in a volumetric 
capacitance, endowing them with high transconductance (gm) under low-operation voltage, enabling high 
sensitivity and safe operation for biosensing applications[25,26]. Leveraging these benefits, in vitro[27,28] and 
in vivo[29-31] signals have been successfully recorded using OECTs [Figure 1A].

The form factors of OECTs are evolving towards increased stretchability and conformability to the tissue. 
This necessitates using interfacial materials that are both adhesive and porous, retaining excellent 
conformability without forming interfacial air gaps, ensuring high oxygen and water vapor permeability, 
and allowing the underlying tissue to breathe freely [Figure 1B]. Future advancements in implantable 
devices also demand innovations to engineer these systems to be programmable for enhanced 
spatiotemporal resolution and biodegradable to reduce the need for subsequent surgical interventions. For 
chronic application scenarios, including self-healing property further boosts the durability, practicality, and 
lifespan of OECTs [Figure 1C]. Additionally, integrating self-powered features, such as coupling with 
energy ultraflexible energy harvesters[32], paves the way for eco-friendly bio-integrated systems. Despite the 
rapid evolution of this field, achieving high-quality recordings with superior spatiotemporal resolution and 
stability still presents a formidable challenge.

RECENT PROGRESS IN ELECTROLYTE ENGINEERING OF OECTS
One primary issue arises with the use of liquid electrolytes. Their tendency to evaporate might decrease the 
reliability of in vitro applications[33], and they pose a barrier to individual gating in integrated circuits/arrays 
for in vivo applications in an ion-rich medium. While organic liquid electrolytes demonstrate superior ionic 
conductivity, many have not been proven to be biocompatible, and fluidic issues persist[34]. Solid-state 
electrolytes, i.e., ion gels[35,36] based on polymers blended with ionic liquid or based on biomaterials[37] such as 
hydrogels[38], levan polysaccharide[39], etc., offer improved nonvolatility and facilitate stable operation of the 
devices under dynamic conditions. This is attributed to the crosslinked polymer structure that enhances 
stability while maintaining ionic conductivity by incorporating ionic-conducting components. Interfacial 
intimacy can be facilitated through in-situ polymerization, while biocompatibility further necessitates 
careful material selection. Besides, the electrolyte materials should be mechanically soft to maintain 
conformal contact between the skin and devices, which is crucial to decrease the impedance for efficient 
gating and realize stable recording.

The radar chart in Figure 2 provides a comparative analysis of key performance metrics across diverse 
electrolytes currently in use. These encompass aqueous electrolytes such as NaCl solution and phosphate-
buffered saline (PBS), organic liquid electrolytes such as 1-ethyl-3-methylimidazolium tetrafluoroborate 
([EMIM][BF4]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([EMIM][TFSI])[34], 



Page 3 of Zhu et al. Soft Sci 2024;4:21 https://dx.doi.org/10.20517/ss.2024.01 10

Figure 1. OECTs for advanced electrophysiology. (A) Schematic of wearable and implantable OECTs, with a detailed depiction of a 
typical OECT device on the right. Here, S, D, and G denote the source, drain, and gate electrodes, respectively; (B) Evolutionary trends 
in OECT development, including the stretchable, conformable configurations, adhesive interfaces, and breathable device structure; (C) 
Future directions for OECTs in advanced implantable systems, highlighting the importance of developing high-density arrays, alongside 
biodegradable and self-healing features tailored for diverse application scenarios. OECTs: Organic electrochemical transistors.

Figure 2. Radar chart comparing performance metrics of existing electrolytes. The interfacial intimacy is used to assess the contact 
property between the electrolyte and the active material.

and solid-state electrolytes[35-39] such as poly(vinyl alcohol) (PVA) hydrogel and poly (vinylidenefluofide-co-
hexafluoropropylene [P(VDF-HFP)]-[EMIM][BF4]). Generally, aqueous electrolytes exhibit advantages in 
terms of tunable ionic conductivity, interfacial intimacy with the channel material, and biocompatibility. 
Their main limitation is the volatility and the lack of robust mechanical properties. Organic liquid 
electrolytes, on the other hand, possess favorable characteristics in interfacial intimacy and nonvolatility and 
excellent ionic conductivity. Yet, they are constrained by limited biocompatibility and mechanical 
compliance. Solid electrolytes present tunable mechanical compliance, interfacial intimacy, and 
nonvolatility. With careful engineering, they can achieve satisfactory levels of both ionic conductivity and 
biocompatibility.
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Using ion gels, formulated with gelatin, PBS, and glycerin[36], in conjunction with the well-established active 
material poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), successful and stable 
mapping of ECG signals was accomplished via an OECT array [Figure 3A]. The devices retained high 
performance after medium-intensity exercise, demonstrating their potential for sports-related applications. 
Moreover, using a gelatin-glycerol electrolyte as the substrate facilitated the construction of a highly 
stretchable OECT, designed to adapt to skin deformation, ensuring stable recording and conformability[40].

For the long-term application of wearable OECTs on the skin, it is crucial to ensure both the operational 
stability of the devices and the comfort of the users. The integration of nonvolatile solid electrolytes could 
significantly enhance the operational stability. For instance, glycerol gel has been used as a solid electrolyte 
to realize continuous electrophysiological monitoring for several hours and demonstrates stability in the air 
for more than seven days[33]. In addition, gas-permeable materials and devices have been developed[41,42], 
effectively mitigating potential skin irritation or device degradation. For example, a gas-permeable solid-
state polymer electrolyte (SPE) [Figure 3B] was applied in fibrous nano-mesh OECT, realizing “breathable” 
OECTs that exhibit high-quality electrophysiological recordings[41]. Ultrathin hydrogel films with a 
thickness down to 10 µm have been developed recently and applied as universal biocompatible interfaces 
towards breathable, skin-integrated electronics [Figure 3C][42].

For in vivo recordings, high spatial and temporal resolution are crucial for capturing the intricate dynamics 
of intercellular and intracellular communication and accurately recording high-frequency signals. Although 
the in vivo environment is naturally aqueous, and the tissue fluid can function as an electrolyte, electrolyte 
engineering can still solve persisting challenges.

To realize high temporal resolution, the conductivity of the electrolyte and channel capacitance are pivotal 
factors, as determined by[43]

where τ denotes response time, RE is electrolyte resistance, and Cch stands for channel capacitance. Generally, 
high ionic conductivity of the electrolyte would decrease the response time of OECTs, thus enabling high 
temporal resolution. Additionally, strategies for controlling the channel capacitance through active material 
and channel geometry engineering have been explored. Regarding the active material, p-type and n-type 
materials operating in an accumulation or depletion mode have been demonstrated, as summarized in 
Table 1. Various factors, such as the polymer backbone structure, side chain symmetry, and localized 
microstructure of the organic films, were identified as influential on the device response time[49,50]. For 
instance, the inclusion of ethylene glycol side chains has been observed to enhance transient characteristics 
by regulating hydration levels[51]. Bithiophene units functionalized with triethylene glycol side chains 
represent a promising building block for accumulation-mode OECTs, facilitating rapid temporal responses 
and robust operational stability[52].

Regarding channel geometry, vertical structures[23,48] [Table 1], are favored for achieving faster responses due 
to reduced channel length and, consequently, decreased volumetric capacitance. Specifically, in a step-type 
vertical structure, the channel length corresponds to the thickness of the interfacial layer, typically around 
1 μm. In a sandwich-type vertical structure, the channel length is determined by the thickness of the active 
layer, typically around 0.1 μm. Notably, across various device configurations, molecular orientation plays a 
crucial role in determining both ionic drift [53] and charge carrier transport pathways[54], thereby affecting 



Page 5 of Zhu et al. Soft Sci 2024;4:21 https://dx.doi.org/10.20517/ss.2024.01 10

Table 1. Summary of documented electrolyte materials, channel active materials, and device architecture in OECTs

Electrolyte Active layer Architecture
Material Type Material Type Working mode Schematic

Ref.

0.1M NaCl Aqueous BBL n Accumulation [44]

0.1M NaCl Aqueous BBL:PEI n Depletion [45]

[EMIM][BF4] Organic p(g1T2-g5T2) p Accumulation [46]

Glycerol gel Solid PEDOT:PSS p Depletion

Planar 

[33]

0.1M NaCl Aqueous PEDOT:PSS p Depletion [23]

PBS Aqueous p(g2T-TT) p Accumulation [47]

PBS Aqueous p(C6NDI-T) n Accumulation

Vertical (step-like) 

[47]

PBS Aqueous HOMO-gDPP n Accumulation [48]

[EMIM][TFSI]:PEGDA Solid PIDTPEG-BT p Accumulation

Vertical (sandwich-like) 

[35]

OECTs: Organic electrochemical transistors; BBL: poly(benzimidazobenzophenanthroline); PEI: polyethyleneimine; p(g1T2-g5T2): poly[3,3’bis(2-
methoxyethoxy)-2,2’-bithiophene]-co-[3,3’-bis(2-(2-(2-(2-(2methoxyethoxy)ethoxy)ethoxy)ethoxy)ethoxy)-2,2’-bithiophene]; p(g2T-TT): 
poly[2-(3,3’-bis{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}-[2,2’-bithiophen]-5-yl)thieno[3,2-b]thiophene]; p(C6NDI-T): naphthalene diimide 
thiophene-based (NDI-T) backbone functionalized with ethylene glycol side chains.

transient responses. Meticulously selecting device architecture, channel materials, and electrolytes makes it 
possible to significantly improve the transient response and overall performance of the OECT devices.

An innovative approach to reduce the response time (τ) involves integrating the channel material with the 
electrolyte. In particular, an internal ion-gated OECT (IGT), a unique type that incorporates hydrated ion 
reservoirs within a conducting polymer channel, was innovated[55]. This design eliminates the reliance on an 
external electrolyte, and significantly reduces the time of ions participating in the de-doping process, 
thereby enabling enhanced operational speed [Figure 3D]. Based on this structure, a rapid response time of 
2.6 μs was achieved, resulting in an effective bandwidth of 380 kHz, and ensuring a high SNR within the 
physiological frequency bands. Moreover, when IGTs are adopted together with a vertical device 
configuration, known as vIGT[56], high spatial and temporal resolution (sub-µs domain) can be realized at 
the same time [Figure 3E]. Local field potential (LFP) patterns corresponding to wakefulness, rapid eye 
movement (REM) sleep, and non-REM sleep were recorded precisely using a vIGT-based recording system 
[Figure 3F]. In addition to embedding ions directly into the active layer, using an in situ π-ion gel as the 
active material and an internal gate capacitor - a design known as π-ion gel transistors (PIGTs)[57] - also 
effectively reduces response time (down to 20 µs). This approach enhances the device performance by 
maximizing the interfacial area between the ionic liquid and the semiconducting fibers, facilitating rapid 
ionic transport and electronic responses. The above-mentioned strategies work effectively toward high-
speed OECTs.

To achieve high spatial resolution in vivo, it is essential to develop channels with a high density. Preventing 
the inter-channel crosstalk would be a prerequisite to ensure the quality of signals. Recent research has 
made progress by integrating OECTs with organic electrochemical diodes, which serve as switches. This 
approach leads to negligible signal interference across the channels and allows for the multiplexing of 
amplified LFPs within the active recording pixel (26-μm diameter)[58]. To realize individual gating of high-
density OECT arrays, vIGTs represent a noteworthy example[56]. They boast an impressive density of 
approximately 155,000 transistors per square centimeter and demonstrate stable performance in an aqueous 
environment. Strategically incorporating an H-via design [Figure 3E] and embedding ions in the active layer 
effectively minimized crosstalk.
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Figure 3. Electrolyte engineering of OECTs for electrophysiological recording. (A) Demonstration of wearable OECT array adopting solid 
gel electrolyte[36]; (B) The SEM image of a SPE, showing porous structure. Scale bar, 200 μm[41]; (C) Schematic of breathable skin-
integrated electronics using an ultrathin hydrogel film as the skin/electronics interface[42]; (D) Schematic of an internal IGT, which has 
mobile ions embedded in the active layer[55]; (E) Schematic showing the cross-section of a vIGT. L denotes the vertical channel length. S, 
D, and G stand for the source and drain contacts and the gate electrode. The H-via shows a micro-conduit from the device surface 
through the ion membrane layer to permit hydration of the channel[56]; (F) The time-frequency spectrogram of the neural data captured 
and wirelessly transmitted by a vIGT-based standalone device. The characteristic local field potential patterns associated with 
wakefulness, REM sleep, and non-REM sleep are revealed. A superimposed raw time trace highlights the theta oscillation characteristics 
during REM sleep. Scale bar, 250 ms; (G) Schematic of a biodegradable OECT based on biodegradable electrolyte[39]. Figure 3A adapted 
with permission from ref.[36], Copyright 2023 John Wiley and Sons; Figure 3B adapted with permission from ref.[41], Copyright 2022 John 
Wiley and Sons; Figure 3C adapted with permission from ref.[42], Copyright 2022 John Wiley and Sons; Figure 3D adapted with 
permission from ref.[55], Copyright 2019 Authors, licensed under Creative Commons Attribution NonCommercial License 4.0 (CC BY-
NC); Figure 3E and F adapted with permission from ref.[56], Copyright 2023 Authors, licensed under Creative Commons Attribution 4.0 
International License; Figure 3G adapted with permission from ref.[39], Copyright 2020 John Wiley and Sons. OECTs: Organic 
electrochemical transistors; SEM: scanning electron microscopy; SPE: solid-state polymer electrolyte; IGT: ion-gated electrochemical 
transistor; REM: rapid eye movement.

For stable electrophysiological monitoring in vivo, the inherent movement of tissues, such as brain and 
cardiac tissues, during their functions poses a challenge in maintaining consistent signal acquisition over the 
long term[59,60]. To overcome this challenge, adhesive and biocompatible materials should be integrated with 
the OECTs. For instance, the N-hydroxysuccinimide (NHS) ester group was used to form covalent bonds 
with the primary amine groups on tissue surfaces, thus enhancing the bio-adhesion[61]. In a different 
approach, a bio-adhesive polymer semiconductor (BASC) film established rapid and robust adhesion to 
biological tissues. In this regard, bio-adhesive solid electrolytes, including hydrogels[42], can act as a 
conformable interface, providing mechanical cushioning to ensure stable contact and maintain the 
recording fidelity.

Can electrolyte engineering address the aforementioned challenges comprehensively and generate high-
performance, high-speed OECTs in large-scale integrated circuits with minimal crosstalk in physiological 
media? In an in vitro setting, employing a solid electrolyte could facilitate the separation of individual 
channels, enabling individual gating[53]. When applied in an aqueous in vivo context, a solid-like electrolyte 
that exhibits biocompatibility, adhesive properties to tissues, and the ability for patterning, thereby 
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supporting high-density configurations, has the potential to enable high-quality signal mapping with 
enhanced spatial resolution and reduced crosstalk. Exploring such systems could simplify device 
architecture while preserving their functionalities. This area remains largely unexplored, and efforts are yet 
to be made.

Finally, to circumvent the secondary surgical interventions, developing biodegradable and bioresorbable 
bioelectronics has become a pressing research priority. For example, a biodegradable electrolyte composed 
of all edible materials, i.e., levan polysaccharide and choline-based ionic liquid, was developed that 
concurrently serves as the device substrate [Figure 3G][39]. Such biodegradable OECTs demonstrated 
successful recording of ECG signals from the heart surface of a rat. These findings underscore the potential 
that biodegradable electrolytes hold for the application in implantable medical devices.

SUMMARY
Despite the considerable progress enabled by electrolyte engineering in OECTs, particularly within 
electrophysiology, challenges exist in realizing high-quality signal acquisition under dynamic physiological 
conditions and across prolonged durations. For wearable OECT applications, it is essential to ensure the 
user comfort and the device sensitivity simultaneously. These OECTs must exhibit mechanical flexibility 
and softness commensurate with biological tissues while allowing the skin underneath to breathe and move 
naturally.

In the context of implantable OECTs, ensuring robust interfacial adhesion with the soft and dynamic tissues 
remains a nascent challenge. Developing bio-adhesive and biocompatible electrolytes possessing requisite 
ionic conductivity is anticipated to be a key strategy. Such advancement would enable seamless integration 
and sustained interfacing with biological tissues, thereby facilitating chronic biomedical investigations and 
interventions. Additionally, the engineering of OECTs with controlled degradation pathways remains an 
ongoing challenge, which would minimize long-term adverse effects from device residue and hold promise 
for enhancing the practicality of these devices in therapeutic settings.

A further challenge within the liquid in vivo environment is achieving high spatial and temporal resolution 
in high-density arrays and integrated circuits without interference- the “crosstalk”- between adjacent 
channels. Engineering the patternable, bio-adhesive, and solid-state electrolytes could fundamentally solve 
such issues, yet substantial efforts are still necessitated in this field.

Finally, the interplay between device architecture, channel materials, and electrolyte engineering remains an 
open question. Consider the innovative IGT as a case in point; beyond the predominant PEDOT:PSS 
channel material, there remains huge potential of broadly applying this strategy to embed ions into other 
channel materials. In common OECTs, the intricacies and control of ion penetration and transport at the 
electrolyte/channel material interface are yet to be fully understood. Besides, unveiling the localized 
microstructure is crucial for comprehending the ionic/electronic interactions and the subsequent electronic 
conductivities, both of which demand further in-depth investigation.

To summarize, strategic innovations in electrolyte materials could redefine the capabilities of OECTs, 
advancing electrophysiological devices that combine high performance and stability, biocompatibility and 
comfort, with the dynamic intelligence demanded for cutting-edge biomedical applications.
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