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Liver cancer remains one of the most common human cancers with a high mortality rate. 
Therapies for hepatocellular carcinoma (HCC) remain ineffective, due to the heterogeneity 
of HCC with regard to both the etiology and mutation spectrum, as well as its chemotherapy 
resistant nature; thus surgical resection and liver transplantation remain the gold standard 
of patient care. The most common etiologies of HCC are extrinsic factors. Humans have 
multiple defense mechanisms against extrinsic factor-induced carcinogenesis, of which tumor 
suppressors play crucial roles in preventing normal cells from becoming cancerous. The tumor 
suppressor p53 is one of the most frequently mutated genes in liver cancer. p53 regulates 
expression of genes involved in cell cycle progression, cell death, and cellular metabolism 
to avert tumor development due to carcinogens. This review article mainly summarizes 
extrinsic factors that induce liver cancer and potentially have etiological association with 
p53, including aflatoxin B1, vinyl chloride, non-alcoholic fatty liver disease, iron overload, 
and infection of hepatitis viruses.
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INTRODUCTION

Liver cancer is the 6th most common cancer in 
men and the 9th most common cancer in women 
with the 3rd highest mortality rate of all cancers 
globally.[1,2] The majority of these cases (about 80%) 
occur in Eastern Asia, South-Eastern Asia, Mid-
Africa, and West Africa, within the context of viral 
hepatitis.[2-4] Although there are genetic etiologies for 
hepatocellular carcinoma (HCC) including hereditary 
hemochromatosis and α1-antitrypsin deficiency,[5-7] 
viral hepatitis, as well as exposure to other extrinsic 
factors, such as aflatoxin B1 (AFB1), polyvinyl chloride 
(PVC), a poor diet inducing non-alcoholic fatty liver 
disease (NAFLD), and excess iron exposure, remain 
among the most common causes of liver cancer.[8,9] 
Despite vaccinations for hepatitis B virus (HBV), new 
treatments for hepatitis C virus (HCV), regulations 
governing PVC production, and restrictions preventing 
AFB1 contamination of food products, countries still 
struggle to prevent liver cancer.[9,10]

Surgical resection is currently the preferred treatment, 
and liver transplantation is ultimately the most effective 
therapeutic modality of HCC; however, it is limited by 
the availability of suitable organs.[11,12] Due to a high 

probability of being diagnosed at advanced stages, as 
well as poor responses to systematic chemotherapy 
and radiation therapy, prognosis of HCC is particularly 
bleak with an incidence to mortality ratio of 0.95 and a 
5-year survival rate around 17.5%.[2,13]

Molecular mechanisms involved in liver carcinogenesis 
remain unclear. The tumor suppressor p53, a 
transcription factor that regulates many downstream 
target genes regulating cell cycle progression, 
a p o p t o s i s ,  D N A  r e p a i r,  s e n e s c e n c e ,  a n d 
metabolism,[14,15] is one of the most commonly mutated 
genes in HCC.[16,17] Indeed, p53 is the most commonly 
mutated human gene, occurring in > 50% of all human 
cancers.[18] Additionally, in some HCC cases, proteins 
such as a 26S proteasome regulatory protein, gankyrin, 
and a p53-specific ubiquitin ligase, murine double 
minute 2 (MDM2), are elevated, hence decreasing 
p53 protein levels.[19,20] MicroRNAs (miRNAs) can 
also inhibit p53 activity; specifically, miRNA-24, when 
dysregulated in HCC, is shown to promote invasion 
and metastasis by decreasing p53 levels.[21] Thus, p53 
activity is impaired by multiple mechanisms in HCC, 
hence contributing to HCC genesis. In this review 
article, we focus on HCC-inducing extrinsic factors that 
are etiologically associated with p53 [Table 1].   

Table 1: Extrinsic factors causing liver cancer and their association with p53

Extrinsic factors Mechanisms of action Roles of p53 References
AFB1 AFB1 is metabolized to AFB1-8,9-epoxide to 

form AFB1-N7-guanine adducts, leading to 
specific mutation at p53 codon 249 (p53R249S)

AFB1 frequently causes p53R249S mutation 
which enhances IGF-2 expression

[25,29,34]

VC VC activated by CYP2E1 is converted into 
chloroethylene oxide, which forms bulky DNA 
adducts, leading to A>T transversions in the 
genome

It is unclear whether p53 plays protective 
roles in VC-induced liver cancer

[41,43,44]

NAFLD NAFLD-induced hepatitis leads to cirrhosis and 
HCC, and dysregulation of NF-kB signaling, the 
Pl3K-ATK-PTEN pathway, insulin resistance, and 
expression of certain miRNAs (e.g. miR-34) is 
suggested; however, the molecular mechanisms 
behind NAFLD-mediated HCC remain unclear

The miR-34-SIRT1-p53 pathway plays a role 
in the progression of NAFLD. However, the 
direct role of p53 in the NAFLD-mediated 
HCC is unknown

[49,51-57]

Iron Excess iron generates ROS and decreases p53 
activity, leading to HCC genesis

Chronic iron overload reduces p53 protein 
levels by heme-mediated degradation or 
increased MDM2 levels, which can increase 
intracellular iron levels via a decrease 
in ISCUC2, thus further promoting HCC 
development

[64,68-70]

HBV HBV-induced HCC occurs following repeated 
inflammation-liver regeneration-cirrhosis process, 
as well as through oncogenic function of HBx and 
Ct-HBx in both p53-dependent and -independent 
manners

Although direct involvement of p53 in 
HBV-induced HCC is unclear, functional 
inactivation of p53 by HBx and Ct-HBx may 
contribute to HCC progression

[76,81,82,85,99,100]

HCV The majority of HCV-mediated HCC is via 
cirrhosis. But HCV core protein, NS3, and NS5 
are implicated in HCC development in both p53-
dependent and -independent manners

There is no direct evidence showing 
dependency of HCV-induced HCC on p53. 
However, HCV core protein, NS3, and NS5A 
inhibit p53 activity by binding to p53, altering 
subcellular localization, or modulating post-
translational modifications

[112,118,119,123-
125,131,132]

AFB1: aflatoxin B1; VC: vinyl chloride; NAFLD: non-alcoholic fatty liver disease; HBV: hepatitis B virus; HCV: hepatitis C virus; HCC: 
hepatocellular carcinoma; ROS: reactive oxygen species; MDM2: murine double minute 2; ISCUC2: iron-sulfur cluster enzyme 2; Ct-HBx: 
HBx variants with C-terminal truncations
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AFB1

AFB1 is a well-characterized liver mutagen produced 
by the fungus Aspergillus, and can be ingested 
by humans from contaminated food products.[22,23] 

One study estimates the population attributable 
risk of AFB1-mediated HCC as 17% in some parts 
of the world.[24] Mechanistically, AFB1 is activated 
by CYP40s into AFB1-8,9-epoxide, which reacts 
with DNA, forming 8,9-dihydro-8-(N7-guanyl)-9-
hydroxyaflatoxin B1 (AFB1-N7-guanine) adducts; these 
adducts, if left unrepaired, induce G>T transversions 
during DNA replication.[25,26]  

AFB1 is well-known to generate a specif ic p53 
mutation in the DNA binding domain from an 
arginine to serine missense mutation at codon 249 
(R249S), which is caused by a G>T transversion 
at the third base of codon 249 [Figure 1A]. [27,28] 
In geographic areas exposed to high levels of 
AFB1, such as the Qidong City in China, about 
50% of HCC cases have the p53R249S mutation,[29] 

suggesting the involvement of p53 in AFB1-induced 
HCC. AFB1-8,9-epoxide also reacts with guanines 
of the p53 gene other than those at codon 249, 
but these guanine adducts do not form cancer-
causing mutations as frequently as p53R249S.[26,28,30] 
Although AFB1-mediated DNA damages initially 
activate p53 to induce cell cycle arrest at S to G2/
M phases,[31-33] liver cells that gain p53R249S would 
escape this cellular defense mechanism with a 
selective advantage for proliferation, which could 
further proceed toward liver cancer. Indeed, p53R249S 
is shown to increase transcription of insulin-like growth 
factor 2 (IGF-2) in Hep3B (p53null) cells, suggesting a 
possible gain-of-function activity of p53R249S.[34] IGF-
2 is over-expressed in 16-40% of human HCC and is 
implicated in promoting HCC progression.[35] Also, a 
positive correlation is observed between IGF-2 +3580 
AA genotype and the risk of HCC.[36] Intriguingly, 
silencing of IGF-2 in HepG2 cells leads to decrease in 
cell survival and proliferation.[37] Thus, AFB1-mediated 
mutation in p53 plays a crucial role in HCC genesis, 
possibly through enhanced IGF-2 signaling [Figure 1B]. 

A

B

Figure 1: Functional roles of p53 in liver cancer-associated diseases. (A) Functional domains in human p53 and amino acid locations 
mutated in liver cancer associated with aflatoxin B1 (AFB1), vinyl chloride (VC), and hereditary hemochromatosis (HH). (B) Involvement 
of p53 in liver carcinogenesis. Multiple hereditary and extrinsic factors cause liver cancer possibly through the p53 pathway. TA: 
transactivation domain, PR: proline-rich domain, DBD: DNA-binding domain, OD/TD: oligomerization/tetramerization domain, NRD: 
negative regulatory domain; NAFLD: non-alcoholic fatty liver disease; HBV: hepatitis B virus; HCV: hepatitis C virus; SIRT1: sirtuin 1; IGF-
2: insulin-like growth factor 2; Ct-HBx: HBx variants with C-terminal truncations
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VINYL CHLORIDE

Vinyl chloride (VC) is a carcinogenic gas used in 
the manufacture of PVC which induces mainly 
angiosarcomas of the liver (ASL) and rarely HCC, 
although it remains controversial whether VC can 
induce HCC in humans. [38-40] VC is absorbed in 
the lungs and then metabolized to chloroethylene 
oxide by CYP2E1 in the liver, which forms bulky 
DNA adducts, leading to liver cancer.[41,42] There 
are four VC-associated DNA adducts detected in 
vivo, including 7-(2-oxoethyl)-deoxyguanosine, 3,N4-
etheno-deoxycytidine, 1,N6-etheno-deoxyadenosine, 
and N2,3-etheno-deoxyguanosine.[41]

VC-induced human ASLs are repor ted to have 
an increase in A>T transversions at codons 179, 
249, and 255 of the p53 gene [Figure 1A]. [43,44]

A study using Sprague Dawley rats also indicates 
that the majority of p53 mutations in ASL and HCC 
following VC exposure are A>T transversions; the 
A>T transversions in ASLs are detected at codon 
253 of rat p53, which is equivalent with codon 255 in 
humans.[45] Moreover, serum samples from workers 
exposed to VC have an increase in the levels of p53 
protein with mutant conformation, detected by a 
conformation-specific p53 antibody PAb240, as well 
as other antibodies for p53.[44,46] However, it is still 
unclear whether p53 plays protective roles in VC-
induced DNA damages and liver cancer development, 
and how mutations in p53 contribute to the VC-
induced liver cancer [Figure 1B].

NAFLD 

NAFLD represents a range of disorders including 
non-alcoholic fatty liver (NAFL), non-alcoholic 
steatohepatitis (NASH), fibrosis, cirrhosis, and HCC. 
NAFLD is associated with metabolic syndrome, type 
2 diabetes mellitus, and obesity.[47] It is estimated that 
20-30% of individuals in the Western world suffer 
from NAFLD.[48] However, only 11.5% of patients 
with NAFLD-induced cirrhosis eventually develop 
HCC, and about 50% of NASH-induced HCCs occur 
without cirrhosis.[49,50] These observations indicate the 
requirement of additional oncogenic events toward 
NAFLD-associated HCC. However, the molecular 
mechanisms behind NAFLD-mediated HCC are 
not fully understood. Several mediators have been 
implicated in its genesis, including dysregulation of 
NF-κB signaling, the Pl3K-ATK-PTEN pathway, insulin 
resistance, and expression of certain miRNAs (e.g. 
miR-34).[51,52]

p53 has also been implicated in the progression of 
NAFLD due to multiple mechanisms. In a mouse 

model for NAFLD where p53+/+ and p53-/- mice are 
fed a methionine- and choline-deficient diet, p53+/+ 

mice show increases in histologically observable 
steatohepatitis, reactive oxygen species (ROS)
formation, and fibrosis with increased protein levels 
of p66Shc, a protein associated with oxidative 
stress, as compared to p53-/- mice.[53] Human NASH 
hepatocytes display upregulated p53 activity with 
increased mRNA levels of p21 and p66Shc, which is 
positively correlated with fibrosis severity.[53] The miR-
34-Sirtuin 1 (SIRT1)-p53 pathway is also implicated in 
NAFLD pathogenesis; increased miR-34 expression 
and subsequent decrease in SIRT1 protein levels are 
detected in human NAFLD liver tissues with increased 
acetylation of p53, which is correlated with disease 
severity.[54] Activation of the miR-34a-SIRT1-p53 axis 
is also shown to contribute to liver fibrosis or NASH 
by inducing hepatocyte apoptosis.[55,56] Moreover, p53 
can upregulate miR-34, which inhibits SIRT1 mRNA 
expression, leading to increased acetylation of p53, 
thus forming a positive feedback loop [Figure 1B].[57]

These observations indicate that high expression of 
miR-34 and p53 is associated with NAFLD. However, 
it should be noted that miR-34a-mediated apoptosis 
can occur in p53-dependent and p53-independent 
manners. [58] Nonetheless, surrounding evidence 
suggests involvement of p53 in the progression of 
NAFLD and NASH; however, further studies are 
required to demonstrate whether p53 directly plays a 
crucial role in the NAFLD-mediated HCC. 

IRON OVERLOAD

Iron is an essential mineral that takes part in numerous 
metabolic processes, such as heme synthesis, 
Fe-S cluster biogenesis, and oxygen transport via 
hemoglobin.[59] However, when iron homeostasis is 
perturbed, whether due to genetic or environmental 
causes, there can be severe consequences including 
cardiomyopathy, hepatic fibrosis, endocrine disorders, 
and arthropathy.[60,61] Importantly, excess iron is a risk 
factor for many types of neoplasia, including breast 
cancer, colorectal cancer, and HCC.[62] In parts of sub-
Saharan Africa, dietary iron overload, mainly from beer 
prepared in iron pots, is strongly associated with an 
increased risk of HCC.[63] Experimentally, Wistar rats 
fed a high-iron diet are shown to develop HCC.[64] One 
mechanism implicated in iron overload-mediated HCC 
genesis is due to ROS-inducing DNA mutations, as 
multiple rat models and surveys of human HCCs have 
linked increased iron levels with increases in 8-oxo-2-
deoxyguanosine adducts and oxidizing products such 
as malondialdehyde.[65-67]

However, there is evidence that iron overload has a 
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direct effect on p53 activity. C57BL/6 mice fed a high-
iron diet show a decrease in p53 protein levels in the 
liver.[68] Also, male Sprague-Dawley rats fed a high-
iron diet for prolonged periods of time present with 
an increase of MDM2, and a subsequent decrease 
of p53 in the liver.[69] Another molecular mechanism 
behind decreased levels of p53 due to iron excess 
includes that p53 is bound by heme, exported to 
the cytoplasm, and degraded in HepG2 cells via the 
proteasomal pathway.[68] Thus, both iron excess and 
dysregulated heme decrease p53 levels, contributing 
to HCC development [Figure 1B]. Intriguingly, p53 
is also involved in reducing intracellular iron levels 
by transactivating iron-sulfur cluster enzyme 2 
which contributes to reduced iron uptake.[70,71] Thus, 
following chronic iron overload, reduced p53 activity 
leads to increased intracellular iron levels, further 
promoting HCC genesis. It should be noted that 
patients with hereditary hemochromatosis show 
higher rates of p53 mutations (64-71%), as compared 
with those in sporadic HCC, supporting a role of p53 
in iron overload-induced HCC genesis.[72,73] In HCC 
tissues from hereditary hemochromatosis, 45% A>C 
transitions and 33% G>C transversions, including two 
hotspots at codon 275 and 298, are identified in the 
p53 gene [Figure 1A].[73] However, in the study using 
British families with hereditary hemochromatosis, 
the p53  mutat ion spect rum consists of  60% 
A>G transitions and 40% A>T transversions. [72] 

Nonetheless, it remains to be elucidated whether iron 
overload indeed induces HCC in a p53-dependent 
manner in animal models. 

HBV

Globally, it is estimated that 248 million individuals 
have chronic HBV infection and are positive for the 
hepatitis surface antigen.[74] HBV is the leading cause 
of HCC, with the majority being attributed to chronic 
HBV infection.[75] HBV-mediated HCC tumorigenesis 
can be caused by repeated bouts of immune-mediated 
hepatocyte death and subsequent tissue repair, with 
eventual cirrhosis of the liver.[76] Importantly, 10-30% 
of HBV-related HCCs do not occur in the background 
of c i r rhosis,  indicat ing addi t ional  oncogenic 
mechanisms behind HBV-induced HCC genesis.[77]

HBV, a circular, partially double-stranded DNA virus, 
consists of four overlapping open reading frames in its 
genome: a core region, surface region, polymerase 
region, and X region which produce seven viral 
proteins named precore, core, polymerase, L, M, HBx, 
and S.[78-80] Of these, the HBx protein, which plays 
a pivotal role in viral replication, is most implicated 
in HCC genesis.[80] Indeed, HBx induces HCC by 

sequestering p53 to the cytoplasm in transgenic 
mouse models [Figure 1B].[81,82]

HBx is also implicated in hepatocyte apoptosis.[78] 

In many contexts, HBx inhibits apoptosis not only by 
increasing levels of anti-apoptotic protein, survivin, 
but also by binding to and sequestering p53 to the 
cytoplasm.[83-86] HBx is also reported to inhibit TGF-
β-mediated apoptosis. [87] Conversely, in some 
contexts, HBx is shown to induce apoptosis in a p53-
independent manner.[88-90] Hence, the dual roles of 
HBx in hepatocyte apoptosis and its association with 
HCC genesis warrant further investigation.

HBx variants with C-terminal truncations (Ct-HBx) are 
frequently detected in HCC and might also contribute 
to HCC development, though there is no direct 
evidence for it.[91-93] Ct-HBx promotes hepatocyte 
proliferation and inhibits apoptosis in multiple cell 
lines.[94-96] Transcriptional downregulation of ubiquitin 
specific peptidase 16 (USP16) by Ct-HBx is also 
shown to enhance tumorigenicity and stem-like 
properties of HCC cells.[97] Moreover, Ct-HBx binds 
to p53 and inhibits p53-mediated apoptosis similar 
to HBx [Figure 1B].[85,98,99] Additionally, some Ct-HBx 
variants have the ability to silence mRNA expression 
of GAS2, a modulator of p53-mediated apoptosis.[100] 
Thus, Ct-HBx may contribute to the pathogenesis 
of HBV-related HCC by downregulating USP16 and 
inhibiting p53-mediated apoptosis. 

Given that p53 is infrequently mutated in HBV-related 
HCC, p53 mutations are associated with late stage 
disease, and both HBx and Ct-HBx bind to and inhibit 
p53 function [Figure 1B],[101-103] inactivation of p53 
activity may be favorable for HBV-mediated HCC 
tumorigenesis, rather than p53 mutation. Importantly, 
HCC patients with wild-type p53 have better overall 
survival and an increase in recurrence free survival 
as compared with those having p53 mutations.[104]

HCV

Hepatitis C is estimated to have a global prevalence 
of 184 million individuals positive for anti-HCV, and 
individuals with HCV have a 15 to 20 fold increased 
risk for HCC.[105,106] HCV is a 9,600 nucleotide positive 
sense single-stranded RNA virus with a single open 
reading. [107,108] The HCV genome encodes for a 
polyprotein that is subsequently cleaved into nine 
viral proteins, including structural proteins (C, E1, E2), 
and non-structural proteins (p7, NS2, NS3, NS4A, 
NS5A, NS5B).[109] Although the vast majority of HCV-
related HCCs occur within the context of cirrhosis, 
there is some evidence showing oncogenic potential 
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for the HCV viral proteins.[77,110,111] Specifically, HCV 
core, NS3, and NS5 proteins have been implicated 
in HCC development in both p53-dependent and 
-independent manners.[112]

Transgenic mice expressing the HCV core protein 
indeed spontaneously develop HCC, without the 
background of cirrhosis.[113,114] HCV core protein also 
increases ROS, inhibits Fas- and TNF-mediated 
apoptosis, and upregulates the Wnt-β-catenin 
pathway.[115-117] Importantly, the core protein inhibits 
p53 activity by altering its subcellular localization to 
the perinuclear region and nuclear granular structures, 
as well as its post-translational modifications such as 
phosphorylation and acetylation of p53 in HeLa and 
HepG2 cell lines [Figure 1B].[118] Moreover, the core 
protein upregulates SIRT1, a deacetylation enzyme 
for p53, leading to impaired p53-dependent apoptosis 
in HepG2 cells [Figure 1B]. [119] Thus, HCV core 
protein likely causes HCC in both p53-dependent and 
-independent manners.

A non-structural HCV protein, NS3, is another HCV 
protein that can transform human hepatocytes with an 
increase in cyclooxygenase-2 and activation of mitogen-
activated protein kinase.[120-122] NS3 also complexes 
with p53 in HeLa and NIH3T3 cells[123,124] and inhibit 
p53’s transcriptional activity in NIH3T3 and Huh7 cells 
[Figure 1B].[124,125] Moreover, NIH3T3 cells transformed 
by overexpression of NS3 can form tumors in mice.[126] 
However, it remains unclear whether transformation by 
NS3 is p53-dependent or not. 

Another non-structural HCV protein, NS5A, can cause 
steatosis and HCC in transgenic mouse models.[127] 

NS5A is shown to inhibit TNFα-mediated apoptosis, 
transactivate c-fos, and inhibit Bax-mediated apoptosis 
independent of p53.[128-130] However, NS5A can also 
bind to and colocalize with p53 to the perinuclear 
membrane, leading to inhibition of p53 transcriptional 
activity [Figure 1B].[131,132] Moreover, NS5A binds with 
hTAFII32 at the nucleoplasm membrane and inhibits 
its ability to stabilize p53, resulting in abrogation 
of p53-mediated apoptosis in Hep3B cells. [132] 
Thus, NS5A contributes to HCC development and 
progression through p53-dependent and -independent 
mechanisms.

CONCLUSION 

In summary, there is a large body of data indicating 
p53’s involvement in extrinsic factor-induced liver 
carcinogenesis. Nonetheless, demonstrating in 
vivo evidence for the protective role of p53 in HCC 
genesis is crucial. While many of the aforementioned 

risk factors for liver cancer have become preventable 
or treatable, efficient therapeutic strategies are still 
limited. Hence, understanding the role of p53 in the 
molecular pathogenesis of HCC and restoring p53 
activity in tumors would significantly help accelerate 
the development of new therapies for this therapy-
resistant disease. 
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