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Abstract
In this paper, a dual-channel event-triggered control (ETC) protocol with a state estimator is designed in multi-agent
systems with switching topologies under denial-of-service attacks. Firstly, an ETC protocol and a dynamic ETC pro-
tocol are designed in the communication channel and the controller–actuator channel, respectively. Different from
the traditional single-channel ETC, the dual-channel ETC is designed to further save resources. Second, an estimator
is introduced to avoid continuous communication between agents. The sufficient conditions for realizing consensus
are obtained under denial-of-service attacks. Moreover, due to the unstable communication topology of multi-agent
systems, we designed a distributed controller based on switching topologies. Finally, the feasibility of the proposed
method is verified through numerical simulations.

Keywords: Dual-channel event-triggered, DoS attacks, MASs, switching topologies

1. INTRODUCTION
Cluster behaviors formed by multiple individuals in nature through self-organization and mutual collabora-
tion can exhibit capabilities that surpass individual functions. Inspired by this, researchers had proposed the
concept of multi-agent systems (MASs). In recent years, MASs have received more attention from researchers
due to the wide range of applications inmilitary, transportation and agriculture [1]. In the course of the study of
the MAS system, consensus is one of the most important research elements for MASs. Consensus means that
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agents can communicate in network and achieve consensus. In the past few years, many researchers had stud-
ied and explored the consensus inMASs. In reference [2], the stable problem of finite-time ofMASs was studied
by analyzing the transmission control protocol over active queue management topologies. In reference [3], an
adaptive dynamic protocol was designed, which achieves the consensus under the effects of uncertain delays.
In reference [4], the sufficient condition of achieving prescribed-time consensus was extended to a bipartite
cooperative–antagonistic network.

In general, the goal of consensus is to design appropriate protocols to achieve consensus in communication
networks with limited communication resources. In practical engineering, each agent carries limited energy
resources when performing certain functions (e.g., collecting information, exchanging communication infor-
mation with neighboring agents, etc.) and the communication channel can only transmit a limited number
of data bits. Therefore, designing control strategies to reduce resource consumption so that agents can oper-
ate stably for a longer period of time is a research direction of many researchers. Traditional solutions are
through time-triggered control, such as sampling control [5] and pulse control [6]. In periodic sampling con-
trol strategies, systems sample data at fixed time intervals, and this design method saves resources, but lacks
the flexibility to adjust the sampling moment spontaneously. For this reason, event-triggered control (ETC)
has garnered the interest of researchers. In reference [7], a second-order dynamic system was studied; the
ETC strategy of the system was decided by the states of each agent and its neighbor agent. In references [8,9],
model-based ETC strategies were designed in MASs where the continuity of adjacent states was no longer
required. In references [10,11], an ETC protocol was designed in the systems, which was only updated at the
instants of triggering. In reference [12], a hybrid event triggering mechanism combining three dynamic trig-
gering conditions, namely local state error, velocity-dependent triggering condition, and dynamic maximum
triggering interval, is designed to achieve efficient utilization of communication resources. Above research
on ETC employs multiple parameters to optimize communication efficiency, imposing increased demands on
estimators or samplers. In references [13–15], a dual-channel ETC protocol was designed for agent communica-
tion and controller–actuator channels, and consensus could be achieved while saving controller resources. In
references [16], an ETC protocol was designed for nonlinear systems.

In earlier work, event generation relies on continuous information from the agents themselves and their neigh-
bors; the control protocols designed using this approach are still continuous. To solve these problems, some
researchers proposed the concept of an estimator, which is to estimate the state of the agents instead of the
actual state. In reference [17], resilience control under denial-of-service (DoS) attacks is achieved by estimating
the dynamics of leaders and followers. In reference [18], consensus control is achieved in cooperative commu-
nication networks by combining estimators.

The above results regarding consensus are mostly obtained in a secure network environment. MASs may
be affected by DoS attacks in practical applications. DoS attacks usually inject large amounts of data into
the communication channel, paralyzing the channel. In order to solve the problem of the impact of DoS at-
tacks, researchers had proposed many control schemes. In reference [19], directed spanning trees are utilized
to achieve security consensus under DoS attacks. In reference [20], the timing of DoS attacks is not consistent
for each communication channel which is a more realistic scenario. Besides, switching topology is widely used
in MASs which also attracted the attention of scholars. In reference [21], the problem of the system reaching
a consistent rate of convergence when each link is established randomly with independent probability cycles
was analyzed. In reference [22], the consensus of MASs alternately switched by discrete and continuous under
the same topological conditions was studied. Dual-channel ETC saves communication activity to necessary
events which can significantly reduce communication traffic. It helps reduce the risk of communication re-
sources being exhausted under DoS attacks, thus ensuring that the transmission of critical information is not
compromised.
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Inspired by the above discussions, this paper studied the consensus problem inMASswith switching topologies
under DoS attacks; the major contributions are as follows.

• This paper investigates theMAS consensus under switching communication topologies, which allow agents
to havemore complex interaction patterns. By rigorously analyzing the relationship between event-triggered
feedback parameters and DoS attack dynamics, we establish sufficient conditions for MAS consensus. The
derived criteria systematically integrate topology switching constraints, and security thresholds against DoS
attacks, ensuring both communication efficiency and robustness in dynamic networked environments.

• Based on the dual-channel framework, ETCprotocols are developed for the controller–actuator channel and
communication channel to save resources. By incorporating an exponential parameter, the Zeno behavior
is eliminated in the controller–actuator channel.

Notations: <𝑛,<𝑛×𝑛 denote the 𝑛-dimensional space, 𝑛×𝑛 real matrices, respectively. |·| and ‖·‖ represent the
absolute value and 2-norm, respectively. ⊗ denotes the Kronecker product. abs(·) denotes absolute values of
elements of a matrix. 𝜆 (·) and 𝜆̄ (·) represent the eigenvalue and singular eigenvalues of a matrix, respectively.
1𝑁 denotes the matrix 𝑁 × 1 with all ones. diag{·} represents a diagonal matrix.

2. MODEL AND PROBLEM DESCRIPTION
2.1. Graph theory
The communication topology between 𝑁 agents can be represented by a leader-following undirected digraph
G = {V, E,A}, whereV = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } denotes the set of nodes, E = V ×V represents the set of edges
and an adjacency matrix A. The edge 𝑒𝑖 𝑗 is represented by a pair of vertices

(
𝑣 𝑗 , 𝑣𝑖

)
. If 𝑎𝑖 𝑗 = 1 and 𝑒𝑖 𝑗 ∈ E,

agent 𝑗 can exchange information with agent 𝑖; otherwise, 𝑎𝑖 𝑗 = 0. If 𝑎𝑖 𝑗 = 1, agents 𝑖 and 𝑗 are neighboring
nodes of each other. The set of neighboring agents 𝑖 is denoted by 𝑁𝑖 =

{
𝑗 ∈ V : 𝑒𝑖 𝑗 ∈ E

}
. If 𝑖 ≠ 𝑗 , the Laplace

matrix of G can be defined as 𝑙𝑖𝑖 =
∑𝑁
𝑗=1, 𝑗≠𝑖 𝑎𝑖 𝑗 , 𝑙𝑖 𝑗 = −𝑎𝑖 𝑗 . The real part of the eigenvalues of the 𝐿 matrix

satisfies 0=𝜆1 (𝐿) ≤ 𝜆2 (𝐿) ≤ · · · ≤ 𝜆𝑁 (𝐿). In particular, 𝜆1 = 0 corresponds to a feature vector 1𝑁 . If
𝑚𝑖 = 1, the follower agent 𝑖 can exchange information with the leader; otherwise, 𝑚𝑖 = 0. Define 𝐻 = 𝐿 + 𝑀 ,
𝑀 = 𝑑𝑖𝑎𝑔 {𝑚1, 𝑚2, ..., 𝑚𝑁 }.

Existence of all possible communication topologies for multi-agent systems can be represented by a set of
connected undirected graphs G𝜌 =

{
G1,G2 · · · G𝑂

}
, where 𝑂 > 0 is the number of switching topologies

for the entire system. Considering the case of random switching topology, there exists a continuous edge
probability matrix ℵ =

(
ℓ𝑖 𝑗

)
𝑁×𝑁 and 0 ≤ ℓ𝑖 𝑗 ≤ 1. The probability of a connection between every two points

is independent of each other. Since there are only two possibilities of connection or non-connection between
two nodes, a sequence of 𝑁 (𝑁 − 1) independent Bernoulli trials is used to describe it. Consider a non-empty
set of continuous time intervals {[𝑡𝑘 , 𝑡𝑘+1) | 𝑘 = 0, 1, . . . , 𝑀}, where 𝑡0 = 0, 𝜏∗ < 𝑡𝑘+1 − 𝑡𝑘 ≤ 𝜏∗, 𝜏∗ > 0 is a
positive constant. The topology is invariant within each interval [𝑡𝑘 , 𝑡𝑘+1); the switching signals Υ and 𝐿Υ are
constant within this interval.

Remark 1 According to the definition of the lower bound of switching time 𝜏∗, the number of topology switches
must be kept within a certain range. If switching occurs too frequently, the excessive switchingmay negatively affect
both the dynamic performance and the stability of the system. This paper utilizes Bernoulli random switching,
leveraging multiple iteration step sizes. By modulating the size of these multiples, one can regulate the frequency
of random transitions between different communication topologies.

2.2. DoS attacks model
TheDoS attacks usually involve injecting large amounts of data into a communication channel to paralyze the
channel, with the main aim of preventing information interaction and affecting monitoring equipment. Some
useful assumptions and common lemmas are presented for further analysis.
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Assumption 1 [23] The number of DoS attacks in the [𝑡0, 𝑡] is 𝑁0(𝑡0, 𝑡). We assume the constants 𝑁1 > 0 and
𝑇 𝑓 > 0 such that

𝑁0(𝑡0, 𝑡) ⩽ 𝑁1 +
𝑡 − 𝑡0
𝑇 𝑓

, (1)

Assumption 2 [23] The total time of DoS attacks in the [𝑡0, 𝑡] is Ξ𝑎 (𝑡0, 𝑡). We assume the constants 𝑁2 > 0 and
𝑇 𝑑 > 0 such that

Ξ𝑎 (𝑡0, 𝑡) ⩽ 𝑁2 +
𝑡 − 𝑡0
𝑇 𝑑

. (2)

Remark 2 Assumptions 1 and 2 limit the frequency and duration of attacks to make control meaningful. When
the average attack frequency is greater than the sampling frequency of the system, the system is uncontrollable. In
addition, these assumptions are justified by the fact that the duration is limited by energy.

2.3. Problem statement
First, consider a MAS that has one leader and 𝑁 followers. In this system, the state of the leader 𝑋0 is proposed
as

¤𝑥0(𝑡) = 𝐴𝑥0(𝑡), (3)

and followers’ dynamics is
¤𝑥𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡), 𝑖 ∈ S, (4)

where S = 1, 2, ..., 𝑁 ; 𝑥0(𝑡) ∈ <𝑛 is the states of the leader. The 𝑥𝑖 (𝑡) ∈ <𝑛 and 𝑢𝑖 (𝑡) ∈ <𝑝 are the states
and control input of agent 𝑖. The 𝐴 ∈ <𝑛×𝑛 and 𝐵 ∈ <𝑛×𝑝 are the constant matrices of the corresponding
dimension. The following assumption is considered.

Assumption 3 The topology graph of MASs G is undirected and connected; the pair of (𝐴, 𝐵) is stabilisable.

Lemma 1 [24] Under Assumption 3, a unique solution denoted as P which satisfies the algebraic Riccati equation
as follows

𝐴𝑇𝑃 + 𝑃𝐴 − 𝜅𝑃𝐵𝐵𝑇𝑃 + 𝑃 = 0, (5)

where 𝜅 > 0.

Definition 1 Given initial conditions, the consensus of MASs is realized if

lim
𝑡→∞

‖𝑥𝑖 (𝑡) − 𝑥0(𝑡)‖ = 0, 𝑖 ∈ S. (6)

Lemma 2 [25] G is structurally balanced; thus, there is a matrix Δ = 𝑑𝑖𝑎𝑔 {Δ1,Δ2, . . . ,Δ𝑁 } > 0 such that
Δ𝐻 + 𝐻𝑇Δ > 0.

3. MAIN RESULT
The research aims to design a controller and dual-channel ETC protocol to achieve consensus of MASs under
DoS attacks over switching topologies.

3.1. Controller design
Firstly, the follower’s controller is designed as:

𝑢𝑖 (𝑡) =
{
𝐾Γ𝑖 (𝑡), 𝑡 ∈ [𝑡𝑖𝑘 , 𝑡

𝑖
𝑘+1) ⊂ Ξ𝑠 (𝑡0, 𝑡),

0, 𝑡 ∈ Ξ𝑎 (𝑡0, 𝑡),
(7)

Γ𝑖 (𝑡) =
𝑛∑

j=1
𝑎𝑖 𝑗

(
𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)

)
+ 𝑚𝑖 (𝑥𝑖 (𝑡) − 𝑥0(𝑡)) , (8)
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where𝐾 is a constant gainmatrix; Ξ𝑠 (𝑡0, 𝑡) is the periodwhen theMASswithoutDoS attacks. In certain studies,
the controller relied on the state value at the triggering instants. However, in this research, the controller
employs an estimated value instead. The design of the estimator is outlined below:

¤̂𝑥 𝑗 (𝑡) = 𝐴𝑥 𝑗 (𝑡) + 𝜔 𝑗𝐵𝑢 𝑗 (𝑡), 𝑡 ∈
[
𝑡
𝑗
𝑘 , 𝑡

𝑗
𝑘+1

)
,

𝑥 𝑗

(
𝑡
𝑗
𝑘

)
= 𝑥 𝑗

(
𝑡
𝑗
𝑘

)
, 𝑗 = 1, 2, ...𝑁.

(9)

where 𝜔 𝑗 > 0 is a constant; 𝑥 𝑗 is the estimated state of 𝑗 th agent in [𝑡 𝑗𝑘 , 𝑡
𝑗
𝑘+1). When 𝑡 = 𝑡 𝑗𝑘 , there is 𝑥 𝑗 = 𝑥 𝑗 .

The error variable 𝑒𝑖 (𝑡) of the 𝑖th agent is

𝑒𝑖 (𝑡) = 𝑥𝑖 (𝑡) − 𝑥𝑖 (𝑡). (10)

The time derivative of the error variable 𝑒𝑖 (𝑡) is

¤𝑒𝑖 (𝑡) = ¤̂𝑥𝑖 (𝑡) − ¤𝑥𝑖 (𝑡) = 𝐴𝑒𝑖 (𝑡) − (1 − 𝜔𝑖) 𝐵𝐾Γ𝑖 (𝑡) . (11)

Consider a positive definite matrix 𝑄 that fulfills the given Riccati inequality

𝑄𝐴 + 𝐴𝑇𝑄 − 2𝑟𝑄𝐵𝐵𝑇𝑄 + 𝑟 𝐼𝑛 < 0, (12)

where 𝑟 is minimum eigenvalue of matrix 𝐻. And matrix 𝐾 is calculated by 𝐾 = 𝐵𝑇𝑄 in Equation (7). Ac-
cording to the tracking error 𝜓𝑖 (𝑡) = 𝑥𝑖 (𝑡) − 𝑥0(𝑡). The time derivative of tracking error 𝜓𝑖 (𝑡) as

¤𝜓𝑖 (𝑡) = ¤𝑥𝑖 (𝑡) − ¤𝑥0(𝑡) = 𝐴𝑥𝑖 (𝑡) − 𝐴𝑥0(𝑡) + 𝐵𝐾Γ𝑖 (𝑡). (13)

Then we can obtain

Γ(𝑡) = −(𝐻 ⊗ 𝐼𝑛) (𝑥(𝑡) − 1𝑁 ⊗ 𝑥0(𝑡)) = −(𝐻 ⊗ 𝐼𝑛) (𝑒(𝑡) + Ψ(𝑡)), (14)

where Γ(𝑡) = (Γ𝑇1 (𝑡), Γ𝑇2 (𝑡), ..., Γ𝑇𝑁 (𝑡))𝑇 . Thus, Equation (13) can be rewritten in Kronecker forms as

¤Ψ(𝑡) = (𝐼𝑁 ⊗ 𝐴)Ψ(𝑡) − (𝐻 ⊗ 𝐵𝐾)
(
𝑒(𝑡) + Ψ(𝑡)

)
. (15)

where Ψ(𝑡) = (Ψ𝑇
1 (𝑡),Ψ𝑇

2 (𝑡), ...,Ψ𝑇
𝑁 (𝑡))𝑇 , 𝑒(𝑡) = (𝑒𝑇1 (𝑡), 𝑒𝑇2 (𝑡), ..., 𝑒T𝑁 (𝑡))𝑇 .

3.2. Dynamic event-triggered design
Considered a dynamic ETC protocol for agent 𝑖 with a time-varying parameter threshold 𝜃𝑖 (𝑡)

𝑡𝑖1 = 0,
𝑡𝑖𝑘+1 = inf

𝑙>𝑡𝑖
𝑘

{𝑙 : 𝛾𝑖 𝑓 (𝑒𝑖 (𝑡), Γ𝑖 (𝑡)) ⩾ 𝜃𝑖 (𝑡),∀𝑡 ∈ (𝑡𝑖𝑘 , 𝑙]},
(16)

where 𝑓 (𝑒𝑖 (𝑡), Γ𝑖 (𝑡)) = ( 𝜀2
𝜏 + 𝜀3)‖𝑒𝑖 (𝑡)‖2 −𝜎𝑖 (𝜀1 − 𝜏𝜀2)‖Γ𝑖 (𝑡)‖2; (𝜀1 − 𝜏𝜀2) > 0, 𝜏 > 0, 𝛾𝑖 > 0 and 𝜎𝑖 ∈ (0, 1].

Other parameters 𝜀1, 𝜀2, 𝜀3 are as follows:

𝜀1 = 𝑟1𝜆min

(
𝐻−2

)
,

𝜀2 = 𝜆max

(
(𝐼𝑁 ⊗ 2𝑄𝐵𝐵𝑇𝑄) − 2𝑟1(𝐻−1 ⊗ 𝐼𝑁 )

)
,

𝜀3 = 𝜆max(𝐻 ⊗ 2𝑄𝐵𝐵𝑇𝑄) − 𝑟1,

(17)

the constant 𝑟1 > 0 satisfies 0 < 𝑟1 < 𝑟 and 𝜀2 > 0, 𝜀3 > 0. 𝜃𝑖 (𝑡) is designed as:

¤𝜃𝑖 (𝑡) = −𝛼𝑖𝜃𝑖 (𝑡) − 𝑓 (𝑒𝑖 (𝑡), Γ𝑖 (𝑡)) , (18)

where 𝛼𝑖 > 0. 𝜃𝑖 (𝑡) represents a time-varying parameter that updates are contingent upon self-feedback,
measurement discrepancies, neighbor errors, and leader errors. It is noteworthy that 𝜃𝑖 (𝑡) possesses a property
crucial to the subsequent process of proving or deriving the conclusion, as outlined in
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Lemma 3 For predefined scalars 𝜀1, 𝜀2, 𝜀3, 𝛼𝑖 , 𝜃𝑖 (0) we can obtain

𝜃𝑖 (𝑡) > 0, 𝑖 = 1, 2, ..., 𝑁. (19)

Proof: Consider the system (14) with (16)(18), when 𝑡 ∈ ∪∞
𝑘=1(𝑡𝑖𝑘 , 𝑡

𝑖
𝑘+1] = (0,∞) there exists 𝑘′, 𝑡 ∈ (𝑡𝑖𝑘 ′ , 𝑡

𝑖
𝑘 ′+1].

The following formula holds: when the required parameter is not satisfied, the inequality

𝛾𝑖 𝑓 (𝑒𝑖 (𝑡), Γ𝑖 (𝑡)) < 𝜃𝑖 (𝑡),

applies. When 𝑡 = 𝑡𝑖𝑘 ′+1, one has
¤𝜃𝑖 (𝑡) ⩾ −𝛼𝑖𝜃𝑖 (𝑡) −

1
𝛾𝑖
𝜃𝑖 (𝑡),

and thus,
𝜃𝑖 (𝑡) ⩾ 𝜃𝑖 (𝑡𝑖𝑘 )𝑒

−(𝛼𝑖+ 1
𝛾𝑖
) (𝑡−𝑡𝑖𝑘 ) > 0, 𝑡 ∈ (𝑡𝑖𝑘 ′ , 𝑡

𝑖
𝑘 ′+1],

from 𝑡𝑖1 = 0, one has
𝜃𝑖 (𝑡) ≥ 𝜃𝑖 (𝑡𝑖𝑘 )𝑒

−(𝛼𝑖+ 1
𝛾𝑖
) (𝑡−𝑡𝑖𝑘 ) ≥ 𝜃𝑖 (𝑡𝑖𝑘−1)𝑒

−(𝛼𝑖+ 1
𝛾𝑖
)(𝑡−𝑡𝑖𝑘−1)

≥ · · · ≥ 𝜃𝑖 (0)𝑒−(𝛼𝑖+
1
𝛾𝑖
)𝑡
> 0, 𝑡 ∈

(
𝑡𝑖𝑘 ′ , 𝑡

𝑖
𝑘 ′+1

]
.

(20)

It is detailed that 𝜃𝑖 (0) > 0. Thus, 𝜃𝑖 (𝑡) > 0 holds for [0,∞).

Theorem 1 Considering the MASs (3)(4), consensus among the MASs can be achieved if there exists

= = 𝜇1 −
𝜇1 + 𝜇2

𝑇 𝑑
− ln(𝜌1𝜌2)

𝑇 𝑓
> 0,

where 𝜇1 = min
{

1
𝑁

𝑁∑
𝑖=1
𝛼𝑖 , 𝑟2

}
, 𝜇2 > 0 is a constant. 𝜌1 = 𝜆max (𝐼𝑁⊗𝑄)

𝜆min (𝐼𝑁⊗𝑃) , and 𝜌2 = 𝜆max (𝐼𝑁⊗𝑃)
𝜆min (𝐼𝑁⊗𝑄) , 𝑃𝐴 + 𝐴𝑇𝑃 < 𝜇2𝑃

and 𝑃 > 0.

Proof: Consider the MASs (3)(4) and design the following Lyapunov function

𝑉 (𝑡) =
{
𝑉𝑠 (𝑡) , 𝑡 ∈ Ξ𝑠 (𝑡0, 𝑡) ,
𝑉𝑎 (𝑡) , 𝑡 ∈ Ξ𝑎 (𝑡0, 𝑡) ,

(21)

when 𝑡 ∈ Ξ𝑠 (𝑡0, 𝑡), the system is free from attacks. During this period, design 𝑉𝑠 (𝑡) = 𝑉1 (𝑡) +𝑉2 (𝑡) and

𝑉1 (𝑡) = Ψ𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑄) Ψ (𝑡) , (22)

𝑉2 (𝑡) =
𝑁∑
𝑖=1

𝜃𝑖 (𝑡) . (23)

The time derivative of 𝑉1 (𝑡) is

¤𝑉1 (𝑡) = 2Ψ𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑄) ¤Ψ (𝑡)
≤ Ψ𝑇 (𝑡)

(
𝐼𝑁 ⊗

(
𝑄𝐴 + 𝐴𝑇𝑄

)
−
(
𝐻 ⊗ 2𝑄𝐵𝐵𝑇𝑄

) )
Ψ (𝑡)

− Ψ𝑇 (𝑡)
(
𝐻 ⊗ 2𝑄𝐵𝐵𝑇𝑄

)
𝑒(𝑡)

≤ Ψ𝑇 (𝑡)
(
(𝑟 𝐼𝑁 − 𝐻) ⊗ 2𝑄𝐵𝐵𝑇𝑄

)
Ψ (𝑡) − 𝑟Ψ𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑄) Ψ (𝑡)

− Ψ𝑇 (𝑡)
(
𝐻 ⊗ 2𝑄𝐵𝐵𝑇𝑄

)
𝑒(𝑡)

≤ −𝑟Ψ𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑄) Ψ (𝑡) − 𝑒𝑇 (𝑡)
(
𝐻 ⊗ 2𝑄𝐵𝐵𝑇𝑄

)
Ψ (𝑡)

≤ −(𝑟1 + 𝑟2) (Γ𝑇 (𝑡)(𝐻−2 ⊗ 𝑄)Γ(𝑡) + 2Γ𝑇 (𝑡)(𝐻−1 ⊗ 𝑄)𝑒(𝑡) + 𝑒𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑄) 𝑒(𝑡))
+ 𝑒𝑇 (𝑡)

(
𝐻 ⊗ 2𝑄𝐵𝐵𝑇𝑄

)
Γ (𝑡) + 𝑒𝑇 (𝑡)

(
𝐼𝑁 ⊗ 2𝑄𝐵𝐵𝑇𝑄

)
𝑒 (𝑡)

≤ −𝑟1Γ𝑇 (𝑡) (𝐻−2 ⊗ 𝑄)Γ(𝑡) − 𝑟1𝑒
𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑄) 𝑒(𝑡) − 2𝑟1Γ𝑇 (𝑡) (𝐻−1 ⊗ 𝑄)𝑒(𝑡)

+ 𝑒𝑇 (𝑡)
(
𝐻 ⊗ 2𝑄𝐵𝐵𝑇𝑄

)
Γ (𝑡) + 𝑒𝑇 (𝑡)

(
𝐼𝑁 ⊗ 2𝑄𝐵𝐵𝑇𝑄

)
𝑒 (𝑡)

− 𝑟2Ψ𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑄) Ψ (𝑡) ,

(24)
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where 𝑟 = 𝑟1 + 𝑟2. According to Young’s inequality 𝑝𝑞 ≤ 1
2𝑘 ‖𝑝‖

2 + 𝑘
2 ‖𝑞‖

2, we can rewrite ¤𝑉1 (𝑡) that

¤𝑉1 (𝑡) ≤ −𝜀1‖Γ (𝑡)‖2 + 2𝜀2 ‖𝑒 (𝑡)‖ ‖Γ (𝑡)‖ + 𝜀3‖𝑒 (𝑡)‖2 − 𝑟2Ψ𝑇 (𝑡) Ψ (𝑡)
≤ −𝜀1‖Γ (𝑡)‖2 + 2𝜀2

(
1
2𝜏 ‖𝑒 (𝑡)‖

2 + 𝜏
2 ‖Γ (𝑡)‖2

)
+ 𝜀3‖𝑒 (𝑡)‖2

− 𝑟2Ψ𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑄) Ψ (𝑡)

≤ −
𝑁∑
𝑖=1

[
(𝜀1 − 𝜀2𝜏) ‖𝜂𝑖 (𝑡)‖2 −

( 𝜀2
𝜏 + 2𝜀3

)
‖𝑒𝑖 (𝑡)‖2]

− 𝑟2Ψ𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑄) Ψ (𝑡) .

(25)

The time derivative of 𝑉2 (𝑡) is

¤𝑉2 (𝑡) =
𝑁∑
𝑖=1

¤𝜃𝑖 (𝑡)

=
𝑁∑
𝑖=1

(
−𝛼𝑖𝜃𝑖 (𝑡) −

( 𝜀2
𝜏 + 𝜀3

)
‖𝑒𝑖 (𝑡)‖2 + 𝜎𝑖 (𝜀1 − 𝜀2𝜏) ‖Γ𝑖 (𝑡)‖2).

(26)

To sum up, we can obtain that

¤𝑉𝑠 (𝑡) = ¤𝑉1 (𝑡) + ¤𝑉2 (𝑡)

≤ −
𝑁∑
𝑖=1

[
(𝜀1 − 𝜀2𝜏) ‖Γ𝑖 (𝑡)‖2 −

( 𝜀2
𝜏 + 𝜀3

)
‖𝑒𝑖 (𝑡)‖2]

+
𝑁∑
𝑖=1

(
−𝛼𝑖𝜃𝑖 (𝑡) −

( 𝜀2
𝜏 + 𝜀3

)
‖𝑒𝑖 (𝑡)‖2

+ 𝜎𝑖 (𝜀1 − 𝜀2𝜏) ‖Γ𝑖 (𝑡)‖2) − 𝑟2Ψ𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑄) Ψ (𝑡)

≤
𝑁∑
𝑖=1

(
−𝛼𝑖𝜃𝑖 (𝑡) + (𝜎𝑖 − 1) (𝜀1 − 𝜀2𝜏) ‖Γ𝑖 (𝑡)‖2

)
− 𝑟2Ψ𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑄) Ψ (𝑡)

≤ −𝜇1𝑉𝑠 (𝑡) .

(27)

For 𝑡 ∈ Ξ𝑎 (𝑡0, 𝑡), there existDoS attacks among the agents’ communication. We choose the following Lyapunov
function

𝑉𝑎 (𝑡) = Ψ𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑃) Ψ (𝑡) , (28)

and its derivative is
¤𝑉𝑎 (𝑡) = 2Ψ𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑃) (𝐼𝑁 ⊗ 𝐴) Ψ (𝑡)

= Ψ𝑇 (𝑡) (𝐼𝑁 ⊗ (𝑃𝐴 + 𝐴𝑇𝑃))Ψ (𝑡)
≤ 𝜇2𝑉𝑎 (𝑡) .

(29)

From (27) and (29), we obtain

𝑉 (𝑡) ≤
{
𝑒−𝜇1(𝑡−𝑡2(𝑙−1))𝑉

(
𝑡2(𝑙−1)

)
, 𝑡 ∈

[
𝑡2(𝑙−1) , 𝑡2𝑙−1

)
,

𝑒𝜇2 (𝑡−𝑡2𝑙−1)𝑉 (𝑡2𝑙−1) , 𝑡 ∈ [𝑡2𝑙−1, 𝑡2𝑙) .
(30)

We can calculate that 𝜇1𝜇2 > 1. For 𝑡 ∈
[
𝑡2(𝑙−1) , 𝑡2𝑙−1

)
, it has

𝑉 (𝑡) ≤ 𝑒−𝜇1(𝑡−𝑡2(𝑙−1))𝑉
(
𝑡2(𝑙−1)

)
≤ 𝜌1𝑒

−𝜇1(𝑡−𝑡2(𝑙−1))𝑉
(
𝑡−2(𝑙−1)

)
≤ 𝜌1𝑒

−𝜇1(𝑡−𝑡2(𝑙−1))𝑒𝜇2(𝑡2(𝑙−1)−𝑡2𝑙−3)𝑉 (𝑡2𝑙−3)
≤ · · ·
≤ 𝜌1

𝑁 (𝑡0,𝑡)𝜌2
𝑁 (𝑡0,𝑡)𝑒𝜇2Ξ𝑎 (𝑡0,𝑡)

× 𝑒−𝜇1 (𝑡−𝑡0−Ξ𝑎 (𝑡0,𝑡))𝑉 (𝑡0) .

(31)

Under Assumptions 1-2, there is

(𝜌1𝜌2)𝑁 (𝑡0,𝑡) ≤ (𝜌1𝜌2)𝑁1𝑒
ln(𝜌1𝜌2 )

𝑇 𝑓 (𝑡−𝑡0) , (32)
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and
𝑒𝜇2Ξ𝑎 (𝑡0,𝑡)𝑒−𝜇1 (𝑡−𝑡0−Ξ𝑎 (𝑡0,𝑡)) ≤ 𝑒𝜇2 (𝑁2+

𝑡−𝑡0
𝑇𝑑

)
𝑒−𝜇1 (𝑡−𝑡0)𝑒𝜇1 (𝑁2+

𝑡−𝑡0
𝑇𝑑

)

≤ 𝑒(𝜇1+𝜇2)𝑁2𝑒
𝜇1+𝜇2
𝑇𝑑

(𝑡−𝑡0)𝑒−𝜇1 (𝑡−𝑡0) .
(33)

The (31) can be scaled to

𝑉 (𝑡) ≤ (𝜌1𝜌2)𝑁1𝑒
ln(𝜌1𝜌2 )

𝑇 𝑓 (𝑡−𝑡0) × 𝑒(𝜇1+𝜇2)𝑁2𝑒
𝜇1+𝜇2
𝑇𝑑

(𝑡−𝑡0)𝑒−𝜇1 (𝑡−𝑡0)𝑉 (𝑡0)

≤ (𝜌1𝜌2)𝑁1𝑒(𝜇1+𝜇2)𝑁2 × 𝑒(
ln(𝜌1𝜌2 )

𝑇 𝑓 + 𝜇1+𝜇2
𝑇𝑑

−𝜇1) (𝑡−𝑡0)𝑉 (𝑡0) .
(34)

Therefore, as 𝑡 ∈
[
𝑡2(𝑙−1) , 𝑡2𝑙−1

)
, we can obtain 𝑉 (𝑡) ≤ 𝜍1𝑒

−𝛽(𝑡−𝑡0)𝑉 (𝑡0) where 𝜍1 = (𝜌1𝜌2)𝑁1𝑒(𝜇1+𝜇2)𝑁2 . And
as 𝑡 ∈

[
𝑡2(𝑙−1) , 𝑡2𝑙−1

)
, it has 𝑉 (𝑡) ≤ 𝜍2𝑒

−𝛽(𝑡−𝑡0)𝑉 (𝑡0) as above, where 𝜍2 = 𝜌1
𝑁 (𝑡0,𝑡)−1𝜌𝑁 (𝑡0,𝑡)

2 𝑒(𝜇1+𝜇2)𝑁2 . By
analyzing the above two situations, we can obtain

𝑉 (𝑡) ≤ 𝜍𝑒−𝛽(𝑡−𝑡0)𝑉 (𝑡0) , (35)

where 𝜍 = max {𝜍1, 𝜍2}. Similar to Theorem 1, the consensus of MASs was realized.

3.3. Zeno behavior analysis
In this chapter, we will analyze and confirm that Zeno behavior is excluded in the systems under two specific
scenarios. There exists inequality

𝐷+‖𝑒𝑖 (𝑡)‖ ≤ ‖ ¤𝑥𝑖 (𝑡)‖ + ‖ ¤̂𝑥𝑖 (𝑡)‖
≤ ‖𝐴𝑥𝑖 (𝑡)‖ + ‖(1 + 𝜔𝑖)𝐵𝑢𝑖 (𝑡)‖ + ‖𝐴𝑥𝑖 (𝑡)‖
= ‖𝐴‖‖𝑒𝑖 (𝑡)‖ + 𝑍 𝑖𝑘 ,

(36)

where 𝑍 𝑖
𝑘
= 2‖ ¤̂𝑥𝑖 (𝑡)‖ + ‖(1 + 𝜔𝑖)𝐵𝑢𝑖 (𝑡)‖. The proof that follows will be presented in two scenarios.

1. If ‖𝐴‖ ≠ 0, from Equation (36), one can get

‖𝑒𝑖 (𝑡)‖ ≤
𝑍 𝑖

𝑘

‖𝐴‖
(
𝑒‖𝐴‖(𝑡−𝑡

𝑖
𝑘 ) − 1

)
. (37)

For the designed ETC protocol, the triggering instants 𝑡𝑖𝑘+1 satisfies

( 𝜀2

𝜏
+ 𝜀3) ‖ 𝑒𝑇 𝑖 (𝑡)‖2 ≥ 𝜎𝑖 (𝜀1 − 𝜏𝜀2) ‖ Γ𝑖𝑇 (𝑡𝑖𝑘+1)‖

2 + 𝜃𝑖 (0)
𝛾𝑖

𝑒
−(𝛼𝑖+ 1

𝛾𝑖
)𝑡𝑖𝑘+1 . (38)

Then,

𝑡𝑖𝑘+1 − 𝑡
𝑖
𝑘 ≥

1
‖ 𝐴 ‖ ln

©­­«
1 + ‖𝐴‖√

( 𝜀2
𝜏 +𝜀3)𝑍 𝑖

𝑘

×
√
𝜎𝑖 (𝜀1 − 𝜏𝜀2)



Γ𝑇𝑖 (𝑡𝑖𝑘+1)


2 𝜃𝑖 (0)

𝛾𝑖
𝑒
−(𝛼𝑖+ 1

𝛾𝑖
)𝑡𝑖
𝑘+1

ª®®¬ . (39)

Subsequently, we employ proof by contradiction to demonstrate that Zeno behavior does not occur. First,
we suppose that the Zeno behavior of agent 𝑖 will occur, indicating that

∑∞
𝑘=0 Δ

𝑖
𝑘 must converge, where Δ𝑖𝑘 =

𝑡𝑖𝑘+1 − 𝑡
𝑖
𝑘 is a positive sequence, and then lim𝑚→∞

∑𝑚
𝑘=0 Δ

𝑖
𝑘 = lim𝑘→∞ 𝑡𝑖𝑘+1 − 𝑡0 = ∞, which is divergent. Thus,

Zeno behavior does not occur.

2.if ‖𝐴‖ = 0, then


𝑒𝑇𝑖 (𝑡)

 ≤ 𝑍 𝑖

𝑘
(𝑡 − 𝑡𝑖𝑘 ) The proof process for this case is analogous to the first cases and

therefore will not be reiterated here. It can be seen that the Zeno behavior of agent 𝑖 will be excluded from the
above two situations. If the MASs are subjected to DoS attacks, 𝑢𝑖 (𝑡) = 0; the Zeno behavior of the agent 𝑖 also
will not occur.
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3.4. Dual-channel event-triggered consensus
In this part, based on the idea of dual channels, the ETC protocol between the controller and actuator chan-
nel with the communication channel is designed to save resources. The Zeno behavior in the controller and
actuator channel can be eliminated by introducing the exponential parameter, and the ETC protocol in the
controller and actuator channel can still work stably when the input signal is very small. In addition, the ETC
protocol in the controller and actuator channel is designed before the communication channel, and it is de-
signed to depend only on the input signal and does not require neighbor information. First, an equivalent
controller 𝑢̃𝑖 (𝑡) is designed as

𝑢̃𝑖 (𝑡) =
{
𝑢𝑖 (𝑡𝑘 ) , 𝑡 ∈ Ξ𝑠 (𝑡0, 𝑡),
0, 𝑡 ∈ Ξ𝑎 (𝑡0, 𝑡).

(40)

For 𝑡 ∈ Ξ𝑠 (𝑡0, 𝑡), the controller update time depends on the following ETC protocol

𝑢̃𝑖 (𝑡) = 𝑢𝑖
(
𝑡𝑖𝑘

)
,∀𝑡 ∈ [𝑡𝑖𝑘 , 𝑡

𝑖
𝑘+1),

𝑡𝑖𝑘+1 = inf
𝑙>𝑡𝑖

𝑘

{
𝑙 :

��℘𝑢𝑖 (𝑡)�� − 𝑧𝑖 |𝑢̃𝑖 (𝑡) | ≥ 𝑒−𝜐𝑖 𝑡 ,∀𝑡 ∈
(
𝑡𝑖𝑘 , 𝑙

]}
,

(41)

where ℘𝑢𝑖 (𝑡) = 𝑢𝑖 (𝑡) − 𝑢̃𝑖 (𝑡), 0 < z𝑖 < 1 and 𝜐𝑖 > 0. Then, there exist |𝛼̃𝑖 (𝑡) | ≤ 1 and |𝛽𝑖 (𝑡) | ≤ 1. Thus, we
have

𝑢̃𝑖 (𝑡) =
𝑢𝑖 (𝑡) − 𝛽𝑖 (𝑡) 𝑒−𝜐𝑖 𝑡

1 + 𝛼̃𝑖 (𝑡) 𝑧𝑖
. (42)

In that case, the tracking error 𝜓𝑖 (𝑡) is

¤𝜓𝑖 (𝑡) = 𝐴𝜓𝑖 (𝑡) + 𝛼̂𝑖 (𝑡) 𝐵𝐾 Γ̂𝑖 (𝑡) − 𝛽𝑖 (𝑡) 𝐵, (43)

where 𝛼̂𝑖 (𝑡) = 1
1+𝛼̃𝑖 (𝑡)𝑧𝑖 , 𝛽𝑖 (𝑡) =

𝛽𝑖 (𝑡)𝑒−𝜐𝑖 𝑡
1+𝛼̃𝑖 (𝑡)𝑧𝑖 and 𝛼̂𝑖 (𝑡) < 1

1−𝑧𝑖 = 𝛼̄𝑖 , 𝛽𝑖 (𝑡) ⩽
1

1−𝑧𝑖 𝑒
−𝜐𝑖 𝑡 = 𝛽𝑒−𝜐𝑖 𝑡 . The tracking error

𝜓 is written in the form as

¤Ψ(𝑡) = (𝐼𝑁 ⊗ 𝐴) Ψ(𝑡) +
(
𝛼̂ (𝑡) 𝐻 ⊗ 𝐵𝐾̂

)
(Ψ(𝑡) + 𝑒(𝑡)) − 𝛽 (𝑡) ⊗ 𝐵, (44)

where 𝛼̂ (𝑡) = 𝑑𝑖𝑎𝑔 {𝛼̂1 (𝑡) , 𝛼̂2 (𝑡) , . . . , 𝛼̂𝑁 (𝑡)} and 𝛽 (𝑡) = (𝛽1 (𝑡) , 𝛽2 (𝑡) , . . . , 𝛽𝑁 (𝑡))𝑇 . In the context of
Equation (40), the following ETC protocol can be obtained

𝑡𝑖1 = 0,

𝑡𝑖𝑘+1 = inf
𝑙>𝑡𝑖

𝑘

{𝑙 : 𝛾̂𝑖 𝑓
(
𝑒𝑖 (𝑡), Γ̂𝑖 (𝑡)

)
⩾ 𝜃𝑖 (𝑡),∀𝑡 ∈ (𝑡𝑖𝑘 , 𝑙]},

(45)

where 𝑓
(
𝑒𝑖 (𝑡), Γ̂𝑖 (𝑡)

)
=
(
(𝜀2+𝛿1)
𝑘1

+ 𝜀3

)
‖Γ𝑖 (𝑡)‖2 − 𝜎̂𝑖 (𝜀1 − 𝑘2𝜀4 − 𝑘1(𝜀2 + 𝛿1))



Γ̂𝑖 (𝑡)

2 + 𝛿3𝑒
−2𝜐𝑖 𝑡 , 𝜎̂𝑖 (𝜀1 − 𝑘2𝜀4 −

𝑘1(𝜀2 + 𝛿1)) > 0 with 𝑘1, 𝑘2 > 0, 𝜎̂𝑖 ∈ (0, 1]. Other parameters are designed as follows:

𝜀1 = 𝜆̄min

(
𝐻̃Δ𝐻̃𝑇 ⊗ 𝑃

)
,

𝜀2 = 𝜆̄max
(
𝐻̃Δ ⊗ 𝑃 − 𝛿2𝑘2𝐻̃ ⊗ 𝐼𝑛

)
,

𝜀3 = 𝜆max

(
(Δ𝛼̂𝐻 + 𝐻𝑇 𝛼̂Δ) ⊗ 𝑊̂ + 𝛿2𝑘2𝐼𝑁 ⊗ 𝐼𝑛 − Δ ⊗ 𝑃

)
,

𝜀4 = 𝜆̄max

(
𝛿2𝐻̃𝐻̃

𝑇 ⊗ 𝐼𝑛
)
,

𝛿1 = 𝜆max

(
𝐻̃Δ𝛼̂𝐻 ⊗ 𝑊̂

)
,

𝛿2 = 𝜆̄max (Δ ⊗ 𝑃) ,

𝛿3 =
𝛿2

𝑘2

(
𝛽 ‖𝐵‖

)2
,

(46)

where 𝑊̂ = 𝑃𝐵𝐵𝑇𝑃, ¤̂𝜃𝑖 (𝑡) = −𝛼̂𝑖𝜃𝑖 (𝑡) − 𝑓
(
𝑒𝑖 (𝑡), Γ̂𝑖 (𝑡)

)
, 𝛼̂𝑖 > 0 and 𝜃𝑖 (0) > 0.
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Remark 3 Dual-channel ETC ensures system stability by triggering actions only when necessary and adjusting
parameters based on communication topology and agent dynamics to achieve system security consensus. Dual-
channel ETC enhances the efficiency of the system by separating communication and control channels, reducing
unnecessary communication. It also offers flexible triggering mechanisms, optimizing resource utilization and
boosting overall system performance. Thus, while the dual-channel triggering protocol designed here is similar to
the triggering form of the existing work, the design idea is different and from a practical point of view, the approach
in this section is simpler and does not require additional wiring.

Remark 4 In order to avoid continuous communication and further save communication resources, an estimator
is introduced in this chapter. However, the use of the estimator leads to the inability to exclude Zeno behavior.
A common approach is to use a constant trigger threshold to exclude Zeno behavior. However, this design will
make 𝑢̃𝑖 (𝑡) can not reach 𝑢𝑖 (𝑡). Inspired by the references [26,27], an exponential threshold 𝑒−𝜐𝑖 𝑡 is designed to solve
problems caused by the estimator in this section. The designed controller update protocol still works properly when
the input signal is extremely small.

Theorem 2 ConsideringMASs (3)(4), with the control protocol (45), consensus among theMASs can be achieved
if there exist

=̂ = 𝜇̂1 −
𝜇̂1 + 𝜇̂2

𝑇 𝑑
− ln ( 𝜌̂1 𝜌̂2)

𝑇 𝑓
> 0. (47)

Proof: for 𝑡 ∈ Ξ𝑠 (𝑡0, 𝑡), choose 𝑉̂𝑠 (𝑡) = 𝑉̂1(𝑡) + 𝑉̂2(𝑡), and we have

𝑉̂1(𝑡) = 𝑒𝑇 (𝑡) (Δ ⊗ 𝑃) 𝑒(𝑡),

𝑉̂2(𝑡) =
𝑁∑
𝑖=1

𝜃𝑖 (𝑡).
(48)

Then, applying (48), 𝑉̂1(𝑡) designed as

¤̂𝑉1(𝑡) = 2Ψ𝑇 (𝑡) (Δ ⊗ 𝑃) ¤Ψ(𝑡)
= Ψ𝑇 (𝑡)(Δ ⊗ (𝐴𝑇𝑃 + 𝑃𝐴) + (Δ𝛼̂ (𝑡) 𝐻 + 𝐻𝑇 𝛼̂ (𝑡) Δ) ⊗ 𝑃𝐵𝐾̂)Ψ(𝑡)
+ 2Ψ𝑇 (𝑡)

(
Δ𝛼̂ (𝑡) 𝐻 ⊗ 𝑃𝐵𝐾̂

)
𝑒(𝑡) − 2Ψ𝑇 (𝑡) (Δ ⊗ 𝑃)

(
𝛽 (𝑡) ⊗ 𝐵

)
,

(49)

where 𝐾̂ = −𝐵𝑇𝑃. The time derivative of 𝑉̂1 (𝑡) is

¤̂𝑉1(𝑡) ≤ −Ψ𝑇 (𝑡) (Δ ⊗ 𝑃) Ψ(𝑡) − 2Ψ𝑇 (𝑡)
(
Δ𝛼̂ (𝑡) 𝐻 ⊗ 𝑊̂

)
𝑒(𝑡) − 2Ψ𝑇 (𝑡) (Δ ⊗ 𝑃)

(
𝛽 (𝑡) ⊗ 𝐵

)
≤ −Ψ𝑇 (𝑡) (Δ ⊗ 𝑃) Ψ(𝑡) − Ψ𝑇 (𝑡) (Δ ⊗ 𝑃) Ψ(𝑡) − 2Γ̂𝑇 (𝑡)

(
𝐻̃Δ𝛼̂ (𝑡) 𝐻 ⊗ 𝑊̂

)
𝑒(𝑡)

+ 2𝑒𝑇 (𝑡)
(
Δ𝛼̂ (𝑡) 𝐻 ⊗ 𝑊̂

)
𝑒(𝑡) − 2Ψ𝑇 (𝑡) (Δ ⊗ 𝑃)

(
𝛽 (𝑡) ⊗ 𝐵

)
.

(50)

From
−Γ̂𝑇 (𝑡)

(
𝐻̃Δ𝛼̂ (𝑡) 𝐻 ⊗ 𝑊̂

)
𝑒(𝑡) ≤



Γ̂𝑇 (𝑡) (𝐻̃Δ𝛼̂ (𝑡) 𝐻 ⊗ 𝑊̂
)
𝑒(𝑡)




≤


Γ̂𝑇 (𝑡)

 

𝐻̃Δ ¯̂𝛼𝐻 ⊗𝑊̂



 ‖𝑒(𝑡)‖
≤ 𝛿1



Γ̂(𝑡)

 ‖𝑒(𝑡)‖, (51)

−2Ψ𝑇 (𝑡) (Δ ⊗ 𝑃)
(
𝛽 (𝑡) ⊗ 𝐵

)
≤ 2𝛿2



Ψ𝑇 (𝑡)


 

𝛽 (𝑡) ⊗ 𝐵



≤ 2𝛿2

(
𝑘2

2
‖Ψ(𝑡)‖2 + 1

2𝑘2
‖𝛽 (𝑡) ⊗ 𝐵‖2

)
≤ 𝛿2𝑘2 ‖Ψ(𝑡)‖2 + 𝛿3

𝑁∑
𝑖=1

𝑒−2𝜐𝑖 𝑡 ,

(52)
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we obtain
¤̂𝑉1(𝑡) ≤ −Ψ𝑇 (𝑡) (Δ ⊗ 𝑃) Ψ(𝑡) + 𝑒𝑇 (𝑡)

(
(Δ𝛼̂𝐻 + 𝐻𝑇 𝛼̂Δ) ⊗ 𝑊̂

)
𝑒(𝑡) + 2𝛿1‖Γ̂(𝑡)‖𝑒(𝑡)‖

+ 𝛿2𝑘2𝑒
𝑇 (𝑡)𝑒(𝑡) + 𝛿2𝑘2Γ̂

𝑇 (𝑡)
(
𝐻̃𝐻̃𝑇 ⊗ 𝐼𝑛

)
Γ̂(𝑡) − 2𝛿2𝑘2Γ̂

𝑇 (𝑡)
(
𝐻̃ ⊗ 𝐼𝑛

)
𝑒(𝑡) + 𝛿3

𝑁∑
𝑖=1

𝑒−2𝜐𝑖 𝑡

≤ −Γ̂𝑇 (𝑡)
(
𝐻̃Δ𝐻̃𝑇 ⊗ 𝑃

)
Γ̂(𝑡) − 𝑒𝑇 (𝑡) (Δ ⊗ 𝑃) 𝑒(𝑡)

+ 2Γ̂𝑇 (𝑡)
(
𝐻̃Δ ⊗ 𝑃

)
𝑒(𝑡) + 2𝛿1



Γ̂(𝑡)

 ‖𝑒(𝑡)‖ + 𝑒𝑇 (𝑡) ((Δ𝛼̂𝐻 + 𝐻𝑇 𝛼̂Δ) ⊗ 𝑊̂
)
𝑒(𝑡)

+ 𝛿2𝑘2Γ̂
𝑇 (𝑡)

(
𝐻̃𝐻̃𝑇 ⊗ 𝐼𝑛

)
Γ̂(𝑡) + 𝛿3

𝑁∑
𝑖=1

𝑒−2𝜐𝑖 𝑡 − 2𝛿2𝑘2Γ̂
𝑇 (𝑡)

(
𝐻̃ ⊗ 𝐼𝑛

)
𝑒(𝑡) + 𝛿2𝑘2𝑒

𝑇 (𝑡)𝑒(𝑡)

≤ (−𝜀1 + 𝑘2𝜀4)


Γ̂(𝑡)

2 + 2(𝜀2 + 𝛿1)



Γ̂(𝑡)

 ‖𝑒(𝑡)‖ + 𝜀3 ‖𝑒(𝑡)‖2 + 𝛿3
∑

𝑒−2𝜐𝑖 𝑡 − Ψ𝑇 (𝑡) (Δ ⊗ 𝑃) Ψ(𝑡).
(53)

Applying Young’s inequality, we get

¤̂𝑉1(𝑡) ≤ (−𝜀1 + 𝑘2𝜀4)


Γ̂(𝑡)

2 + 𝑘1(𝜀2 + 𝛿1)



Γ̂(𝑡)

2 + (𝜀2 + 𝛿1)
𝑘1

‖𝑒(𝑡)‖2 + 𝜀3 ‖𝑒(𝑡)‖2 + 𝛿3

𝑁∑
𝑖=1

𝑒−2𝜐𝑖 𝑡

≤ (−𝜀1 + 𝑘2𝜀4 + 𝑘1(𝜀2 + 𝛿1))


Γ̂(𝑡)

2 +

(
(𝜀2 + 𝛿1)

𝑘1
+ 𝜀3

)
‖𝑒(𝑡)‖2 + 𝛿3

𝑁∑
𝑖=1

𝑒−2𝜐𝑖 𝑡

≤
𝑁∑
𝑖=1

(
(−𝜀1 + 𝑘2𝜀4 + 𝑘1(𝜀2 + 𝛿1)) ‖Γ̂𝑖 (𝑡)‖2 + ( (𝜀2 + 𝛿1)

𝑘1
+ 𝜀3)‖𝑒𝑖 (𝑡)‖2 + 𝛿3𝑒

−2𝜐𝑖 𝑡
)
.

(54)
Applying the derivatives of 𝑉̂2(𝑡), then

𝑉̂𝑠 (𝑡) = ¤̂𝑉1(𝑡) + ¤̂𝑉2(𝑡)

≤ −
𝑁∑
𝑖=1

𝛼̂𝑖𝜃𝑖 (𝑡) −
𝑁∑
𝑖=1

(
(1 − 𝜎̂𝑖) (𝜀1 − 𝑘2𝜀4 − 𝑘1(𝜀2 + 𝛿1))



Γ̂𝑖 (𝑡)

2
)

≤ −𝜇̂1𝑉̂𝑠 (𝑡).

(55)

The subsequent process of proving the consensus is similar toTheorem 1 and is not given to avoid redundancy.
Next, Zeno behavior exclusion is divided into two categories: the actuator channel and the communication
channel. 1. For the controller–actuator channel, we have��℘𝑢𝑖 (𝑡)�� ≤ 𝑧𝑖 |𝑢̃𝑖 (𝑡) | + 𝑒−𝜐𝑖 𝑡 , (56)

where ℘𝑢𝑖 (𝑡) = 𝑢𝑖 (𝑡) − 𝑢̃𝑖 (𝑡) then we have

𝑑

𝑑𝑡
|℘𝑢𝑖 (𝑡) | =

𝑑

𝑑𝑡
(℘𝑢𝑖 (𝑡) · ℘𝑢𝑖 (𝑡))

1
2

= 𝑠𝑔𝑛(℘𝑢𝑖 ) ¤℘𝑢𝑖
≤ | ¤𝑢𝑖 (𝑡) | .

(57)

Considering the event-triggered interval [𝑡𝑖𝑘 , 𝑡
𝑖
𝑘+1), there exist |℘

𝑢
𝑖 (𝑡𝑘 ) | = 0 and lim𝑡→𝑡𝑘+1 |℘𝑢𝑖 (𝑡) | = 𝜈𝑖 |𝑢̃𝑖 (𝑡) | +

𝑒−𝜐𝑖𝑡 ; then, we can obtain
𝑡𝑖𝑘+1 − 𝑡

𝑖
𝑘 ≥

(
𝑧𝑖 |𝑢̃𝑖 (𝑡) | + 𝑒−𝜐𝑖 𝑡

)
/𝜗. (58)

If Zeno behavior exists, itmeans infinite triggerswithin a limited time𝑇𝑐 , i.e.,
∑∞
𝑘=0 Δ

𝑖
𝑘 = 𝑇𝑐,whereΔ

𝑖
𝑘 = 𝑡

𝑖
𝑘+1−𝑡

𝑖
𝑘 .

Then, we have
∑∞
𝑘=0 Δ

𝑖
𝑘 = lim𝑘→∞ 𝑡𝑖𝑘+1 − 𝑡

𝑖
0 = 𝑇𝑐 , indicating lim𝑘→∞ 𝑡𝑖𝑘+1 = 𝑇𝑐 . Thus, we have

∑∞
𝑘=0 Δ

𝑖
𝑘 = ∞ and

lim𝑘→∞ 𝑡𝑖𝑘+1 = ∞. This contradicts lim𝑘→∞ 𝑡𝑖𝑘+1 = 𝑇𝑐 ; thus, Zeno behavior will not occur. For dynamic ETC
protocol in the communication channel, similar to chapter 3.4., Zeno behavior can be excluded. This proof is
finished.
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Figure 1. Network topology of MASs.

4. NUMERICAL SIMULATION
The matrix parameters are designed as

𝐴 =
©­­«
−2 1 −1
0 −1 0
1 1 0

ª®®¬ , 𝐵 =
©­­«
0 −1
1 0
0 1

ª®®¬ .

The adjacency matrices 𝐿 and 𝑀 are replaced by 𝐿1, 𝐿2, 𝐿3 and 𝑀1, 𝑀2, 𝑀3. The matrices 𝐾 and 𝑄 can also
be calculated by

𝐾 =
©­­«

0.3940 0.4082
0.9093 0.3940
0.4288 0.2227

ª®®¬
𝑇

, 𝑄 =
©­­«

0.4082 0.3940 0.2227
0.3940 0.9093 0.4288
0.2227 0.4288 0.6308

ª®®¬ .

Choose 𝜔𝑖 = 0.1, 𝜃1(0) = 90, 𝜃2(0) = 92, 𝜃3(0) = 70, 𝜃4(0) = 62, 𝜃5(0) = 93. Set 𝑥0 = [3,−1, 2]𝑇 ,
𝑥1 = [2.4, 2.3, 0.2]𝑇 , 𝑥2 = [−3.2, 1, 1.7]𝑇 , 𝑥3 = [2,−3, 1.5]𝑇 , 𝑥4 = [−1.5,−0.5,−2.8]𝑇 , 𝑥5 = [1.1, 1,−2.2]𝑇 .
The communication structure of the MASs will switch randomly among the three scenarios depicted in Fig-
ure 1. Figure 2 illustrates the state difference between each follower and the leader. From Figure 2, we can
observe that the state errors between followers and leaders all converge to zero within six seconds. The state
trajectories of the leader and followers are displayed in Figure 3, clearly showing that each agent can follow the
leader. From Figure 2 and Figure 3, we can deduce that the MASs achieve leader-following consensus in finite
time. Figure 4 presents the triggering times of five agents. As the state errors between followers and leader
converge to zero, the increase of triggering times of followers slows down. Lastly, Figure 5 shows the network
topology of the MASs.
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Figure 2. State error of MASs.

Figure 3. State trajectory of agents.
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Figure 4. Triggering times of followers.

Figure 5. Current topology of MASs.

5. CONCLUSIONS
This paper focuses on the consensus problem of MASs. Considering a MAS with a leader and 𝑁 followers,
a distributed controller is designed. To avoid continuous communication, an estimator is used to estimate
the state of agents during the trigger interval so that the estimated state is used instead of the actual state to
achieve the goal of intermittent communication. In order to further save communication resources, a dual-
channel ETC is designed for the controller-actuator channel and communication channel, respectively. The
continuous validity of the ETC protocol is ensured by introducing an exponential triggering threshold in the
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controller-actuator channel. Finally, it is verified through simulation that consensus control can be achieved
while effectively saving controller resources and communication resources. Furthermore, applying our find-
ings to address security control challenges in mobile robot systems under DoS attacks represents a crucial
research direction. This study will facilitate future research efforts on the consensus of heterogeneous MASs,
the implementation of security controls against hybrid cyber attacks, and the development of self-triggered
protocols.
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