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Abstract
Herein, we propose a versatile “functional modular assembly” strategy for customizing MOFs that allows installing 
the desired functional unit into a host material. The functional unit could be switched according to different 
applications. MOF-808, a highly stable Zr-MOF containing dangling formate groups, was selected as a host 
material for demonstration. Functional molecules with carboxyl connectors can be directly inserted into MOF-808 
to form functional modular MOFs (FM-MOFs) through single substitution, while for those without carboxyl 
connectors, a pre-designed convertor was grafted firstly followed by the functional molecules in a stepwise 
manner. A series of tailor-made FM-MOFs were generated and show excellent performance toward different 
applications, such as adsorption, catalysis, fluorescent sensing, electrochemistry, and the control of surface 
wettability. On the other hand, the functional units on the FM-MOFs can switch freely and completely via full 
interconversion, as well as partly to construct multivariate MOFs (MTV-MOFs). Therefore, this strategy provides a 
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benchmark for rapid customization of functional MOFs for diverse applications that can realize the rapid modular 
design of materials.

Keywords: Metal-organic frameworks, functionality, modular design strategy, customization

INTRODUCTION
Porous materials have been attracting intense attention owing to their wide range of potential 
applications[1,2]. Rational design and functional targeting synthesis of porous materials on demand by the 
introduction of functional groups or molecules are essential for practical application[3,4]. It is relatively 
difficult to insert and modify functional groups in the structures of conventional porous solids such as 
zeolites and activated carbons, especially at the molecular level, whereas metal-organic frameworks (MOFs), 
newly developed porous crystalline materials constructed by metal clusters and organic linkers, are 
acknowledged to be relatively easy in this regard[5-9]. Because of their highly diversified structure, tailorable 
porosity, and tunable functionality, MOFs show great potential in various areas including adsorption[10-12], 
catalysis[13,14], chemical sensing[15,16], and electrochemistry[17,18]. Endowed with these fantastic features, MOFs 
are an ideal platform to customize functional materials on demand. Currently, various functional methods 
have been used in different kinds of MOF materials for a given system[19-21]. However, these functional 
approaches sometimes have poor versatility and are difficult to extend to other host MOFs or functional 
molecules[22]. In some cases, time- and resource-intensive processes are needed to find and design requisite 
host materials, functional parts, and their appropriate connection modes in each unit operation. Besides, it 
is also relatively difficult to impart some complex but useful functional molecules into MOF structures 
through direct postsynthetic substitution or sophisticated organic synthesis. Considering the variety and 
complexity of practical demands, a general strategy that allows the versatile and facile customization of 
MOFs according to a wide variety of applications is highly desirable yet remains a challenge to date.

To tackle the above-mentioned question, we here propose a “functional modular assembly” (FMA) strategy 
for customizing MOFs - a versatile conceptual approach that allows installing desired functional units into a 
host MOF material, opening up the possibility of assembling modular devices according to practical 
requirements. Such a novel strategy should possess the following features: (i) the functional module on the 
host MOF can be installed and switched freely, acting as a “plug and socket”, and thus a proper functional 
unit can be inserted for a targeted application; (ii) to enrich modular diversity, the accessible functional 
molecules should be modularized as much as possible; (iii) the assembly step of installing functional 
modules onto host MOF should be accomplished in a simple manner, thereby facilitating target 
customization of MOFs in a facile and efficient way; and (iv) the host MOF material should be stable 
enough to be used in different conditions. In addition, as most MOFs are moisture sensitive and unstable in 
aqueous media, developing stable hydrophobic MOFs is necessary for practical applications[23,24].

To fulfill this goal, the proper connection mode between host material and modules is firstly needed. 
Considering the reversibility of coordination bonds in MOFs, postsynthetic substitution appears to be a 
reliable and simple approach to implementing installing and switching functional modules in MOFs. 
Moreover, combining different functional modules into one host MOF through multi-substitution may also 
open up the possibility of constructing multivariate MOFs (MTV-MOFs) for a target application. In this 
work, as a proof-of-concept experiment, we demonstrate that such a “functional modular assembly” strategy 
can be achieved on the highly robust MOF-808. This Zr-MOF was chosen as a host material for the 
following two reasons: (i) exceptional water/chemical stability; and (ii) the dangling formate groups on Zr6 
clusters are prone to be substituted by other ligands with carboxyl groups in a simple way, making it easy to 
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graft functional molecules/active fragments onto the host material. These interesting features of MOF-808 
stimulate us to try to use the carboxyl group as a connector to assemble functional modular MOFs (FM-
MOFs). Functional molecules with a carboxyl connector can be directly inserted into MOF-808 through 
single substitution. For functional molecules without a connector, we insert a pre-designed convertor and 
modules in a stepwise manner by tandem postsynthetic modification. That is, the convertor has two 
different terminals that can combine modules and MOF-808, respectively. Theoretically, a wide range of 
accessible functional molecules could be used as modules in the assembly process, thus generating 
practically numerous distinct new MOFs for functional targeting customization. To prove the feasibility of 
our strategy, several applications from completely different fields including adsorption, catalysis, fluorescent 
sensing, electrochemistry, and the control of surface wettability were selected as examples. Such tailor-made 
FM-MOFs exhibit excellent performance toward different target applications. Moreover, the functional 
units on our FM-MOFs can fully interconvert via a simple solvothermal method, readily implementing the 
installing and switching of modules in MOFs freely. Interestingly, we also found that two functional 
modules can be assembled into MOF-808 through partial conversion to construct multivariate FM-MOFs. 
Overall, this functional modular assembly strategy enables MOFs to achieve the goals of multi-modules, 
multi-objectives, switchable modules, and interfunctional coordination, providing a general and simple 
route for the rapid targeting customization of functional MOFs on demands.

RESULTS AND DISCUSSION
Customization of FM-MOFs by single substitution
A schematic illustration of the construction of FM-MOFs is shown in Scheme 1. Theoretically, in the 
assembly process, various desired functional modules could be imparted into the host framework to 
customize FM-MOFs according to arbitrary target applications. Thus, it is imperative to ensure that the 
various functional molecules can be modularized as much as possible. Considering that labile formate 
groups on MOF-808 are easy to be substituted, a carboxyl group can serve as a connector to impart 
functional molecules into MOF-808. To specify this concept, several applications including Hg2+ capture, 
Ag+ recovery, proton conductivity, detection of nitro explosives, and the control of surface wettability were 
taken as examples. We subsequently used thioglycollic acid (M1, M refers to module), propiolic acid (M2), 
oxalic acid (M3), pyrenecarboxylic acid (M4), and perfluorooctanoic acid (M5) to assemble series of FM-
MOFs based on MOF-808 according to respective target applications [Figure 1 and Supplementary Figure 1]. 
Supplementary Figure 2 shows the PXRD patterns of MOF-808 and its functional derivatives. It is obvious 
that the related peaks of these assembled FM-MOFs are in good agreement with that of pristine MOF-808, 
confirming that the crystal structure of these materials remains intact after functional modules insertion. N2 
adsorption-desorption isotherms of FM-MOFs measured at 77 K display a typical I isotherm, suggesting the 
reservation of microporous features after introducing functional units into the framework, despite a 
decrease in their BET surface areas [Supplementary Figure 3]. The scanning electron microscopy (SEM) 
images demonstrate that our FM-MOFs possess octahedral morphology, with no apparent morphology 
change observed compared with MOF-808 [Supplementary Figure 4]. Individually, given that the thiolate 
ligand possesses a strong coordination ability to Hg2+, thioglycollic acid (M1) was used as a functional 
modular to construct FM-MOF-1 for Hg2+ capture. The successful insertion of M1 into MOF-808 was also 
proved by Fourier transform infrared (FT-IR) spectroscopy, 1H nuclear magnetic resonance (NMR) 
spectroscopy, and elemental analysis. The FT-IR spectra of FM-MOF-1 reveal that there is a new peak at 
2564 cm−1 [Supplementary Figure 5], which can be attributed to the S-H stretching of free -SH groups. 
Supplementary Figure 6 shows the 1H NMR spectra of FM-MOF-1 and MOF-808 after dissolving the 
samples in KOH/D2O solution. Obviously, the peak intensity at δ = 8.3 ppm corresponding to the hydrogen 
of formate of FM-MOF-1 significantly decreased and a new peak at δ = 2.8 ppm for the hydrogen signal of 
-CH2- in M1 appeared, indicating that formate ligands on Zr6 clusters were substituted by M1 molecules. All 
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Scheme 1. Illustration of customization of FM-MOFs toward different applications.

these observations demonstrate that M1 was successfully inserted into the framework of MOF-808. To 
evaluate the effectiveness of FM-MOF-1 for Hg2+ capture, adsorption kinetics and isotherms were measured. 
As shown in Figure 1B and Supplementary Figure 7, an extremely quick process was observed for FM-
MOF-1. Over 99% of Hg2+ was removed within 5 min. Supplementary Figure 8 shows the adsorption 
isotherms of FM-MOF-1 towards Hg2+. By fitting with Langmuir model, the saturated Hg2+ removal capacity 
of FM-MOF-1 was estimated to be 758 mg g−1, suggesting the great potential of FM-MOF-1 for Hg2+ 
capture. Similarly, considering the strong affinity of the terminal alkynyl group toward Ag+, propiolic acid 
(M2) was selected as another functional module to assemble FM-MOF-2 for silver recovery. FT-IR and 1H 
NMR spectra were used to demonstrate the successful insertion of M2 into the framework of MOF-808 
[Supplementary Figures 9 and 10]. Supplementary Figure 11 shows the adsorption kinetics of FM-MOF-2 
towards Ag+; the removal efficiency increased sharply during the initial stage and then approached 
equilibrium after 2 h of contact. The adsorption isotherm revealed that FM-MOF-2 exhibits high silver 
uptake [Figure 1C]. By fitting with Langmuir model, the saturated Ag+ uptake capacity was calculated to be 
806 mg g−1, surpassing most reported porous materials [Supplementary Table 1][25-34]. This is also the first 
study of introducing alkynyl groups into the MOF framework for Ag+ recovery. Besides, to construct the 
proton-conducting MOF, we used oxalic acid as the functional module to assemble FM-MOF-3. The 
detailed characterizations are provided in the Supplementary Materials [Supplementary Figures 12-14]. 
Proton conductivities were then checked on a pressed plate at varying relative humidity (RH) from 33% to 
100% at 298 K for FM-MOF-3. As shown in Supplementary Figure 15, all of the Nyquist plots display 
circular arcs at high frequencies. The proton conductivity of FM-MOF-3 increased with the elevated 
moisture [Figure 1D], suggesting water molecules play a vital role in the proton transportation of this MOF. 
Meanwhile, FM-MOF-3 exhibited a striking proton conductivity of 1.2 10-2 S cm-1 at 298 K and 100% RH, 
whereas the original MOF-808 displayed an inferior proton conductivity of 2.2  10-6 S cm-1 under the same 
condition [Supplementary Figure 16]. It should be noted that only a few MOFs featuring high proton 
conductivity over 10-2 S cm-1 have been reported[35-37]. Moreover, to achieve the goals of detecting nitro 
explosives and controlling surface wettability, conjugated pyrenecarboxylic acid (M4) and perfluorooctanoic 
acid (M5) were utilized as modules to construct FM-MOF-4 and FM-MOF-5, respectively. The related 
characterizations can be found in the Supplementary Materials [Supplementary Figures 17-20]. To 
investigate the explosive sensing ability of FM-MOF-4, fluorescence quenching titrations were conducted by 
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Figure 1. Customization of FM-MOFs through single substitution. (A) Schematic illustration of constructing FM-MOFs by functional 
modules with carboxyl connector. (B) Hg2+ adsorption kinetics of FM-MOF-1 at the initial concentration of 10 ppm. (C) Ag+ adsorption 
isotherm for FM-MOF-2. The inset shows the linear regression by fitting the experimental data with the Langmuir model. (D) Humidity 
dependence of the proton conductivities in FM-MOF-3 at room temperature. (E) The effect on the emission spectra of FM-MOF-4 
dispersed in DMF upon incremental addition of a TNP solution (1 mM). The inset shows the original fluorescence and the decreased 
fluorescence upon the addition of TNP solution (1 mM). (F) Contact angle images of FM-MOF-5 and MOF-808.

the increasing amount of nitro aromatics. As shown in Figure 1E, fast and significant fluorescence 
quenching was observed with an increase in the amount of TNP (2,4,6-trinitrophenol). The fluorescence 
quenching could be discerned at a low concentration (0.5 µM; Supplementary Figure 21) and reached nearly 
83% when the concentration of TNP increases to 1 mM. By contrast, other nitro compounds have little 
effect on the fluorescence intensity [Supplementary Figure 22]. These results demonstrate that FM-MOF-4 
could selectively and sensitively detect TNP over other nitro explosives. On the other hand, the surface 
wettability of FM-MOF-5 and MOF-808 was also examined by contact angle measurements. As shown in 
Figure 1F, the contact angle of water on MOF-808 was estimated to be 37°, whereas FM-MOF-5 gave the 
water contact angle at as high as 142°. The surface character of MOF-808 transformed from hydrophilic to 
hydrophobic after M5 insertion into the framework, confirming the coating of perfluoroalkyl groups on the 
surface of material can dramatically enhance its hydrophobicity. This hydrophobic behavior of FM-MOF-5 
was also illustrated by water vapor adsorption experiment: the water uptakes of MOF-808 reduced 
significantly after the incorporation of M5 [Supplementary Figure 23].

Customization of FM-MOFs through tandem postsynthetic modification
The above proof-of-concept experiments revealed that functional molecules with carboxyl groups can be 
used as modules to insert into MOF-808 directly according to numerous target applications. However, to 
expand the scope of our strategy, some useful functional molecules without carboxyl groups should also be 
modularized. To solve this problem, we installed a pre-designed convertor into MOF-808 before functional 
modules insertion through a tandem postsynthetic modification [Figure 2]. Such convertors should have 
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Figure 2. Customization of FM-MOFs through tandem postsynthetic modification. (A and B) Scheme illustration of FM-MOFs and their 
pore structures. (C) Hg2+ adsorption isotherm of FM-MOF-6. The inset shows the linear regression by fitting the experimental data with 
the Langmuir model. (D) Yields of various cyclic carbonates prepared from the cycloaddition of CO2 with related epoxides catalyzed by 
FM-MOF-8 (red) and FM-MOF-9 (blue).

two terminals that can combine modules and the host framework, respectively. Here, the aforementioned 
Hg2+ capture and CO2 conversion were taken as target applications to fully illustrate this. Firstly, we tried to 
use thioglycollic acid (M1) to construct FM-MOF-1 for mercury adsorption. Considering a functional unit 
with more chelating sites is needed to achieve higher Hg2+ uptake capacity, 1,2-ethanedithiol (M6) 
containing higher sulfur content yet without carboxyl group compared with M1 was adopted. To impart M6 
on MOF-808, we chose propenoic acid (M7) as a convertor and inserted it into the host framework firstly to 
construct FM-MOF-7, where the accessible vinyl groups could allow for further chemical modifications. As 
shown in Supplementary Figures 24-28, FM-MOF-7 was characterized by PXRD, N2 adsorption, SEM, FT-
IR, and 1H NMR. FT-IR spectra reveal the appearance of a new characteristic peak at 1639 cm-1 compared 
with MOF-808, which can be attributed to the C=C stretching band of vinyl groups 
[Supplementary Figure 27]. 1H NMR spectra demonstrate that the peak at 8.3 ppm assigned to the formate 
groups disappeared and several strong peaks around 5.0-7.0 ppm corresponding to the vinyl groups 
emerged, indicating the successful insertion of M7 into MOF-808 [Supplementary Figure 28]. FM-MOF-7 
was then treated with 1,2-ethanedithiol (M6) to obtain FM-MOF-6 through the thiol-ene “click” reaction 
between thiol compounds and the vinyl groups in FM-MOF-7. The resulting material was also carefully 
characterized by PXRD, N2 adsorption, FT-IR, SEM, and NMR [Supplementary Figures 29-33]. Compared 
with FM-MOF-7, FT-IR spectra of FM-MOF-6 show a new peak at 2555 cm-1 despite the absence of the 
band at 1639 cm-1, indicating the elimination of vinyl groups and the appearance of free-standing thiol 
group after modification [Supplementary Figure 32]. The thio-ene transformation was also confirmed by 
the disappearance of the peaks around 5.0-7.0 ppm corresponding to the hydrogen signals of vinyl groups in 
the 1H NMR spectrum of FM-MOF-6 and the concomitant emergence of new peaks around 2.0 and 3.0 
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ppm attributed to the different hydrogen of -CH2- in M6 [Supplementary Figure 33]. To assess the overall 
capacity of FM-MOF-6 towards Hg2+, the adsorption isotherm was then measured. As shown in Figure 2C, 
FM-MOF-6 displayed extremely high Hg2+ uptake. By fitting with Langmuir model, the saturated 
adsorption capacity of FM-MOF-6 for Hg2+ was determined to be 1077 mg g-1, which is about 1.4 times 
higher than that of FM-MOF-1, surpassing various MOF adsorbents Supplementary Table 2[38-48]. In 
addition, we also investigated the adsorption kinetics of FM-MOF-6 toward Hg2+. As shown in 
Supplementary Figure 34, a quick purification process was observed. The removal efficiency displayed a 
steep profile at the initial stage and then tended to equilibrium with about 99.84% of Hg2+ ions being 
removed. The excellent performance of FM-MOF-6 in mercury capture can be traced to the strong binding 
interactions between the Hg and sulfur species in FM-MOF-6, as evidenced by the enlarged S 2p binding 
energy of XPS analysis and the absence of S-H stretching mode in FT-IR spectra after Hg2+ adsorption 
[Supplementary Figures 35-37]. These results demonstrate the superiority of the utilization of FM-MOF-6 
as a promising candidate for mercury capture from aqueous solutions.

On the other hand, the cycloaddition of CO2 with epoxides into cyclic carbonates is an attractive strategy for 
addressing anthropogenic CO2 emission issues, and imidazole-based functional molecules are regarded as 
efficient catalysts for this purpose. Considering the issues of homogeneous catalysts in product purification 
and catalyst recycling, it is advisable to graft imidazole-based functional molecules onto host materials for 
use as heterogeneous catalysts. Here, we chose 1-allylimidazole (M8) as a functional module to construct 
FM-MOF-8. Because of the absence of carboxylic connector in M8, a suitable convertor was needed. 
Therefore, bromoacetic acid (M9), which contains both a carboxylic connector and an accessible 
bromomethyl group for further chemical modification, was selected to assemble FM-MOF-9 first. The 
detailed characterizations are provided in Supplementary Figures 38-42. FM-MOF-9 was then treated with 
1-allylimidazole (M8) through a tandem postsynthetic modification to obtain FM-MOF-8, as characterized 
by PXRD, N2 adsorption, SEM, FT-IR, and NMR [Supplementary Figures 43-47]. Interestingly, the two 
incorporated modules of M8 and M9 in FM-MOF-8 combined together to form an imidazolium-based 
ionic liquid (IL) unit. Because of the proper distribution of formate groups in MOF-808, theoretically, such 
IL unit in FM-MOF-8 would also disperse uniformly within the pore, thus avoiding agglomeration and 
providing more accessible catalytic sites compared to the conventional dipping method. To evaluate the 
effectiveness of FM-MOF-9 as a catalyst, experiments were carried out. As shown in Figure 2D, the reaction 
yields catalyzed by FM-MOF-8 from related epoxides were determined to be 97.1% for epichlorohydrin, 
95.2% for epibromohydrin, 86.2% for 1,2-epoxybutane, and 84.1% for allyl glycidyl ether, indicating that 
FM-MOF-8 exhibited a highly efficient catalytic performance for a variety of epoxides. It should be noted 
that the good performance of FM-MOF-8 was achieved without using any co-catalysts, whereas most 
reported MOF catalysts employ other substances, such as TBAB, to improve activity, which is considered 
uneconomical and complicated[49]. In contrast, FM-MOF-9 showed an extremely low activity, with a yield of 
< 10% under similar conditions, manifesting that the grafted M8 played a key role during the catalytic 
process. The above two proof-of-concept experiments fully demonstrated the reliability of this tandem 
postsynthetic modification for inserting functional modules without a carboxyl connector into MOF-808, 
which greatly expands the scope of FM-MOFs for functional targeting customization.

Switching modules on FM-MOFs
Another important aspect to consider is whether the functional modules on FM-MOFs could be freely 
switched in a simple manner, which allows for changing user-defined units in accordance with different 
needs, thereby affording matrix recycling and cost saving. The mutual transformation among FM-MOF-2, 
FM-MOF-7, and FM-MOF-9 was taken as a representative sample to confirm this [Figure 3]. These FM-
MOFs were added into the solution containing the corresponding functional module, and the detailed 
experiments can be found in the Supplementary Materials. This conversion process was repeated several 
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Figure 3. Full conversion process among FM-MOFs: (A and B) scheme illustration of mutual transformation among FM-MOFs and the 
associated pore structures of FM-MOF-2, FM-MOF-7, and FM-MOF-9; (C) the conversion process characterized by 1H NMR spectra; 
and (D) the conversion rate from FM-MOF-9 to FM-MOF-7 with the increase of time.

times, and the as-transformed FM-MOFs were determined by 1H NMR analysis. As shown in 
Supplementary Figures 48-53, for all three FM-MOFs, the signals of the original functional module 
disappeared, whereas the peaks attributed to the new unit emerged, demonstrating full switching of 
functional modules on MOF-808. Besides, PXRD measurements indicate no apparent loss of crystallinity 
during the conversion process [Supplementary Figures 54-59]. To further illustrate this, we also 
symmetrically investigated the conversion process from FM-MOF-9 to FM-MOF-7 with the increase of 
time. As shown in Figure 3C and D, the conservation rate reached 65% in the initial 1 h and steadily 
increased over time. After 24 h of reaction, the 1H NMR spectrum reveals that δ at 3.8 ppm corresponding 
to the hydrogen signals of -CH2- in M9 significantly decreased, whereas several new peaks around 5-7 ppm 
attributed to the vinyl group in M7 enhanced dramatically, achieving a high conservation of 95%. The peak 
of M9 further reduced when we repeated this conservation process several times, demonstrating essentially 
full conversion from FM-MOF-9 to FM-MOF-7.

Interestingly, we found that two functional modules could coexist in one host matrix during the switching 
process, which would form multivariate MOFs (MTV-MOFs) via partial conversion [Figure 4]. For full 
illustration, Hg2+ detection was selected as target application. We combined a mercury capture module and 
fluorophore moiety into MOF-808 through partial conservation and supposed that the resulting MTV-MOF 
would show improved performance in mercury detection. As such, the aforementioned FM-MOF-1 was 
immersed in DMF solution containing M4 for a period of time to obtain FM-MOF-1-4 (see Supplementary 
Figures 60-62). Compared to FM-MOF-1, the 1H NMR spectra of this MTV-MOF reveal that δ at 2.8 ppm 
corresponding to M1 decreased and new peaks assigned to the hydrogen signals of pyrene in M4 emerged 
[Figure 4C]. The relevant signals of M1 in FM-MOF-1 and FM-MOF-1-4 were also integrated against that 
of the BTC ligand, resulting in peak ratios of 6:7 and 6:2, respectively, demonstrating that 71% of M1 was 
substituted by M4 during module switching process [Supplementary Figures 63 and 64]. FM-MOF-1-4 was 
then used to sense a trace quantity of Hg2+ in aqueous solutions. As shown in Figure 4D, obvious 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202207/5064-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202207/5064-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202207/5064-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202207/5064-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202207/5064-SupplementaryMaterials.pdf
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Figure 4. Partial conversion process among FM-MOFs: (A) scheme illustration of constructing MTV-MOF through a partial conversion 
process; (B) constructing FM-MOF-1-4 from FM-MOF-1; (C) 1H NMR spectra of (A) FM-MOF-1-4, (B) FM-MOF-1, and (C) FM-MOF-4 
in D2O/KOH solution; (D) effect on the emission spectra of FM-MOF-1-4 with different concentration of Hg2+ in aqueous solution; and 
(E) Stern-Volmer plots of Hg2+ in aqueous solution for FM-MOF-1-4 (red) and FM-MOF-4 (blue).

fluorescence quenching was observed as the concentration of Hg2+ increased from 10 to 100 µM, specially, 
the quenching effect of Hg2+ was quantified by the Stern-Volmer equation (I0/I = 1 + Ksv[M]), where I0 and I 
are emission intensity of MOF material before and after reaction with Hg2+, Ksv is the Stern-Volmer 
quenching effect constant of Hg2+, and [M] is the concentration of Hg2+. As shown in Figure 4E, FM-MOF-
1-4 showed a distinguishable Ksv value for Hg2+ at 6260 M−1, which is 2.6 times higher than that of 
FM-MOF-4 at 2410 M-1. It is worth noting that FM-MOF-1 exhibited very weak fluorescence, and no visible 
quenching effect was observed towards Hg2+. With M4 anchored in the pores, the thiol group within MOF 
and the fluorophore part of pyrene can cooperatively interact to significantly improve sensing performance. 
Specifically, the thiol groups of M1 in MOF captured traces of Hg2+, and then the fluorophore pyrene of M4, 
which is in close proximity, responded to mercury ions. This process allows two functional modules to work 
in a cooperative manner. The above representative sample, therefore, demonstrates the feasibility of 
constructing MTV-MOF via partial conversion, which may further enhance the performance of MOFs. In 
principle, two arbitrary functional modules can exist in one host MOFs, thus constructing numerous of 
MTV-MOFs for target applications.

CONCLUSION
We propose a versatile “functional modular assembly” strategy for customizing MOFs, which allows 
installing the desired functional unit into a host material, and the unit can be switched flexibly according to 
different requirements. Functional molecules with connectors could be used as modules to insert into MOF 
structures through single substitution directly. To enrich modular diversity, molecules without connectors 
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could also be modularized by inserting pre-designed convertors into MOFs ahead through tandem 
postsynthetic modifications. Therefore, a wide range of available functional molecules, both with and 
without connectors, could be modularized during such an assembly process. Thus, a series of tailor-made 
FM-MOFs were generated and showed excellent performance toward entirely different fields, covering 
adsorption, catalysis, fluorescent sensing, electrochemistry, and the control of surface wettability. Moreover, 
the functional units on our FM-MOFs can be freely switched via full interconversion. Interestingly, we also 
found that two functional modules could coexist in one host matrix through partial conversion, opening up 
the possibility to construct multivariate MOFs (MTV-MOFs). Our strategy, therefore, provides a versatile 
and simple route for the rapid targeting customization of functional MOFs according to diverse 
applications, achieving the goals of multi-modules, multi-objectives, switchable units, and interfunctional 
cooperation for FM-MOFs.
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