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Abstract
The extreme nonlinearity of robotic systems renders the control design step harder. The consideration of adaptive 
control in robotic manipulation started in the 1970s. However, in the presence of bounded disturbances, the 
limitations of adaptive control rise considerably, which led researchers to exploit some “algorithm modifications”. 
Unfortunately, these modifications often require a priori knowledge of bounds on the parameters and the 
perturbations and noise. In the 1990s, the field of Artificial Neural Networks was hugely investigated in general, and 
for control of dynamical systems in particular. Several types of Neural Networks (NNs) appear to be promising 
candidates for control system applications. In robotics, it all boils down to making the actuator perform the desired 
action. While purely control-based robots use the system model to define their input-output relations, Artificial 
Intelligence (AI)-based robots may or may not use the system model and rather manipulate the robot based on the 
experience they have with the system while training or possibly enhance it in real-time as well. In this paper, after 
discussing the drawbacks of adaptive control with bounded disturbances and the proposed modifications to 
overcome these limitations, we focus on presenting the work that implemented AI in nonlinear dynamical systems 
and particularly in robotics. We cite some work that targeted the inverted pendulum control problem using NNs. 
Finally, we emphasize the previous research concerning RL and Deep RL-based control problems and their 
implementation in robotics manipulation, while highlighting some of their major drawbacks in the field.

Keywords: Adaptive control, deep reinforcement learning, manipulators, neural networks, reinforcement learning, 
robotics

https://creativecommons.org/licenses/by/4.0/
https://www.intellrobot.com/
https://dx.doi.org/10.20517/ir.2021.19


Page 38                                                            Harib et al. Intell Robot 2022;2(1):37-71 https://dx.doi.org/10.20517/ir.2021.19

1. INTRODUCTION
By running a numerical model of a robotic mechanism and its interactions with surroundings, one can 
define a control algorithm that delivers torque (input) signals to actuators, and that is how a mechanism is 
able to anticipate the movement. Since robotic systems are extremely nonlinear, the control design is usually 
a hard step. Figure 1 illustrates a simplified representation of a two-link robot manipulator. Given a system 
of (dynamic) equation of a robotic system, it contains variables that change when the robot is in motion, 
which alters the equation mid-task. In this case, a traditional control technique will have to divide the 
nonlinear mechanism into linear subsystems, which are reasonable for low-speed actions; however, with a 
high-speed system, their efficacy becomes close to none. For these reasons, adaptive control strategies were 
first considered.

The system defined by a robot and its controller is complete. Since reconfigurations of the robotic 
mechanism are needed due to the functional requirements changes, the controller has to adapt to these 
reconfigurations. In comparison to a non-adaptive control, the adaptive control is able to function without 
relying on the prior data from the system, since it constantly changes and adjusts to the altered states. That 
is specifically what makes adaptive control “almost perfect” for systems with unpredictable surroundings, 
with many probable interferences that could change the system parameters anytime.

In the early years, there were many interests in research and books about the adaptive control[1-5] that 
considered continuous-time systems in most cases. Since 1970, researchers have started dealing with the 
realization of adaptive control in digital systems. Multiple surveys[6-8] show that the consideration of 
adaptive control systems with discrete-time signals has been around for a while. Many applications of the 
general adaptive control have been made afterward. There are two fundamental approaches within the 
adaptive control theory. The first approach is called Learning Model Adaptive Control, where we find the 
well-known self-tuning adaptive control technique. This approach consists of an improved model of the 
plant obtained by on-line parameter estimation techniques, and then used in the feedback control. The 
second approach is called Model Reference Adaptive Control (MRAC). In this case, the controller is 
adjusted so that the behaviors of the closed-loop system and the preselected model match according to some 
criterion[9].

Due to the limitations of adaptive control when it comes to bounded disturbances, many researchers turned 
to “Algorithm Modification” approaches in the 1980s. Typically, these approaches alter least squares 
adaptation by putting bounds on the error, the parameters, or employing a first order modification of the 
least squares type of adaptation algorithm. When the observed error is not attributable to an error in the 
parameter estimations, these strategies effectively turn off or limit the effects of parameter adaptation. The 
Algorithm Modification techniques essentially perform the same function as the input-output rule-based 
approaches, but they attempt to have the adaptation algorithm monitor its own level of certainty. The 
second section of this paper will present more details about the most famous modifications among control 
researchers, such as Dead-zone modification, σ-modification, and ϵ-modification. Unfortunately, these 
modifications often require a priori knowledge of bounds on the parameters and the perturbations and 
noise[10]. Furthermore, they often improve robustness at the expense of performance.

In a control engineering sense, AI and classical control-based approaches are just different sides of the same 
coin. Therefore, the limitation of Adaptive control has driven many researchers to consider AI-based 
controllers. In the 1990s, the field of neural networks was vastly investigated in general, and for control of 
dynamical systems in particular. The control problem can be formulated as a machine learning (ML) 
problem, and that is how ML can be mixed with control theory. One of the fundamentally new approaches 
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Figure 1. Simple schematic of a two-link robot manipulator.

is the PILCO approach[11].

Artificial Neural Networks (ANNs) have been explored for a long time in the hopes of obtaining human-
like performance in speech and image processing. Several types of Neural Networks (NNs) appear to be 
promising candidates for control system applications. Multilayer NNs (MLNs), recurrent NNs (RNNs), and 
the cerebellar model articulation controller (CMAC) are examples of these. The decision of the NN to 
employ and which training technique to utilize is crucial, and it changes according to the application. The 
type of NNs most commonly used in control systems is the feedforward MLNs, where no information is fed 
back during operation. There is, however, feedback information available during training. Typically, 
supervised learning methods, where the neural network is trained to learn input-output patterns presented 
to it, are used. Most often, versions of the backpropagation (BP) algorithm are used to adjust the NN’s 
weights during training. The feedforward MLNs are the most often employed NNs in control systems since 
no information is fed back during operation. During training, however, there is feedback information 
accessible. In most cases, supervised learning methods are utilized, in which the NN is taught to learn input-
output patterns that are provided to it. During training, variants of the BP algorithm are frequently 
employed to change the NN weights. More details about NNs, for dynamical systems in general and for 
robotics in particular, are discussed in section 3 of this work.

In robotics, it all boils down to making the actuator perform the desired action. The basics of control 
systems tell us that the transfer function decides the relationship between the output and the input given the 
system or plant. While purely control-based robots use the system model to define their input-output 
relations, AI-based robots may or may not use the system model and rather manipulate the robot based on 
the experience they have with the system while training or possibly enhance it in real-time as well.

Reinforcement learning (RL) is a type of experience-based learning that may be used in robotics when on-
line learning without knowledge of the environment is necessary. The controller may learn which of its 
possible actions will result in the greatest performance for a particular job for each of its states. If the mobile 
robot collides with an obstacle, for example, it will learn that this is a poor action, but if it achieves the 
objective, it will learn that this is a positive activity. Reinforcement or reward is the term for such contextual 
feedback. The goal of the controller is to maximize its predicted future rewards for state-action pairings, 
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which are represented by action values. Q-learning is a popular type of RL in which the best policy is 
learned implicitly as a Q-function. There have been several publications on the use of RL in robotic systems.

This review is organized into 3 sections besides the present introductory chapter and a concluding section. 
In section 2, we talk about adaptive control limitations for nonlinear systems and introduce the probable 
drawbacks in the presence of disturbances. We also present the main modifications proposed in the 1980s to 
overcome these limitations. Section 3 will focus on presenting the work that implemented NNs in nonlinear 
dynamical systems and particularly in robotics, while we cite some work that targeted the inverted 
pendulum control problem using NNs. Finally, section 4 emphasizes the previous research concerning RL 
and Deep RL (DRL) based control problems and their implementation in robotics manipulation, while 
highlighting some of their major drawbacks in the field.

2. ADAPTIVE CONTROL LIMITATIONS - BOUNDED DISTURBANCES
Given a system/plant with an uncertainty set, it is clear that the control objective will be intuitively 
achievable through either identification, robust control, or a combination of both as in adaptation. The 
identification is the capability to acquire information in reducing uncertainty. This problem 
characterization had seen some rigorous analysis over a long period of time and can become very 
challenging. In 2001, Wang and Zhang[12] explored some fundamental limitations of robust and adaptive 
control by employing a basic first-order linear time-varying system as a vehicle. One can notice that robust 
control cannot deal with much uncertainty, while the use of adaptive control shows a much better capability 
of dealing with uncertain parameters and providing better robustness. However, adaptive control requires 
additional information on parameter evolution and is fundamentally limited to slowly time-varying 
systems. Furthermore, adaptation is not capable of achieving proximity to the nominal performance when 
under near-zero variation rates.

2.1. Problem statement
The design of adaptive control laws is always under the assumption that system dynamics are exactly 
specified by models. Hence, when the true plant dynamics is not perfectly described by any model, as 
expected from a practice point of view, one can only question the real behavior of the control. The robust 
stability, required for any adaptive control to achieve practical applicability of the algorithms, can be 
provided when only the modeling error is sufficiently “small”. Unfortunately, stability alone cannot 
guarantee robustness, since the modeling error appears as a disturbance and usually causes divergence of 
the adaptive process.

While one of the fundamental fields of application of adaptive control is in systems with unknown time-
varying parameters, the algorithms have been proved robust, in the presence of noise and bounded 
disturbances, only for systems with constant parameters[13]. Ideally, when there are no disturbances or noise 
and when parameters are constant, adaptation shows smooth convergence and stability properties. On the 
other hand, the adaptive laws are not robust in the presence of bounded disturbances, noise and time-
varying parameters.

In order to mathematically state the problem of non-robustness of adaptive control to bounded 
disturbances, let us start by considering a MIMO system in the form[14,15],

a
图章
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where ξ(t) ∈ Rn is a bounded time-dependant disturbance, x ∈ Rn is the extended system state vector, y ∈ 
Rn is the controlled system output, u ∈ Rm is the control input and Ψ ∈ RN is the known N-dimensional 
regressor vector. We assume (Aref, B, Bref, Cref) are known and Aref is Hurwitz. ycmd ∈ Rm in this case is a 
bounded command for y. Λ ∈ Rm×m is a diagonal positive definite matrix and Κ ∈ RN×m is a constant matrix, 
where both matrices represent the matched uncertainties of the system. In addition, we assume that,

and that the disturbance upper bound ξmax ≥ 0 is known and constant.

The control goal is bounded tracking of the reference model dynamics,

driven by a bounded time-dependant command ycmd ∈ Rm.

Based on Equation (1), the control input is selected as,

where K ∈ RN×m is the matrix of adaptive parameters. If we substitute Equation (4) into Equation (1), we 
get,

where,

is the matrix of estimation errors. The tracking error is e = x - xref. Subtracting the reference model dynamics 
in Equation (3) from that of Equation (1) yields the tracking error dynamics,

The Lyapunov function candidate is selected,
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where ΓK = ΓK
T > 0 represents constant rates of adaptation, and P = PT > 0 is the unique symmetric positive 

definite solution of the algebraic Lyapunov equation,

with Q = QT > 0. The time derivative of V, along the trajectories of Equation (7),

Applying the trace identity,

yields,

Using the following adaptive law yields,

then,

and, consequently, V < 0 outside of the set,

Hence, trajectories [e(t),ΔK(t)], of the error dynamics in Equation (7) coupled with the adaptive law in 
Equation (13), enter the set E0 in finite time and stay there for all future times. However, the set E0 is not 
compact in the (e,ΔK) space. Moreover, it is unbounded since ΔK is not restricted. Inside the set E0, V can 
become positive and consequently, the parameter errors can grow unbounded, even though the tracking 
error norm remains less then e0 at all times. This phenomenon is caused by the disturbance term ξ(t). It 
shows that the adaptive law in Equation (13) is not robust to bounded disturbances, no matter how small 
the latter is.

In the 1980s, several studies analyzed the stability of adaptive control systems and many of them 
concentrated on linear disturbance-free systems[16-20]. The results, however, are not completely satisfactory, 
since they do not consider the cases where disturbances are present, which could completely change the 
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efficiency of the control system, even when very small, leading to instability. In the years that followed, there 
have been many attempts to overcome the limitations of adaptive control in the presence of bounded 
disturbances. In these published papers[21-25], it is shown that unmodelled dynamics or even very small 
bounded disturbances can cause instability in most of the adaptive control algorithms.

Many efforts to design robust adaptive controllers in the case of unknown parameters have consistently 
progressed along two different shapes[26-31]. In the first, the adaptive law is altered so that the overall system 
has bounded solutions in the presence of bounded disturbances. The second relies on the persistent 
excitation of certain relevant signals in the adaptive loop. The next subsections will present some of the 
main “modifications” proposed to enforce robustness with bounded disturbances.

2.2. Dead-zone modification
In many physical devices, the output is zero until the magnitude of the input exceeds a certain value. Such 
an input-output relation is called a dead-zone[32]. In a first approach to prevent instability of the adaptive 
process in the presence of bounded external disturbances, Egardt[26] introduced a modification of the law so 
that adaptation takes place when the identification error exceeds a certain threshold. The term dead-zone 
was first proposed by Narendra and Peterson[18] in 1980, where the adaptation process stops when the norm 
of the state error vector becomes smaller than a prescribed value. In 1980, the study was initiated by 
Narendra to determine an adaptive control law that ensures the boundedness of all signals in the presence 
of bounded disturbances, in the case of continuous systems. In the study of Peterson and Narendra[30], they 
highlight the cruciality of the proper choice of the dead zone for establishing global stability in the presence 
of an external disturbance. A larger dead zone implies that adaptation will take place in shorter periods of 
time, which also means larger parameter errors and larger output. One of the assumptions made in this 
paper is that a bound of the disturbance can be determined even though the plant parameters are unknown. 
The adaptive law shall consider that the module of the augmented error is not greater than the bound plus 
an arbitrary positive constant. Hence, the only knowledge needed to calculate the size of the dead zone is 
the bound of the disturbance, which can be computed[30]. It is also worth noting that no prior knowledge of 
the zeros of the plant’s transfer function is needed to find the bound.

Samson[28] presented a brief study in 1983 based on all his previous works and the analysis of Egardt in his 
book. Although his paper was only concerned with the stability analysis and not the convergence of the 
adaptive control to an optimal state, he was able to efficiently introduce a new attempt to use the possible 
statistical properties of the bounded disturbances. The three properties P1-P3 should be verified by the 
identification algorithm and are similar to the ones demanded for the disturbance-free cases, but less 
restrictive. The first property states that the identified vector has to be uniformly bounded, which prevents 
the system from diverging faster than exponentially. The second property ensures that the prediction error 
remains relatively small, which indicates that the “adaptive observer” transfer function is very similar to that 
of the system. Finally, the third property allows the control of the time-varying adaptive observer of the 
system.

In 1983, a modified dead-zone technique was proposed in Bunich’s research[33] and was widely used. This 
modification permits a size reduction of the residual set for the error, hence, simplifying the convergence 
proof. The drawback is the necessary, yet restrictive, knowledge of a bound on the disturbance in order to 
appropriately determine the size of the dead-zone.

The work of Peterson and Narendra invigorated a new study by Sastry[34] where he examined the robustness 
aspects of MRAC. Sastry used the same approach to show that a suitably chosen dead-zone can also stabilize 
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the adaptive system against the effects of unmodelled dynamics. Though, the error between the plant and 
the model output does not converge to zero but rather to a magnitude less than the size of the dead-zone. In 
other terms, no adaptation takes place when the system is unable to distinguish between the error signal and 
the disturbance.

The issue in the dead-zone modification is that it is not Lipschitz, which may cause high-frequency 
oscillations and other undesirable effects when the tracking error is at or near the dead-zone boundary. In 
1986, Slotine and Coetsee[35] proposed a “smoother” version of the dead-zone modification. Unfortunately, 
we were not able to get a hold of a copy of this paper, but the major idea was explained in his book in 
1990[32].

2.3. σ-modification
The dead-zone modification assumes a priori knowledge of an upper bound for the system disturbance. On 
the other hand, the σ-modification scheme does not require any prior information about bounds for the 
disturbances. This modification was proposed by Ioannou and Kokotovic[36] in 1983, which Ioannou 
referred to later as “fixed σ-modification”. The modification basically adds damping to the ideal adaptive 
law. They introduced the modification by adding a decay term -σΓθ to the disturbance-free integral adaptive 
law, where σ is a positive scalar to be chosen by the designer. The stability properties with the modification 
were established based on the existence of a positive constant p such that, for σ > p, the solutions for the 
error and adaptive law equations are bounded for any bounded initial condition. A conservative value of σ 
has to be chosen in order to guarantee σ > p. It was also shown that the modification yields the local stability 
of an MRAC scheme when the plant is a linear system of relative degree one and has unmodeled parasitics.

However, even though the robustness achievement is done smoothly and in a simpler way with the 
σ-modification scheme, there is thepotential destruction of some of the convergence properties, since there 
is no more asymptotic convergence and the fine tracking error is confined within a bounded region. 
Consequently, many additional modifications have been suggested later, motivated by the aforementioned 
drawback of the σ-modification. In 1986, Ioannou and Tsakalis[37] proposed the “switching σ-modification”. 
In contrast to Ioannou’s earlier work[38,39], the switching of σ from 0 to σ0 is modified so that σ is a continuous 
function of |θ(t)| [Equation (16)], since the previous modification choices forced the adaptive law to be 
discontinuous, which might not guarantee the existence of a solution and would probably cause oscillations 
on the switching surface during implementation. Hence, the continuous switching, as shown in Figure 2, 
replaces the discontinuous one and is defined in Equation (16),

where M0 > 0, σ0 > 0 are design constants and M0 is chosen to be large enough so that M0 > |θ*|.

In 1992, Tsakalis[40] employed the σ-modification to target the adaptive control problem of a linear, time-
varying SISO plant. The signal boundedness for adaptive laws was guaranteed using the σ-modification, 
normalization and a sufficient condition. The condition relates the speed and the range of the plant 
parameter variations with the σ value and simplifies the selection of the design parameters in the adaptive 
law.
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Figure 2. Switching σ-modification (continuous).

In a more recent study, He et al.[41] opted to revisit the fundamental σ-modification scheme and propose a 
qualitative analysis for all the scenarios where this modification can lead to perfect tracking, and where it 
can allow proper modification of the adaptive laws. The analysis method pre-supposes the existence of a 
Lyapunov function for an extended system, as shown in the reference[42]. The efficacy of the proposed 
analysis was demonstrated in a Robust adaptive control system in order to detect its global asymptotic 
convergence under the fixed σ-modification scheme. When it comes to simulation results, the system shows 
asymptotic convergence of its trajectories without the modification; however, it may lose its asymptotic 
stability when the feedback gain and the modification gain are not well designed when using the 
modification. The recovery of the global asymptotic convergence is primarily dependant on the proper 
design of both gains, as shown in their last simulation.

2.4. ϵ-modification
The downside of the σ-modification is that when the tracking error becomes small enough, the adaptive 
parameters have an inclination to revert to the origin, which undoes the gain values that caused the tracking 
error to become small in the first place. In order to overcome this undesirable effect, Narendra and 
Annaswamy[43] developed the ϵ-modification. The suggested modification was motivated by that given in the 
work of Ioannou and Kokotovic[36], which similarly guarantees bounded solutions in the presence of 
bounded disturbances when the reference input is not persistently exciting, and needs less prior information 
regarding plant and disturbance. However, the catching point comes when the reference input is 
persistently exciting and has a sufficiently large amplitude. In this case, as we mentioned earlier, the origin 
of the error equations is exponentially stable, unlike that in Ioannou’s σ-modification. The new adaptive law 
replaces the σ with a term proportional to the magnitude of the output error, called ϵ (or e1 in the work of 
Narendra and Annaswamy[43]).

Ideally, let’s consider the first order plant described with Equation (17),
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where ap is an unknown constant. The reference model is defined in Equation (18),

where am > 0 and r is a bounded piecewise continuous function. Equation (19) shows how the aim of the 
adaptive control is to choose the control input, u, such that the output of the plant approaches that of the 
model,

where θ is the control parameter. Therefore, we deduct the error equations in Equation (20),

and hence, based on Equation (21), the proposed adaptive law can be defined,

where ϵ is playing a double role since it attempts to decrease the magnitude of the output error while 
keeping the parameter θ or the parameter error φ bounded. The choice of the Lyapunov function, in 
Equation (22), gives the time derivative of V,

If we define a set D,

we then can deduct that V ≤ 0 inside the set D. The modification, which is synthesized by the additional 
term -|ϵ|θ in the adaptive law, shows that the set D is compact, which allows us to apply LaSalle’s theorem[44] 
and prove that all solutions of the error equations are bounded.

a
图章
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If we distinguish between the three possible cases based on the reference input states: null, constant or 
persistently excited, and as mentioned earlier, the third case’s application highlights the difference between 
the proposed modification and the aforementioned σ-modification. When the σ-modification is used to 
adjust the control parameter θ, in the presence of the disturbance v, we can set the error equations as in 
Equation (23),

where it has been shown that three stable equilibrium states exist in case xm = 0, none of them is the origin, 
and has a single equilibrium state whose distance from the origin decreases as the amplitude of xm increases, 
and that is in case xm is a constant. Which clearly highlights the addition of the ϵ-modification.

2.5. Summary
Basically, the approaches discussed above reduce the effects of parameter adaptation when the measure 
error is not due to an error in the parameter estimates. They contribute to either parameter error, noise 
error, high-frequency unmodelled dynamics error, or disturbances, which consist of anything undescribed 
by the three previous groups[45]. A brief comparison of all the aforementioned modification techniques is 
shown in Table 1.

Considering the robustness problem, one can see that the disturbance is generated internally, which makes 
it dependable in the actual plant’s input-output signals. Particularly, the disturbance will grow unboundedly 
if the adaptive system is unstable and the input-output signals are growing without bound. Videlicet, the 
stability problem becomes internal and signal dependant. Thus, the boundedness of the disturbance should 
not be presumed, which proves that, despite the intrinsic results shown in the previous literature, the 
aforementioned approaches do not necessarily solve the robustness problem in the presence of bounded 
disturbances[46].

Over the years, the adaptive controllers have proven themselves effective, especially in the process that can 
be modeled linearly with slowly time-varying parameters relative to the system’s dynamics. The 1980s were 
the peak of theoretical research on this case. On the other hand, many practical examples can be found in 
these research[8,47-52].

An overview of some practical examples of adaptive control applications in two different fields, thermal 
exchange and robotics, is given in Table 2[53-57]. We would also like to refer the readers to a very concise 
survey written by Åström[8] in 1983 for more practical examples of the applications of adaptive control. In 
addition, adaptive controllers are extremely practical and fruitful when it comes to servo systems that have 
large disturbances, like load changes, or uncertainties, like frictions, and that have measurable states. The 
number one practical field in that era was robotics[53-57].

Obviously, adaptive controllers are not the “perfect” solution to all control problems. For instance, they do 
not provide stability for systems where parameter dynamics are at least the same magnitude as the system’s 
dynamics. The controller robustness can be improved by employing artificial intelligence (AI) techniques, 
such as fuzzy logic and neural networks[58-60]. Essentially, these methods approximate a nonlinear function 
and provide a good representation of the nonlinear unknown plant[61], although it is typically used as a 
model-free controller. The plant is treated as a “black box”, with input and output data gathered and trained 
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Table 1. Stability analysis of each modification technique

Dead-zone modification σ-modification ϵ-modification

• Developed based on adaptation 
hibernation principle.

• Adding a damping term to the 
adaptation law: 
K = ΓK(ΨeTPB - σK), where σ > 0

• Adding an error dependent leakage term to the law: 
K = -ΓKeTBP(Ψ - ϵK), where ϵ > 0

• Stops adaptation when the error 
touches the boundary of a compact 
set βd: 
βd = {(e,ΔKT), e∈Rn, ΔK∈RN×m ||e|| ≤ 
ed}

• Takes different forms depending on the 
choice of sigma

• Reduces the unbounded behavior of the adaptive law

• Adaptation will be disabled once 
reaches ed 
• Stability is guaranteed outside of βd 
• The adaptive law is defined in both 
conditions as:

• The Lyapunov function derivative is 
negative under some conditions that 
define a compact set βσ: 
βσ = {(e,ΔKT), e∈Rn, ΔK∈RN×m ||e|| ≤ eσ ∧ 
(||ΔK||F ≤ ΔKσ)}

• Following the same argument as in sigma modification: the 
Lyapunov function derivative is negative under certain 
conditions that define a compact set βϵ: 
βϵ = {(e,ΔKT), e∈Rn, ΔK∈RN×m ||e|| ≤ eϵ ∧ (||ΔK||F ≤ ΔKϵ)}

• Error UUB is guaranteed and 
boundedness of all adaptive gains is also 
guaranteed

• Error UUB is guaranteed and boundedness of all adaptive 
gains is also guaranteed

Drawbacks: a prior knowledge about 
the upper bound of the disturbance is 
required

Drawbacks: the damping term addition 
may not be convenient in some situations

• The upper bound of the set  is determined by the upper 
bound of the disturbance

Table 2. Practical examples of adaptive control implementation

Approach Employed by…

Robotic manipulators

MRAC Dubowsky and DesForges[53] (1979) and Nicosia and Tomei[55] (1984)

STAC Koivo and Guo[56] (1983)

Adaptive algorithm Dubowsky[54] (1981) and Horowitz and Tomizuka[57] (1986)

Other applications

MRAC Harrell et al.[49] (1987) and Davidson[47] (2021)

STAC Davison et al.[48] (1980) and Harris and Billings[52] (1981)

Direct AC Zhang and Tomizuka[50] (1985)

Function Blocks Lukas and Kaya[51] (1983)

MRACL Model Reference Adaptive Control; STAC: self-tuning adaptive control.

on. The AI framework addresses the plant’s model after the training phase, and can handle the plant with 
practically no need for a mathematical model. It is feasible to build the complete algorithm using AI 
techniques, or to merge the analytical and AI approaches such that some functions are done analytically and 
the remainder are performed using AI techniques[62].

3. NEURAL NETWORKS FOR DYNAMIC SYSTEMS
The sophisticated adaptive control techniques that have been created complement computer technology 
and offer significant potential in the field of applications where systems must be regulated in the face of 
uncertainty. In the 1980s, there was explosive growth in pure and applied research related to NN. As a 
result, MLN and RNN have emerged as key components that have shown to be exceptionally effective in 
pattern recognition and optimization challenges[63-68]. These networks may be thought of as components that 
can be employed efficiently in complicated nonlinear systems from a system-theoretic standpoint.

The topic of regulating an unknown nonlinear dynamical system has been approached from a variety of 
perspectives, including direct and indirect adaptive control structures, as well as multiple NN models. 
Because NN may arbitrarily simulate static and dynamic, highly nonlinear systems, the unknown system is 
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replaced by a NN model with a known structure but a number of unknown parameters and a modeling 
error component. With regard to the network nonlinearities, the unknown parameters may appear both 
linearly and nonlinearly, changing the original issue into a nonlinear robust adaptive control problem.

3.1. Neural network and the control of dynamic nonlinear systems
The characteristic of neural networks is that they are quite parallel. They can speed up computations and 
assist in the solving of issues that need much processing. Since NNs have nonlinear representations and can 
respond to changes in the environment, they easily reflect physical conditions like industrial processes and 
their control, whereas precise mathematical models are harder to construct.

One of the few theoretical frameworks for employing NNs for the controllability and stability of dynamical 
systems has been established by Levin and Narendra[69]. Their research is limited to feedforward MLNs with 
dynamic BP and nonlinear systems with full state information access. Figure 3 presents the proposed 
architecture of the NNs. Equation (24) considers a system at a discrete-time index k,

where x(k) ∈ χ ⊂ Rn, u(k) ∈ U ⊂ Rr and f(0,0) = 0 so that x = 0 is an equilibrium. Conditions are given, in 
Equation (25), under which the two following NNs can be trained to feedback linearize and stabilize the 
system.

The results are extended to non-feedback linearizable systems. If the controllability matrix around the 
origin has a full rank, a methodology and conditions for training a single NN to directly stabilize the system 
around the origin have been devised. Narendra and Parthasarathy[70] use NNs to create various 
identification and controller structures. Although the MLNs represent static nonlinear maps and the RNNs 
represent nonlinear dynamic feedback systems, they suggest that the feedforward MLNs and RNNs are 
comparable. They describe four network models of varying complexity for identifying and controlling 
nonlinear dynamical systems using basic examples.

Sontag proposed an article where he tried to explore the capabilities and the ultimate limitations of 
alternative NN architectures[71]. He suggests that NNs with two hidden layers may be used to stabilize 
nonlinear systems in general. Intuitively, the conclusion contradicts NNs approximation theories, which 
claim that single hidden layer NNs are universal approximators. Sontag’s solutions are based on the 
description of the control issue as an inverse kinematics problem rather than an approximation problem.

In 1990, Barto[72] drew an interesting parallel between connectionist learning approaches and those 
investigated in the well-established field of classical adaptive control. When utilizing NNs to address a 
parameter estimate problem, the representations are frequently chosen based on how nervous systems 
represent information. In contrast, in a traditional method, issue representation options are made based on 
the physics of the problem. As opposed to conventional methods, a connectionist approach is dependent on 
the structure of the network and the correlation between the connectionist weights. A traditional controller 
may readily include a priori information; however, in NNs, it is often an input-output connection. In both 
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Figure 3. Architecture of the proposed NNs in the work of Levin and Narendra[69]. NNs: Neural Networks.

techniques, performance may be assessed using cost functions such as least mean squared error.  All of the 
training data is available at the same time with off-line approaches. However, with on-line approaches, the 
required feature is continuous learning, and as a result, the methods must be extremely efficient in order to 
keep up with the changing events over time.

Adaptive NNs have recently been used by a growing number of academics and researchers to construct 
acceptable control rules for nonlinear systems. An overview of the primarymost recent literature that 
implemented adaptive NNs-based techniques is discussed in Table 3[73-82].

3.2. Inverted pendulum
Many researchers have studied learning control using the inverted pendulum problem. The canonical 
underactuated system, called the cart-pole system, is illustrated in Figure 4. Because deriving the dynamics 
is relatively simple, it is considered a basic control issue, yet it still hides some underlying complexity owing 
to its underactuated character. The multiple obstacles that must be addressed to properly regulate such 
extremely complex nonlinear unstable systems include severe nonlinearities, variable operating 
circumstances, structured and unstructured dynamical uncertainties, and external disturbances. The 
purpose of the control is to balance the pole by moving the cart, which has a restricted range of movements. 
We distinguish between the position of the cart h and its velocity h, and the angle of the pole θ with its 
angular velocity θ.

In 1983, Barto et al.[83] showed how a system consisting of two neuronlike adaptive elements, associative 
search element (ASE) and adaptive critic element (ACE), can solve a difficult learning control problem such 
as the cart-pole system. Their work was based on the addition of a single ACE to the ASE developed by 
Michie and Chambers in the works of Michie and Chambers[84,85]. They have partitioned the state space into 
162 boxes. Their simulations revealed that the ASE/ACE system outperformed the boxes system in terms of 
run time. The system was more likely to solve the problem before it had 100 failures, but the boxes system 
was less likely to do so. The ASE/ACE system’s high performance was nearly completely owing to the ACE’s 
provision of reinforcement throughout the trials. Learning occurs only upon failure with box systems and 
ASEs without an ACE, which happens less frequently as learning progresses. An ASE can get input on each 
time step with the ACE in place. The system attempts to access some areas of the state space and avoids 
others as a result of the learning achieved by this input.

Anderson[86] built on the work of Barto et al.[83] by using a variant of the common error BP algorithm to two-
layered networks that learn to balance the pendulum given the inverted pendulum’s real state variables as 
input. Two years later[87], he summarized both aforementioned works by discussing the neural network 
structures and learning methods from a functional viewpoint and by presenting the experimental results. He 
described NN learning techniques, which use two functions to learn how to construct action sequences. The 
first is an action function, which converts the current state into control actions. The second is an evaluation 
function, which converts the present state into an assessment of that state. There were two sorts of networks 
that emerged: “action and evaluation” networks. This is an adaptive critic architecture version
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Table 3. Different adaptive NN-based controls in the recent years

Research Method/approach Solved problem

1. Nonaffine nonlinear systems

Dai et al.[73] Obtaining the implicit desired control input (IDCI), and use of 
NNs to approximate it

Learning from adaptive NN-based control for a class of 
nonaffine nonlinear systems in uncertain dynamic 
environments

Chen et al.[74] The unknown functions are approximated by using the 
property of the fuzzy-neural control

Adaptive fuzzy-NN (FNN) for a class of nonlinear 
stochastic systems with unknown functions and a nonaffine 
pure-feedback form

2. Tracking control

Dai et al.[75] Radial basis function NNs (RBF-NNs) to learn the unknown 
dynamics, and adaptive neural control to guarantee the 
ultimate boundedness (UB)

Stabilization of the tracking control problem of a marine 
surface vessel with unknown dynamics

Li et al.[76] NNs to approximate the unknown functions, and Barrier 
Lyapunov function (BLF) for nonstrict-feedback stochastic 
nonlinear system

Adaptive tracking control for a category of SISO stochastic 
nonlinear systems with dead zone and output constraint

Cheng et al.[77] Use of NN-based inversion-free controller, and construction of 
dynamic model using feedforward MLNs

Displacement tracking control of piezo-electric actuators 
(PEAs)

Ren et al.[78] Use of adaptive neural control, and inclusion of σ-modification 
to the adaptation law to establish stability

Tracking control problem of unknown nonlinear systems in 
pure-feedback form with the generalized P-I hysteresis 
input

3. Unknown model/direction

Luo et al.[79] Implementing three NNs to approximate the value function, 
control and disturbance policies, respectively

Date-driven H∞ control for nonlinear distributed parameter 
systems with a completely unknown model

Liu et al.[80] Two types of BLFs are used to design the controller and 
analyze the stability

Stabilize a class of nonlinear systems with the full state 
constraints and the unknown control direction

4. Backstepping design

Li et al.[81] Adaptive backstepping control and RBF-NNs. Overcoming the robustness issues of backstepping design 
and its uncertainty.

5. Discrete-time systems

Zhang et al.[82] Iterative adaptive dynamic programming algorithm, with two 
NNs to approximate the costate function and the 
corresponding control law

Solving the optimal control problem for discrete-time 
systems with control constraints

NNs: Neural Networks.

In 1991, Lin and Kim integrated the CMAC into the self-learning control scheme that was based on the 
work of Lin and Kim[88]. The CMAC model was originally proposed by Albus[89-92] and it was based on 
models of human memory and neuromuscular control. The CMAC-based technique in the work of Lin and 
Kim[88] is tested using the inverted pendulum problem, and the results are compared to those of 
Barto et al.[83] and Anderson[87]. The technique has the highest learning speed due to its capability of 
generalization and good learning behavior. Furthermore, the memory size can be reduced compared to the 
box-based system. A summarized timeline of the above literature, where NN-based control was 
implemented to balance the inverted pendulum, is presented in Figure 5.

Many control laws for inverted pendulums have been presented in those research work[93-95], including 
classical, robust, and adaptive control laws, but they all take structured parametric uncertainty into account. 
In 2009, Chaoui et al.[96] proposed an ANN based adaptive control strategy for inverted pendulums that 
accomplishes asymptotic motion tracking and posture control with unknown dynamics. Two neural 
networks ANNx and ANNθ are designed to control the motion along the x axis and the pendulum posture 
with unknown dynamics. Figure 6 shows the block diagram of the proposed system.

Three experiments are carried out to evaluate the performance of the proposed controller. The velocity and 
posture of the pendulum progressively decrease to zero in the first experiment. The proposed adaptive 
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Figure 4. The Cart-pole scheme.

Figure 5. Timeline scheme of the works that kickstarted the use of NNs to control the inverted pendulum. NNs: Neural Networks.

control, on the other hand, produces a smooth control signal. The controllers also deal with friction 
nonlinearities and accomplish quick error convergence and tracking. The second experiment introduces a 
starting posture position to test the controller’s capacity to correct for a non-zero position error. Posture 
control takes precedence over motion tracking, as posture is critical for such systems. The purpose of the 
third experiment is to demonstrate the modularity of the proposed controller in terms of adjusting for 
external disturbances. The suggested controller’s design does not clearly model the induced external 
disturbance, which generally has a considerable impact on the positioning system’s accuracy and generates 
unacceptably high-frequency oscillations. The controller is able to deal with the unexpected force change 
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Figure 6. Block diagram of the ANN-based adaptive control scheme[96]. ANN: Artificial Neural Network.

successfully. Furthermore, the motion and posture errors are kept to a minimum, resulting in a smooth 
control signal.

3.3. Applications for robotic manipulators
There has been great interest in universal controllers that mimic the functions of human processes to learn 
about the systems they are controlling on-line so that performance improves automatically. NN-based 
controllers are derived for robot manipulators in a variety of applications, including position control, force 
control, link flexibility stabilization and the management of high-frequency joint and motor dynamics. The 
nature of joint torques must be determined for the end effector to follow the required trajectory as quickly 
and accurately as feasible, which is a common difficulty for robot manipulators. Both parametric and 
structural uncertainties necessitate adaptive control. Parametric uncertainties originate from a lack of 
accurate information about the manipulator’s mass characteristics, unknown loads, and load location 
uncertainty, among other things. Structural uncertainties are a result of the presence of high-frequency 
unmodeled dynamics, resonant modes, and other structural reservations.

The late 1980s and early 1990s were booming years for both NNs and robotic manipulators research. In this 
era, the literature survey concerning the application of NNs in robotic manipulators is very rich. Thus, we 
direct the readers to some interesting approaches in these studies[97-102] and the references therein.

From 1987 to 1989, Miller et al.[103-107] discuss a broad CMAC learning technique and its application to 
robotic manipulators’ dynamic control. The dynamics do not need to be known in this application. 
Through input and output measurements, the control scheme learns about the process. The findings show 
that when compared to fixed-gain controllers, the CMAC learning control performs better. Also, because 
measured and estimated values must be transformed to discrete form, each variable’s resolution and range 
must be carefully selected, and the number of memory regions handled by each input state in the CMAC 
architecture is the most important design parameter. In another popular approach, Miller et al.[108] used 
CMAC in the real-time control of an industrial robot and other applications. In their network, they utilize 
hundreds of thousands of adjustable weights that, in their experience, converge in a few iterations.
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Huan et al.[109] examine the issue of building robot hand controllers that are device-dependent. Their 
argument for a controller like this is that it would isolate low-level control issues from high-level 
capabilities. They employ a BP algorithm with a single hidden layer comprised of four neurons to achieve 
this goal. The inputs are determined by the object’s size, while the outputs are determined by the grab 
modes. In this way, they have demonstrated how to build a p-g table using simulation. Another BP 
architecture was used by Wang and Yeh[110] to control a robot model which simulates PUMA560. A network 
to simulate the plant and a controller network make up their self-adaptive neural controller (SANC). The 
plant model is trained either off-line with mathematical model outputs or on-line with plant outputs 
through excitations. The control network is modified by working in series with the plant network during 
the “controlling and adapting” phase. The control network is also trained off-line in a “memorizing phase” 
with data from the adapting phase in a random way, which is another element of this training. This trait, 
according to the authors, aids in overcoming the temporal instability that is inherent with BP. Their 
numerical findings show that the SANC technique produces good trajectory-tracking accuracy.

Up to the early 2000s, the main goal of robotic manipulators designs was to minimize vibration and achieve 
good position accuracy, which led to maximizing stiffness. This high stiffness is achieved by using heavy 
material and a bulky design. As a result, it is demonstrated that heavy rigid manipulators are wasteful in 
terms of power consumption and operational speed. It is necessary to reduce the weight of the arms and 
increase their speed of action in order to boost industrial output. As a result of their light weight, low cost, 
bigger work volume, improved mobility, higher operational speed, power economy, and a wider range of 
applications, flexible-joint manipulators have gotten much attention. Figure 7 shows a representation of a 
flexible joint manipulator model.

Controlling such systems, however, still challenges significant nonlinearities, such as coupling caused by the 
manipulator’s flexibility, changing operating conditions, structured and unstructured dynamical 
uncertainties, and external disturbances. Complex dynamics regulate flexible-joint manipulators[111-114]. This 
emphasizes the need to examine alternate control techniques for these types of manipulator systems in 
order to meet their increasingly stringent design criteria. Many control laws for flexible joints have been 
presented in those studies[115-118] to solely address (structured) parametric uncertainties. The proposed 
controllers need a complete a priori knowledge of the system dynamics. Several adaptive control 
systems[119-121] have been proposed to alleviate this necessity. The majority of these control strategies use 
singular perturbation theory to extend adaptive control theory established for rigid bodies to flexible 
ones[122-125].

Based on all the above reasons, computational intelligence techniques, such as ANNs and fuzzy logic 
controllers, have been credited in a variety of applications as powerful controllers of the types of systems 
that may be subjected to structured and unstructured uncertainties[126,127]. As a result, there have been 
advancements in the field of intelligent control[128,129]. Various neural network models have been used to 
operate flexible-joint manipulators, and the results have been adequate[130]. Chaoui et al.[131,132] developed a 
control strategy inspired by sliding mode control that uses a feedforward-NN to learn the system dynamics. 
Hui et al.[133] proposed a time-delay neuro-fuzzy network. The joint velocity signals were estimated using a 
linear observer in this system, which avoided the need to measure them directly. Subudhi and Morris[134] 
proposed a hybrid architecture that included a NN for controlling the slow dynamic subsystem and an H∞ 
for controlling the rapid dynamic subsystem. Despite its effectiveness, NN-based control systems are still 
unable to incorporate any humanlike experience already obtained about the dynamics of the system in 
question, which is regarded as one of the soft computing approaches’ primary flaws.
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Figure 7. Flexible-joint manipulator model.

Chaoui et al.[135] suggested an ANN-based control technique in 2009, which used ANNs’ learning and 
approximation skills to estimate the system dynamics. The MRAC is made up of feedforward (ANNFF) and 
feedback (ANNFBK) NN-based adaptive controllers. The reference model is built in the same manner as a 
sliding hyperplane in variable structure control, and its output, which may be regarded as a filtered error 
signal, is utilized as an error signal to adjust the ANNFBK’s weights. It comprises a first-order model that 
specifies the required dynamics of the error between the desired and real load locations, as well as between 
the motor and load velocity, in order to maintain internal stability. The ANNFF offers an approximate 
inverse model for the positioning system, while the ANNFBK corrects residual errors, assuring the 
manipulator’s internal stability and rapid controller response.

The feedback’s learning rate is dependent on the load inertia, which is a flaw in this construction. To 
improve the stability region of the NN-based controllers, a supervisor is proposed to modify the learning 
rate of the ANNs. The supervisor also increases the adaptation process’s convergence qualities.

Nowadays, the subject of multiple-arms manipulation highlights some interesting progress in using 
intelligent control approaches. Hou et al.[136] used a dual NN to solve a multicriteria optimization problem 
for coordinated manipulation. Li et al.[137,138] are representatives who operate on several mobile manipulators 
with communication delays. Some promising approaches, such as LMI and fuzzy-NN controls, were used in 
both articles[137,138], to improve motion/force performances, which were crucial in multilateral teleoperation 
applications.
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In 2017, He et al.[139] proposed an Adaptive NN-based controller for a robotic manipulator with time-
varying output constraints. The adaptive NNs were utilized to adjust for the robotic manipulator system's 
uncertain dynamics. The disturbance-observer (DO) is designed to compensate for the influence of an 
unknown disturbance, and asymmetric barrier Lyapunov Functions (BLFs) are used in the control design 
process to avoid violating time-varying output constraints. The effects of system uncertainties are 
successfully corrected, and the system's resilience is increased using the adaptive NN-based controller. The 
NN estimating errors are coupled with the unknown disturbance from people and the environment to form 
a combined disturbance that is then approximated by a DO.

In a recent interesting paper, He et al.[140] attempted to control the vibrations of a flexible robotic 
manipulator in the presence of input dead-zone. The lumped technique is used to discretize the flexible link 
system[141,142]. A weightless linear angular spring and a concentrated point mass are used to partition the 
flexible link into a finite number of spring-mass parts. They design NN controllers with complete state 
feedback and output feedback based on the constructed model. All state variables must be known to provide 
state feedback. An observer is presented to approximate the unknown system state variables in the case of 
control with output feedback. In summary, an overview of the evolution of NNs implementation in robotic 
manipulation is shown in Table 4. Each of these papers has been categorized based on the nature of its 
approach.

3.4. From machine learning to deep learning
ML has transformed various disciplines in the previous several decades, starting in the 1950s. NN is a 
subfield of ML, a subset of AI, and it is this subfield that gave birth to Deep Learning (DL). There are three 
types of DL approaches: supervised, semi-supervised, and unsupervised. There is also a category of learning 
strategy known as RL or DRL, which is commonly considered in the context of semi-supervised or 
unsupervised learning approaches. Figure 8 shows the classification of all the aforementioned categories.

The common-sense principle behind RL is that if an action is followed by a satisfying state of affairs, or an 
improvement in the state of affairs, the inclination to produce that action is enhanced, or in other words 
reinforced. Figure 9 presents a common diagram model of general RL. The origin of RL is well rooted in 
computer science, though similar methods such as adaptive dynamic programming and neuro-dynamic 
programming (NDP)[143] were developed in parallel by researchers and many others from the field of 
optimal control. NDP was nothing but reliance on both concepts of Dynamic-Programming and NN. For 
the 1990’s AI community, NDP was called RL. This is what makes RL one of the major NN approaches to 
learning control[60].

On the other hand, deep models may be thought of as deep-structured ANNs. ANNs were first proposed in 
1947 by Pitts and McCulloch[144]. Many major milestones in perceptrons, BP algorithm, Rectified Linear 
Unit, Max-pooling, dropout, batch normalization, and other areas of study were achieved in the years that 
followed. DL’s current success is due to all of these ongoing algorithmic advancements, as well as the 
appearance of large-scale training data and the rapid development of high-performance parallel computing 
platforms, such as Graphics Processing Units[145]. Figure 10 shows the main types of DL architectures. In 
2016, Liu et al.[146] proposed a detailed survey about DL architectures. Four main deep learning architectures, 
which are restricted Boltzmann machines (RBMs), deep belief networks (DBNs), autoencoder (AE), and 
convolutional neural networks (CNNs), are reviewed.

4. RL/DRL FOR THE CONTROL OF ROBOT MANIPULATION
DRL combines ANN with an RL-based framework to assist software agents in learning how to achieve their 
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Table 4. NN-based control in robotic manipulation - an overview

Approach Employed by…

Backpropagation Elsley[98] (1988), Huan et al.[109] (1988), Karakasoglu and Sundareshan[100] (1990) and Wang and Yeh[110] (1990)

CMAC learning Miller et al.[103-108] (1987-1990)

Adaptive NNs/PG 
table

Huan et al.[109] (1988) and He et al.[139] (2017)

NNs for flexible joints Hui et al.[133] (2002), Gueaieb et al.[128] (2003), Chaoui et al.[131,132] (2004), Subudhi and Morris[134] (2006), 
Chaoui et al.[130] (2006), Chaoui and Gueaieb[126] (2008), He et al.[140] (2017) and Sun et al.[142] (2017)

NNs for multiple arms Hou et al.[136] (2010), Li and Su[137] (2013) and Li et al.[138] (2014)

Feedforward and 
feedback

Chaoui et al.[135] (2009)

RNNs

Hopfield net Xu et al.[101] (1990)

Comparison Wilhelmsen and Cotter[102] (1990)

NNs: Neural Networks; CMAC: cerebellar model articulation controller; RNNs: recurrent NNs.

Figure 8. Classification of AI categories.

objectives. It combines function approximation and goal optimization to map states and actions to the 
rewards they result in. The combination of NN with RL algorithms led to the creation of astounding 
breakthroughs like Deepmind’s AlphaGo, an algorithm that beat the world champions of the Go board 
game[147].

As mentioned earlier, RL is a powerful technique for achieving optimal control in robotic systems. 
Traditional optimal control has the drawback of requiring complete understanding of the system’s 
dynamics. Furthermore, because the design is often done offline, it is unable to deal with the changing 
dynamics of a system during operation, such as service robots that must execute a variety of duties in an 
unstructured and dynamic environment. The first chapter of this paper has shown that adaptive control, on 
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Figure 9. Universal model of RL. RL: Reinforcement learning.

the other hand, is well known for online system identification and control. Adaptive control, on the other 
hand, is not necessarily optimal and may not be appropriate for applications such as humanoid 
robots/service robots, where optimality is essential. Furthermore, robots that will be employed in a human 
setting must be able to learn over time and create the best biomechanical and robotics solutions possible 
while coping with changing dynamics. Optimality in robotics might be defined as the use of the least 
amount of energy or the application of the least amount of force to the environment during physical 
contact. Aspects of safety, such as joint or actuator restrictions, can also be included in the cost function.

4.1. Reinforcement learning for robotic control
The reinforcement learning (RL) domain of robotics differs significantly from the majority of well-studied 
RL benchmark issues. In robotics, assuming that the true state is totally visible and noise-free is typically 
impractical. The learning system will have no way of knowing which state it is in, and even very dissimilar 
states may appear to be quite similar. As a result, RL in robots is frequently represented as a partially 
observed system. Consequently, the learning system must approximate the real state using filters. 
Experience with an actual physical system is time-consuming, costly, and difficult to duplicate. Because each 
trial run is expensive, such applications drive us to concentrate on issues that do not surface as frequently in 
traditional RL benchmark instances. Appropriate approximations of state, policy, value function, and/or 
system dynamics must be introduced in order to learn within a tolerable time period. While real-world 
experience is costly, it can typically not be substituted solely by simulation learning. Even little modeling 
flaws in analytical or learned models of the system might result in significantly divergent behavior, at least 
for highly dynamic jobs. As a result, algorithms must be resistant to under-modeling and uncertainty.

Another issue that arises frequently in robotic RL is generating appropriate reward functions. To cope with 
the expense of real-world experience, rewards that steer the learning system fast to success are required. 
This problem is known as reward shaping, and it requires a significant amount of manual contribution[148]. 
In robotics, defining excellent reward functions necessitates a substantial degree of domain expertise and 
can be difficult in practice.

Not all RL methods are equally appropriate for robotics. Indeed, many of the methods used to solve 
complex issues thus far have been model-based, and robot learning systems frequently use policy search 
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Figure 10. Main DL architectures. (A) Schematic diagram of RBMs; (B) schematic diagram of AEs; (C) schematic diagram of DBNs; (D) 
conceptual structure of CNNs. RBMs: restricted Boltzmann machines; DBNs: deep belief networks; AE: autoencoder; CNNs: 
convolutional neural networks.

methods rather than value function-based approaches. Such design decisions are in stark contrast to maybe 
the majority of early ML research. The papers that follow will discuss several approaches to incorporating 
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RL into robotics and manipulation. Kober et al.[149] conducted a comprehensive review of RL in robotics in 
2013. They provide a reasonably comprehensive overview of “Real” Robotic RL and mention the most 
innovative studies, which are organized by significant findings.

In the last 15 years or so, the use of RL in robots has continuously risen. An overview of the RL-based 
implementation in robots’ control is shown in Table 5[150-172], where each of the undermentioned papers has 
been categorized based on the nature of their approach.

A stacked Q-learning technique for a robot interacting with its surroundings was introduced by Digney[150]. 
In an inverted pole-balancing issue, Schaal[151] employed RL for robot learning. For compliance tasks, Kuan 
and Young[152] developed an RL-based mechanism in conjunction with a robust sliding mode impedance 
controller, which they evaluated in simulation. To cope with the variation in the different compliance tasks, 
they apply an RL-based method in their research. Bucak and Zohdy[153,154] proposed an RL-based control 
strategy for one and two link robots in 1999 and 2001. Althoefer et al.[155] used RL to attain motion and avoid 
obstacles in a Fuzzy rule-based system for a robot manipulator. Q-learning for robot control was 
investigated by Gaskett[156]. For a mobile robot navigation challenge, Smart and Kaelbling also opted for an 
RL-based approach[157]. For optimal control of a musculoskeletal-type robot arm with two joints and six 
muscles, Izawa et al.[158] used an RL actor-critic framework. For an optimum reaching task, they employed 
the proposed technique. RL approaches in humanoid robots are characterized, by Peters et al.[159], as greedy 
methods, “vanilla” policy gradient methods, and natural gradient methods. They highly encourage the 
adoption of a natural gradient approach to control humanoid robots, because natural-actor-critic (NAC) 
structures converge fast and are better suited to high-dimensional systems like humanoid robots. They have 
proposed a number of different ways to design RL-based control systems for humanoid robots. An 
expansion of this study was given in 2009 by Bhatnagar et al.[160]. Theodorou et al.[161] employed RL for 
optimal control of arm kinematics. NAC applications in robotics were presented by Peters and Schaal[162]. 
For the estimate, the NAC employs the natural gradient approach. Other works presented here[163-165] go into 
greater depth on actor-critic based RL in robots. Buchli et al.[166] propose RL for variable impedance 
management methods based on policy improvement using a route integral approach. Only simulations were 
used to illustrate the efficiency of the suggested method. Theodorou et al.[167] used a robot dog to evaluate RL 
based on policy improvement using path integral[168]. RL-based control for robot manipulators in uncertain 
circumstances was given by Shah and Gopal[169]. Kim et al.[170,171] applied an RL-based method to determine 
acceptable compliance for various scenarios by interaction with the environment. The usefulness of 
Kim et al.[170,171]’s RL-based impedance learning technique has been demonstrated in simulations.

For a robot goalkeeper and inverted pendulum examples, Adam et al.[172] proposed a very interesting article 
on the experimental implementation of experience replay Q-learning and experience replay SARSA 
approaches. In this form of RL scheme, the data obtained during the online learning process is saved and 
fed back to the RL system continuously[172]. The results are encouraging, albeit the implementation method 
may not be appropriate for all actual systems, as the exploration phase indicates very irregular, nearly 
unstable behavior, which might harm a more delicate plant.

It is worth noting that several of the RL systems outlined above are conceptually well-developed, with 
convergence proofs available. However, there is still much work to be done on RL, and real-time 
implementations of most of these systems are still a great difficulty. Furthermore, adequate benchmark 
challenges[173] are required to test newly created or improved RL algorithms.
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Table 5. RL-based control in robotic control - an overview

Approach Employed by…

Q-learning Digney[150] (1996), Gaskett[156] (2002), Shah and Gopal[169] (2009) and Adam et al.[172] (2012)

Optimal control/bio-mimetic 
learning

Izawa et al.[158] (2002) and Theodorou et al.[161] (2007)

NAC Atkeson and Schaal[163] (1997), Peters et al.[159] (2003), Peters and Schaal[162] (2008), Hoffmann et al.[164] (2008) 
and Peters and Schaal[165] (2008)

Inverted pole-balancing Schaal[151] (1996) and Adam et al.[172] (2012)

Impedance control Kuan and Young[152] (1998) and Buchli et al.[166] (2010)

Fuzzy rule-based system Althoefer et al.[155] (2001)

Navigation challenge Smart and Kaelbling[157] (2002)

Route integral control Buchli et al.[166] (2010)

Path integral Theodorou et al.[167] (2010)

RL: Reinforcement learning; NAC: natural-actor-critic.

4.2. Deep reinforcement learning for robotic manipulation control
In 2012, deep learning (DL) achieved its first major breakthrough with a CNN for classification[174]. It 
iteratively trains the parameters using loss computation and BP using hundreds of thousands of data-label 
pairs. Although this approach has developed steadily since its inception and is currently one of the most 
widely used DL structures, it is not ideal for robotic manipulation control because obtaining a large number 
of pictures of joint angles with labeled data to train the model is too time-consuming. CNN has been used 
in several studies to learn the motor torques required to drive a robot using raw RGB video pictures[175]. 
However, as we will see later, employing deep reinforcement learning (DRL) is a more promising and 
fascinating notion.

In the context of robotic manipulation control, the purpose of DRL is to train a deep policy NN, such as the 
one shown in Figure 10, to discover the best command sequence for completing the job. The present state, 
as shown in Figure 11, is the input, which can comprise the angles of the manipulator’s joints, the location 
of the end effector, and their derivative information, such as velocity and acceleration. Furthermore, the 
current posture of target objects, as well as the status of relevant sensors if any are present in the 
surroundings, can be tallied in the current state. The policy network’s output is an action that specifies 
which control instructions, such as torques or velocity commands, should be applied to each actuator. A 
positive reward will be produced when the robotic manipulator completes a job. The algorithm is supposed 
to discover the best successful control method for robotic manipulation using these delayed and weak data.

The study of sample efficiency for supervised deep learning determines the scale of the training set required 
in learning. Consequently, even though it is more challenging than supervised deep learning, the study of 
sample efficiency for DRL in robotic control provides how much data is needed to build an optimal policy. 
The first demonstration of using DRL on a robot was in 2015, when Levine et al.[176] applied trajectory 
optimization techniques and policy search methods with NNs to accomplish a practical sample efficient 
learning. They employ a recently developed policy search approach to learn a variety of dynamic 
manipulation behaviors with very broad policy representations, without requiring known models or 
example demonstrations in this study. This method uses repeatedly refitted time-varying linear models to 
train a collection of trajectories for the desired motion skill, and then unifies these trajectories into a single 
control policy that can generalize to new scenarios. Some modifications are needed in order to lower the 
sample count and automate parameter selection to enable this technique to run on a real robot. Finally, this 
approach has proven that the learning of robust controllers for complexity is possible, which did achieve 
various compound tasks such as stacking tight-fitting Lego blocks and putting together a toy airplane after 
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Figure 11. DRL scheme for Robotic manipulation control. DRL: Deep reinforcement learning.

minutes of interaction time.

The concept of imitation learning became very popular for robotic manipulation, since relying on learning 
from trial and error required a significant amount of system interaction time if based solely on DRL 
approaches[177]. In 2018, an interesting approach was proposed by Vecerik et al.[178] combining both imitation 
learning and task-reward-based learning, which improved the agent’s abilities in simulation. The approach 
was based on an extension of Deep Deterministic Policy Gradient (DDPG) algorithm for tasks with sparse 
rewards. Unfortunately, in real robot experiments, the location of the object, as well as the explicit states of 
joints like position and velocity, must be specified, which limits the approach’s applications to high-
dimensional data[179].

In 2017, Andrychowicz et al.[180] proposed Hindsight Experience Replay as a novel technique that provides 
for sample-efficient learning from sparse and binary rewards, avoiding the need for complex reward 
engineering. It may be used in conjunction with any off-policy RL algorithm to create an implicit 
curriculum.

In October 2021, AI researchers at Stanford University presented a new technique called deep evolutionary 
reinforcement learning, or DERL[181]. The new method employs a sophisticated virtual environment as well 
as RL to develop virtual agents that can change their physical form as well as their learning abilities. The 
discoveries might have far-reaching ramifications for AI research in general and robotics research in 
particular in the future. Each agent in the DERL architecture employs DRL to gain the abilities it needs to 
achieve its objectives throughout the course of its existence. MuJoCo, a virtual environment that enables 
very accurate rigid-body physics modeling, was employed by the researchers to create their framework. 
Universal Animal is their design space, and the objective is to construct morphologies that can master 
locomotion and item manipulation tasks in a range of terrains. The developed agents were put through their 
paces in eight various tasks, including patrolling, fleeing, manipulating items, and exploring. Their findings 
reveal that AI agents who have developed in different terrains learn and perform better than AI agents who 
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have only seen flat terrain.

An overview of the connection of the above-mentioned work is presented in Table 6. Some basic problems 
are listed in the table, and each paper’s approach is presented and categorized based on observation and 
action space, reward shaping and algorithm types.

Although DRL-based robotic manipulation control algorithms have proliferated in recent years, the issues 
of acquiring robust and diverse manipulation abilities for robots using DRL have yet to be properly 
overcome for real-world applications.

4.3. Summary
Over the last several years, the robotics community has been progressively using RL and DRL-based 
algorithms to manage complicated robots or multi-robot systems, as well as to give end-to-end policies 
from perception to control. Since both algorithms base their knowledge acquisition on trial-and-error, they 
naturally require a large number of episodes, which limits the learning in terms of time and experience 
variability in real-world scenarios. In addition, the real-world experience must consider the potential 
dangers or unexpected behaviors of the considered robot, especially when it comes to safety-critical 
applications. Even though there are some successful real applications to DRL in robotics, especially with 
tasks involving object manipulations[182,183], the success of its algorithms beyond the simulated worlds is fairly 
limited. Transferring DRL policies from simulation environments to reality, referred to as “sim-to-real”, is a 
necessary step toward more complex robotic systems that have DL-defined controllers. This has led to an 
increase in research in “sim-to-real” transfer, which resulted in many publications over the past few years.

Another angle that we see crucial for robotics applications is local vs. global learning. For instance, when 
humans learn a new task, like walking, they automatically build upon the previously learned skill in order to 
learn a new one, like running, which becomes significantly easier. It is essential to reuse other locally 
learned information from past data sets. When it comes to robot RL/DRL, the publicity of the making of 
such data sets with many skills should be available and accessible to everyone in robotic research, which 
would be considered a huge asset. When it comes to reward shaping, RL approaches have significantly 
benefited from it by using rewards that convey closeness and are not only based on binary success or failure. 
For robotics, it is challenging to shape such a reward design, hence, it would be optimal if the reward-
shaping is physically motivated, like for instance, minimizing the torques while achieving a task.

5. CONCLUSION
In this review paper, we have surveyed the evolution of adaptive learning for nonlinear dynamic systems. In 
an initial step, after we introduced adaptive controllers and the modification techniques to overcome 
bounded disturbances, we have concluded that adaptive controllers have proven their effectiveness, 
especially in the processes that can be modeled linearly with slowly time-varying parameters relative to the 
system’s dynamics. However, they do not provide stability for systems where parameter dynamics are at 
least the same magnitude as the system’s dynamics.

In an evolutionary manner, AI-based techniques have emerged to improve the controller robustness. Newer 
methods, such as fuzzy logic and NNs were introduced. Essentially, these methods approximate a nonlinear 
function and provide a good representation of the nonlinear unknown plant, although it is typically used as 
a model-free controller. The plant is treated as a “black box”, with input and output data gathered and 
trained on. The AI framework addresses the plant’s model after the training phase, and can handle the plant 
with practically no need for a mathematical model. It is feasible to build the complete algorithm using AI 
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Table 6. DRL for robotic manipulation categorized by state and action space, algorithm and reward design

State space Action space Algorithm type Reward shaping

Levine et al.[176] (2015)

Joint angles and velocities Joint torque Trajectory optimization algorithm. A penalty term is shaped as the sum of a 
quadratic term, and a Lorentzian ρ-function 
The first term encourages speed while the 
second term encourages precision 
In addition, a quadratic penalty is applied to 
joint velocities and torques to smooth and 
control motions

Andrychowicz et al.[180] (2017)

Joint angles 
& velocities + Objects’ positions, rotations & velocities

4D action space. The first three are position 
related, the last one specifies the desired 
distance

HER combined with any off-policy 
RL algorithm, like DDPG

Binary and sparse rewards

Vecerik et al.[178] (2018)

Joint position and velocity, joint torque, and global pose of the socket and 
plug

Joint velocities An off-policy RL algorithm, called 
DDPGfD, is based on imitation 
learning

First is a sparse reward function: +10 if the plug 
is within a small tolerance of the goal 
The second reward is shaped by two terms: a 
reaching phase for alignment and an inserting 
phase to reach the goal

Gupta et al.[181] (2021)

Depends on the agent morphology and include joint angles, angular 
velocities, readings of a velocimeter, accelerometer, and a gyroscope 
positioned at the head, and touch sensors attached to the limbs and head

Chosen via a stochastic policy determined by 
the parameters of a deep NN that are learned 
via proximal policy optimization (PPO)

DERL, which is a simple 
computational 
framework operating by mimicking 
the intertwined 
processes of Darwinian evolution

Two reward components. First relative to 
velocity and second relative to actuators’ input

DRL: Deep reinforcement learning; HER: Hindsight Experience Replay; DDPG: Deep Deterministic Policy Gradient.

techniques, or to merge the analytical and AI approaches such that some functions are done analytically and the remainder are performed using AI techniques.

We then briefly presented RL and DRL before we surveyed the previous work implementing both techniques in robot manipulation specifically. From this 
overview, it was clear that RL and DRL for robotics are not ready to offer a straightforward task yet. Although both techniques have evolved rapidly over the 
past few years with a wide range of applications, there is still a huge gap between theory and practice. The discrepancy between what we intend to solve and 
what we solve in practice, and accurately explaining the differences and how this affects our solution, we believe, is one of the core difficulties that plague the 
RL/DRL research community.
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As RL/DRL researchers, we should take a step back and concentrate on the basics. By concentrating on the 
basics, we imply concentrating on simple, analyzable domains from which we may draw useful conclusions 
about the algorithms. Above all, areas in which we know what the best possible reward is. We hope that our 
survey helps the nonlinear dynamic control community in general, and the robotics community in 
particular, to quickly learn about this topic and become closely familiar with the current work being done 
and what work remains to be done. We also hope to assist researchers in deriving some conclusions from 
work carried out so far and provide them with new avenues for future research.
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