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Abstract
Water splitting provides clean hydrogen via different technologies such as alkaline water electrolysis, proton 
exchange membrane electrolyzers, solid oxide electrolysis cells, and photoelectrolysis, each with advantages and 
challenges. The focus on alkaline water electrolysis highlights its maturity compared to emerging methods. Non-
noble metal catalysts offer increased stability, low cost and operational lifespan. Challenges such as low current 
density, gas crossover, corrosive electrolytes, and limited efficiency are still to be addressed. These advanced 
electrocatalysts are summarized for alkaline oxygen and hydrogen evolution reactions. Meanwhile, different factors 
including product gas bubble management, operation conditions, separator and electrolyte affecting the 
performance were concluded and discussed. For the promising approach, seawater splitting is still far from large-
scale application. Salinity, pH fluctuations, and complex composition are significant obstacles. The review 
underscores the need for improvements in electrocatalysts to enhance the efficiency, stability, and practicality of 
water splitting for hydrogen production, ultimately contributing to the growth of the clean hydrogen market and 
supporting the transition to sustainable energy systems.

Keywords: Alkaline water splitting, industrial hydrogen production, operation conditions, electrocatalysis cells, 
catalysts design
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INTRODUCTION
To achieve net-zero emissions and accommodate the escalating need for renewable energy sources, 
hydrogen produced from renewable energy emerges as a pivotal force in diminishing reliance on fossil fuels, 
thereby fostering economic and environmental sustainability[1-9]. The significance of hydrogen spans a 
spectrum of fields, profoundly influencing the electricity system, energy storage, transportation, industrial 
processes, and gas grids [Figure 1A][10-14]. Notably, it serves as a crucial reservoir for surplus electricity 
generated from renewable sources, effectively harmonizing supply and demand dynamics. Its widespread 
application stems from its exceptional properties, supporting diverse functions such as ammonia 
production, petroleum refining, steel manufacturing, and the electronics and semiconductor sectors[1]. The 
burgeoning global demand for clean hydrogen has led to a remarkable upsurge in the market size. From its 
valuation of 1.41 billion USD in 2021, it is expected to exceed 5.95 billion USD by 2030, demonstrating a 
substantial annual growth rate of 17.36% within the forecast period from 2022 to 2030 [Figure 1B][15]. This 
expanded market size opens doors to abundant opportunities for various communities and fosters stronger 
relationships among policymakers, industry practitioners, and evaluators.

Water splitting for hydrogen generation represents a promising avenue for large-scale hydrogen 
production[16,17]. Various technologies, such as photocatalysis[18-22], alkaline electrocatalysis[10,23], proton 
exchange  membrane  (PEM) electrolyzers[24], so l id  oxide  e lec tro lys i s  ce l l s  (SOEC)[25], and 
photoelectrolysis[26,27], offer distinct approaches to this process, each with its advantages and limitations 
[Table 1]. Solar-driven hydrogen evolution can transfer solar energy to chemical energy directly but is still 
limited by the relatively low efficiency because of the high photogenerated charge recombination rates. 
Therefore, further development and refinement are required to address limitations and unlock their full 
potential for efficient and cost-effective hydrogen production. For example, PEM electrolysis with noble 
metal catalysts exhibits high performance and good anti-acid corrosion, but the relatively short durability of 
its membrane and expensive catalysts make it costly for widespread applications[28,29]. The SOEC and 
photoelectrolysis encounter significant hurdles due to the harshly corrosive environment and engineering 
complexities, such as high operating temperatures or low energy efficiency. These challenges pose obstacles 
to their practical implementation at a large scale[29]. Alkaline water electrocatalysis currently stands as a 
mature technology with reasonable efficiency compared to other emerging methods. It has been 
commercialized for several decades. Alkaline water electrolysis (AWE) is processed in an aqueous solution 
of NaOH or KOH with a concentration of 20-40 wt.% at a temperature range of 70-90 °C. Non-noble metal 
catalysts are used in alkaline water splitting, which differs from PEM relying on the platinum group metals. 
The operational lifespan of a commercial AWE can be over several years. These merits distinguish it from 
PEM electrolysis and make it easier to scale up[23]. However, it also faces challenges such as low current 
density due to the high impedance of the electrolyte and diaphragm, the crossover of gases leading to gas 
impurity and unsafety, corrosive electrolyte, and low efficiency[23].

The water splitting process comprises the anodic oxygen evolution reduction (OER) and the cathodic 
hydrogen evolution reaction (HER). For OER, the most efficient catalysts are Ir/Ru-based materials[30-32], 
while Pt-group metals are used for HER[33,34]. However, these catalysts composed of noble metals are both 
rare and costly. Consequently, the widespread implementation of water splitting based on these noble 
metals has been impeded. The alkaline HER involves two primary reaction mechanisms, namely Volmer-
Tafel and Volmer-Heyrovsky mechanisms [Figure 1C]. Key intermediates, such as adsorbed H*, OH*, and 
H2O*, largely dominate the reaction pathways in this process[10]. In acidic HER, the hydrogen binding 
energy theory (utilizing the hydrogen-adsorption ability-activity volcano plot) is often applied to explain 
reaction origins. This is different from the alkaline HER, where slow kinetics are influenced by multiple 
factors[13], including the sluggish transport rate of OH- and the challenging cleavage of the O-H bond in 
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Table 1. Comparison of main parameters for different water splitting cells

Parameters AWE PEM SOEC Photoelectrolysis

Efficiency 60%-80% 60%-80% 40%-60% 2%-12%

Current density/
mA cm-2

100-400 500-2,000 300-1,000

Catalysts Ni-based catalysts Pt group-based catalysts Perovskite lanthanum strontium 
manganese

SrTiO3 based catalysts

Electrolyte 20-40 wt.% KOH Nafion membrane ZrO2/Y2O3 Water

Temperature/°C 50-80 50-80 600-900

Advantages Cheap catalysts; long-
term stability

High current density High efficiency; low cost; long-
term stability

Green energy conversion

Disadvantages Low current density Expensive catalysts; short 
durability of membrane

Corrosive operating environment; 
high temperature

Low efficiency; ineffective 
catalysts

Figure 1. (A) Five fields affected by the green hydrogen. (B) The global clean hydrogen market size was valued at USD, estimated from 
2021 to 2030. The data is collected from ref[15]. (C) Overall hydrogen evolution reaction mechanism including Volmer, Tafel and 
Heyrovsky steps. (D) Oxygen evolution reaction mechanism in an alkaline environment.

water, resulting in kinetics approximately two orders of magnitude slower compared to that in acidic 
conditions[14]. Moreover, the alkaline OER involves multiple steps with the participation of electrons and 
protons [Figure 1D]. The reaction may occur via a sequential mass transfer via OH- → OH* → O* → OOH* 
→ O2 + * (*indicates the catalytically active site on the catalyst surface)[10,13]. Establishing a suitable descriptor 
for alkaline OER and understanding the structure-performance relationship remain complex challenges. 
Various theories, such as metal bond energy with OH, the number of d electrons, electron occupancy in the 
eg orbitals, the adsorption energy difference between ΔGO* and ΔGOH* (binding energy of O* and OH*), and 
the crystal lattice oxygen mechanism, have been proposed to comprehend this mechanism[13,14]. 
Nevertheless, the diverse dominating factors influencing the reaction in various materials often result in 
intricate interpretations of OER.

In laboratory research, parameters such as Tafel slope, Faradic efficiency (FE), overpotential (η), turnover 
frequency (TOF) and stability are used as key criteria for catalyst evaluation[13,14]. These can even provide 
standards to compare the different catalysts. In electrolysis, η describes an extra potential or voltage required 
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to drive the reaction but beyond the standard thermodynamic potential. Higher η leads to reduced 
efficiency and higher costs. Catalysts exhibiting lower η can achieve heightened current density at lower 
potentials. A frequently utilized η value concerns the attainment of a current density of 10 mA cm-2 (referred 
to as η10). It is important to note that η10 is influenced not only by the intrinsic characteristics of the catalysts 
but also by working conditions, loading mass, and the exposed active area. TOF measures the rate of 
converting reactants into hydrogen or oxygen per active site per second at a specific potential. It stands as a 
critical metric for evaluating the effectiveness and reaction kinetics of an electrocatalyst. Yet, accurately 
determining the number of active sites remains a significant challenge. FE represents the ratio between the 
generated hydrogen or oxygen and the theoretically estimated quantity of gases derived from the applied 
electrical charge. Any by-products formed in the system contribute to Faradaic losses and escalate the 
overall cost. The Tafel slope, extracted from the linear sections of the Tafel plot correlating the logarithm of 
current density with overpotential, serves as a tool to identify the kinetics study and potential reaction 
mechanisms. For instance, distinct Tafel slopes of 29, 38, and 116 mV dec-1 suggest the Tafel, Heyrovsky, 
and Volmer steps as rate-determining steps for HER. Long-term application viability relies significantly on 
stability[10]. Accelerated cyclic voltammetry (CV) and chronopotentiometry or chronoamperometry tests are 
employed for stability assessment. A marginal enhancement of η after numerous CV cycles indicates 
favorable stability. In chronoamperometry testing, it is recommended to conduct tests at higher fixed 
current densities, such as 100 or 200 mA cm-2. Besides, similar parameters are used to describe industrial 
production, such as cell efficiency and voltage. These are related to the lab parameters but not totally the 
same. It is noted that 1.23 V is the equilibrium voltage for the reaction. However, the operational cell voltage 
is much higher than that because of the ohmic loss originating from the resistance of the electrolyte, 
separator, gas bubble effects, and so on[11]. For the efficiency of water electrolysis, several parameters depend 
on the different electrolysis systems. For example, it can be valued by the production of hydrogen against 
the total electrical energy consumed by the system or by calculating the net efficiency, denoted as 
ηH2 production rate and ηnet efficiency

[23]. These parameters are affected by different factors in industrial production.

In this review, we summarize different factors that exert an impact on the overall cell efficiency not only in 
laboratory conditions but also for large-scale production. Different from the experiments in the laboratory, 
industrial production can be significantly influenced by the cell configuration, which leads to different 
product collections and electrolyte supply. Electrolyte and separator engineering is another field that does 
not attract enough attention from researchers. For providing conductivity between the cathode and anode, 
they bring great ohmic loss in this reaction, leading to reduced efficiency. The intrinsic performance of 
catalysts is the key point for this process. However, the research on high-rate and long-term stability is still 
insufficient. Lastly, bubble management can dominate the efficiency loss in industry, which has attracted 
growing attention. This review aims to bridge the gaps between laboratory studies and industrial practice. It 
emphasizes the importance of directing attention and investment toward addressing these issues to advance 
practical applications.

ELECTROCATALYTIC CELLS
The configuration of electrocatalytic cells for large-scale hydrogen production differs significantly from the 
cells used in laboratories. In industrial applications, two types of commercial devices are widely used, as 
shown in Figure 2: the conventional alkaline water splitting electrolyzer (AWE) and the anion exchange 
membrane (AEM)[1]. In the case of the AWE [Figure 2A], a microporous diaphragm serves as a separator 
for the anode and cathode immersed in an electrolyte of 30-40 wt.% KOH[29]. The diaphragms are made of 
materials including inorganic ceramics such as asbestos, potassium titanate, or various polymers[35]. The 
operation current density is around 400 mA cm-2, with a cell voltage range of 1.85 to 2.2 V. Operating 
temperatures usually range between 70-90 °C, with conversion efficiency reaching up to 60%-70%[28]. Key 
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Figure 2. (A) Conventional alkaline water splitting electrolyzer. (B) Anion exchange membrane electrolyzer. (C) Capillary-fed 
electrolysis cell[36]. Copyright 2022, The Authors, published by Springer Nature.

advantages of AWE include its low cost and excellent stability due to the non-precious electrodes used. 
However, the AWE setup faces challenges such as a significant gap between the cathode and anode, coupled 
with high-resistance diaphragms (approximately 4 Ω cm-1 at 30 °C), contributing to increased ohmic 
overpotentials in the cell. Furthermore, the susceptibility of KOH electrolyte to reacting with CO2 in the 
ambient air generates carbonate, leading to reduced OH- concentration and ionic conductivity of the 
electrolyte. The deposited K2CO3 can also obstruct ion transfer channels in the gas diffusion layer. These 
challenges influence the efficiency and long-term performance of the AWE system.

Over the past few decades, a superior commercial application known as AEM [Figure 2B] has been 
developed and implemented due to its cost-effectiveness and high activity[1]. This system utilizes an anion 
exchange membrane (such as OH-) functioning as a solid electrolyte and gas separator. This membrane is 
positioned between anode and cathode films, forming the membrane electrode assembly (MEA). Hydrogen 
gas evolves by circulating pure water or a low concentration of alkaline aqueous solution through the 
cathode side, while hydroxyl ions diffuse through the AEM to the anode side for oxygen production. The 
AEM configuration features a compact cell structure and lower ionic resistance due to the MEA. However, 
the confined area between the thin film and AEM limits the mass loading of catalysts. At higher current 
densities, excessive gas bubbles formed on the electrodes can impede access to the surface of catalysts by the 
water/alkaline solution, hindering subsequent reactions. A novel concept recently introduced in water 
electrolysis is the capillary-fed electrolysis cell [Figure 2C][36]. In this design, hydrogen and oxygen gases are 
both collected in the gas chambers, avoiding the bubble effect and causing decreased efficiency. The 
electrolyte is continuously drawn up from the separator using a capillary effect from the electrolyte reservoir 
at the base of the cell. Remarkably, this design exhibits a cell voltage of only 1.51 V at 0.5 A cm-2 and 85 °C, 
achieving 98% energy efficiency, requiring 40.4 kWh/kg hydrogen (vs. ~47.5 kWh/kg in commercial 
electrolysis cells)[36]. The significant improvements in contemporary electrolysis cells lead to a direct 
reduction in the levelized cost of hydrogen. When coupled with the prospect of a streamlined system 
balance-of-plant, these advancements bring cost-competitive renewable hydrogen closer to realization.

The substantial differences between commercial applications and laboratory studies can cause notable 
disparities in the performance of devices. In commercial applications, the migration of gas bubbles 
produced on the electrode surface significantly influences gas impurities and the activity and stability of 
electrodes [Figure 2][37,38]. Under high-rate operation (i.e., current density > 400 mA cm-2), a substantial 
volume of gas bubbles forms on the electrode. If these bubbles nucleate and coalesce without detaching 
from the electrode surface, they can reduce surface energy, potentially covering active sites. Continual 
accumulation of gas bubbles on the electrode surface can pull the electrolyte away from the electrocatalysts, 
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leading to a significant ohmic drop and energy loss in the electrolysis process[39]. When these large bubbles 
detach from the surface, the abrupt disturbance of the electrolyte may cause nanostructural collapse and the 
loss of catalysts on the interface, reducing the stability and activity. To overcome these negative effects, 
various bubble manipulation strategies have been proposed. For instance, methods involve 
superhydrophobic modification by nanostructuring to prevent a flat surface, 3D electrode creation with gas 
channels, and electrolyte component adjustment. These approaches aim to prevent the formation of large 
bubbles, promote their removal, and mitigate the associated adverse effects[40].

ELECTROLYTE AND SEPARATOR
Alkaline water splitting commonly employs an aqueous KOH solution. Various factors related to the 
electrolyte composition play vital roles, including conductivity, gas solubility, gas diffusion, and 
viscosity[41,42]. Typically, KOH solutions with a concentration of 5~7 mol L-1 (corresponding to 25-30 wt.%) 
demonstrate the highest conductivities compared to other alkaline metal bases at the same concentration. 
Notably, the electrolyte concentration significantly influences gas diffusion and solubility[42]. Since the 
presence of hydroxide ions notably decreases oxygen solubility, it brings an advantage in preventing gas 
crossover KOH solution concentrations[43]. Meanwhile, efforts on electrolyte engineering to enhance the 
whole cell efficiency and reduce cost have also been reported. For example, the trace of impurities in the 
electrolyte can affect the stability of the catalysts[44]. Also, the implementation of electrolyte engineering can 
accelerate the detachment of gas bubbles on the electrode and reduce the electron transfer barrier between 
the electrolyte and electrode at high current density. One of the potential methods is adding surfactants in 
the electrolyte to reduce the surface tension so that the critical size of the bubble at detachment can be 
decreased[11]. However, the impact of the surfactant on conductivity, stability and efficiency can be studied 
and evaluated.

Separator is another important part of AWE. Porous separators, such as diaphragms, are used to separate 
the oxygen and hydrogen gas evolved in the anodic and cathodic compartments and provide the ionic 
transfer channel. Therefore, porosity and wettability are important factors related to gas separation and 
conductivity. Since the working environment is corrosive and pressured, the separator should possess high 
chemical durability and mechanical stability. Inorganic separators are generally used in alkaline water 
splitting for their high anticorrosive properties. Asbestos is efficient and cheap, but it is not an ideal 
separator for its drawbacks. For example, the poor conductivity will reduce the ionic conductivity. The 
toxicity of microfibers can lead to serious lung diseases such as cancer and pneumoconiosis[45]. The porous 
ceramics are used for excellent wettability and stiffness. The typical separator is a flexible porous zirconia 
(ZrO2)-based porous thin membrane, Zirfon[46], which is highly chemically stable and low resistant. The 
combination of ZrO2 and polysulfone matrix led to good wettability and low gas permeability. With these 
properties, Zirfon shows great potential for the industrial alkaline water splitting process[47].

CATALYSTS
The catalyst plays a critical role in the entire electrolyzer system due to its impact on efficiency, stability, 
cost, and preparation methods. While Ir/Ru-based oxides and Pt group metals exhibit outstanding 
performance in water splitting, their limited availability poses challenges for large-scale applications due to 
high costs. To ultimate the noble metal utilization and increase efficiency, single-atom catalysts were 
developed. They exhibit appealing performance because of the well-defined active site configuration and 
unique electronic structures[48]. In industrial production, nickel mesh/foam serves as the primary electrode 
material. Transition metal-based materials such as Ni, Co, and Fe demonstrate competent performance and 
stability at a more affordable cost. This section summarizes recent research focused on transition-based 
catalysts in alkaline water splitting [Table 2].
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Table 2. Summary of the OER and HER performance of the electrocatalysts

Catalysts Electrolyte η10/mV Tafel slop/mV dec-1 Stability Ref.

α-Ni(OH)2 0.1 M KOH 331 42 100 CV cycles [49]

CoTe2 0.1 M KOH 357 32 2,000 CV cycles [50]

α-MnO2 0.1 M KOH 490 77.5 - [51]

α-Fe2O3 1 M NaOH 317 58.5 30 h [53]

Ni3S2/NF pH = 14 260 - 200 h [54]

Co3O4-Vo 0.1 M KOH 300 68 2,000 CV cycles [56]

NiFe-LDH 1 M KOH 230 77 36 h [58]

NiFe-LDH 1 M KOH 269 48.3 6,000 h [61]

HE-LDH 1 M KOH 213 27.5 700 h [63]

HE-LDH 1 M KOH 218 at 50 mA cm-1 47.1 600 h [64]

HE-LDH 1 M KOH 259 at 100 mA cm-1 49.0 1,000 h [65]

CoP 0.1 M KOH 250 at 20 mA cm-1 66 1,000 CV cycles [66]

OER

Co4N 1 M KOH 257 44 1,000 CV cycles [67]

Ni dendrites 6.0 M KOH 160 102.7 2,000 CV cycles [68]

MoNi4 1 M KOH 15 30 2,000 CV cycles [71]

CoSn2 1 M KOH 103 78 14 h [73]

NiMoCo 1 M KOH 13.7 70.64 120 h [76]

Co2P 1 M KOH 171 at 20 mA cm-1 - 1,000 CV cycles [83]

Ni5P4 1 M KOH 13 50 CV cycles [84]

HER

NiS2 1 M KOH 80 135 90 h [91]

OER catalysts
Hydrogen is produced via HER, a component of the water splitting process that also includes OER. Unlike 
HER, OER involves the transfer of four electrons and additional intermediate conversions. Due to its 
sluggish kinetics, OER requires higher overpotentials, which diminishes the efficiency of the electrolyzer 
and escalates the overall cost[10,11]. Therefore, the practical deployment of water splitting significantly relies 
on the development of highly efficient OER catalysts. Numerous transition metal compounds, including 
oxides, oxyhydroxides, chalcogenides, phosphides, and nitrides, have been extensively investigated. 
Strategies such as defect induction, high-performance phase and facet engineering, and developing 
composite materials have been employed to enhance their intrinsic properties[49-53]. The exploration of active 
sites based on these methods has contributed to a comprehensive understanding of the reaction dynamics.

Ni(OH)2 nanosheets with two phases, i.e., α and β, show excellent performance for OER. However, the α-
Ni(OH)2 can be transferred to γ-NiOOH with improved activity when the anode is overcharged 
[Figure 3A][49]. Similarly, orthorhombic CoTe2 outperforms hexagonal CoTe2 due to the lower adsorption 
energy of *OOH[50]. Among various phases of MnO2, the α-MnO2 shows the best performance with η10 as 
490 mV[51]. Some amorphous materials also show good activity[52]. The phase-dependent activity is due to 
the different electronic structures, charge transfer resistance and more active sites. Another effective 
approach is exposing different crystal facets. For example, the high-indexed (012) facets of α-Fe2O3 show η10 
of 317 mV, superior to (104) and (110) facets [Figure 3B][53]. Ni3S2 nanosheets have atomic step terraces on 
(210) facets showing η10 at 260 mV[54]. The high performance can be attributed to the optimal adsorption/
desorption of oxygenated intermediates. Defects in crystals can expose more unbonded metal sites that can 
act as active sites for OER. Oxygen vacancies are mostly studied as crystal defects[55]. For Co2O3 nanosheets, 
these vacancies can modulate the electronic structure by changing the metal valence states with the η at 
300 mV[56]. As for CoO nanorods, they can optimize the adsorption energy of oxygen intermediates, thus 
improving the OER performance[57]. Cationic vacancies were also studied based on NiFe layered double 
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Figure 3. (A) TEM, enlarged TEM, and HRTEM images for α-Ni(OH)2 hollow spheres, respectively. Inset in (C) shows the 
corresponding SAED pattern. TEM, enlarged TEM, and HRTEM images for β-Ni(OH)2 nanoplates, respectively. Inset in (F) shows the 
corresponding SAED pattern. Copyright 2014, American Chemical Society[49]. (B) Impact of facets on the OER activity descriptor. Inset, 
eg occupancy of six- and seven-coordinated configurations. Reproduced with permission. Copyright 2018, Wiley- VCH[53]. (C) Synthesis 
schematic of AuSA-MnFeCoNiCu LDH. (D) EDS elemental mapping of Mn, Fe, Co, Ni, Cu, O, Au. The scale bar is 1 μm (E) Projected 
density of states (EF: Fermi level, εO-2p: O 2p band center) (F) Schematic band diagrams. (G) Computed free energies (ΔG) of OER 
steps on AuSA-MnFeCoNiCuOOH and MnFeCoNiCuOOH. Copyright 2023, The Authors, published by Springer Nature[63]. UHB: Upper 
Hubbard band; LHB: lower Hubbard band; N(e): state density.

hydroxide (LDH) material. They can affect the surface reconstruction process for efficient OER[58]. NiFe 
(oxy)hydroxide received much attention for its good stability, cheap sources, and adjustable properties. 
Some in situ synthesis approaches, such as in situ electrochemical OER process[59], corrosion engineering[60], 
and novel transformation of the amorphous phase[61], are in favor of exposing more edge sites with rich 
grain boundaries and crystalline domains, which results in the unsaturated metal sites with different valence 
states exhibiting advanced performance in alkaline OER.

Doping or multi-metal compounds also show excellent performance for the synergistic effect from different 
metal sites based on transition metals. High-entropy LDH is limited by the poor stability due to the loss of 
Fe, resulting in the phase transformation and structure failure. FeCoW oxyhydroxide shows appropriate 
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intermediate adsorption energy with low η10 at 223 mV and 500 h stability[62]. High-entropy LDH 
[Figure 3C-G] with Au single atoms and oxygen vacancies shows η10 at 213 mV and 700 h stability, which 
can attribute the good activity to the upshift in the O 2p band and weakness of metal-O bond, thus 
activating the lattice oxygen and lower the energy barrier of lattice oxygen oxidation mechanism[63]. Another 
high-entropy LDH shows η50 at 218 mV and 600 h stability because of the electronic structure modulation 
promoting the formation of highly active NiOOH species and the high-entropy induced phase stability[64]. 
Monolayered FeCoNiZnMg-LDH exposed abundant active sites on the nanosheets with η100 at 259 mV and 
1,000 h stability[65].

Other compounds, for example, chalcogenides[50], phosphides[66], and nitrides[67], also show good potential 
for future use in industrial applications. Most of these reports illustrate that these phosphides and nitrides 
will in situ form metal oxide crystals in the OER process, which serve as the active species for the surface 
reactions. However, these catalysts exhibit their values as the precursor for the OER. Note that the activity of 
electrocatalysts of OER relies heavily on the morphologies, size, surface defects, exposure of active sites, 
disordered structures and grain boundaries that can be induced by the in situ generated metal oxides.

Despite considerable efforts, there remain unclear and imprecise concerns about these materials. Long-term 
stability and insights into industrial operational conditions are seldom explored. Additionally, the impact of 
anion atoms, such as O, S, Se, Te, N, and P, remains unclear. Precisely controlling nanocrystal synthesis to 
obtain the different facets remains a great challenge. Fundamental research employing operando 
characterizations and simulations has proven effective in identifying high-performance catalysts and 
enhancing understanding of structure degradation and active sites in catalysts.

HER catalysts
Pt group metals show the best performance of HER in alkaline or acid environments. However, the high 
cost limits the large-scale application. In alkaline water splitting, the non-noble metals-based materials are 
generally used both in anodes and cathodes. Great efforts and achievements have been made to develop new 
non-noble metal materials in recent years. The Ni metal is used in industrial utilization. Its different 
morphologies with diverse electrochemical surface areas show distinct activities[68-70]. Additionally, the Ni-
based alloy is also studied. Ni-Mo can provide the active sites for overcoming the large kinetics energy 
barrier of the Volmer step with the η10 at 15 mV and exhibit excellent stability [Figure 4A][71]. The synergistic 
effect of these two metals optimizes the intermediate adsorption energy. Doping non-metal elements such 
as N and S can enhance the surface area, be in favor of H* adsorption energy and distort the Ni lattice 
structure thus improving the performance[72]. Besides, CoSn[73], NiCo[74], NiIn[75], NiMoCo[76] and CuTi[77] 
alloy all show excellent HER performance in alkaline. The enhanced performance can be attributed to the 
abundant active sites, modulated surface morphology and changed electronic structures.

For the transition metal-based compounds, carbides, sulfides and phosphides have attracted much 
attention. These compounds show adjustable properties. For example, the electronic structure of Mo2C 
bears similarities to the d-band center of Pt metal, leading to comparable performances[78]. In carbides, the 
metal is typically the active site. To expose more metal-terminated surfaces, ultrasmall W2C nanoparticles 
have been synthesized [Figure 4B][79]. However, the costly preparation of carbides remains a significant 
challenge for their applications. Phosphides can significantly change the conductivity, corrosion resistance 
and electronic structures. Some strategies for improving OER were also adopted to optimize the 
performance of these HER catalysts. Fe-doped Ni2P shows η500 at 100 mV[80]. CoP nanoparticles[81,82], Co2P 
nanorods[83], V-Ni5P4

[84] and P-Fe3O4
[85] all show alkaline HER performance. Nevertheless, the synthesis of 

phosphides typically involves the high-temperature decomposition of inorganic phosphorus sources, 
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Figure 4. (A) Calculated free energies of H2O adsorption, activated H2O adsorption, OH adsorption and H adsorption. Copyright 2017, 
The Authors, published by Springer Nature[71]. (B) Non-volatile solid carbon precursors (for example, CNT) may have different impacts 
on the chemical composition and microstructure of the carburization product. Copyright 2016, The Authors, published by Springer 
Nature[79]. (C) Comparison of the overpotentials required at 10 mA cm-2 among our catalyst and available reported HER catalysts. (D) 
Comparison of the current densities delivered at -200 mV among our catalyst and available reported HER catalysts. Copyright 2018, 
The Authors, published by Springer Nature[94].

resulting in the toxic PH3. Safe and facile synthesis methods need to be developed. Chalcogenides, including 
sulfides and selenides such as MoS2

[86], MoSe2
[87], CoS2

[88] and FeS2
[89], have been extensively studied using 

various strategies[84-87]. Metal doping and anion doping have both shown the ability to enhance performance, 
albeit through different mechanisms. Metal doping reduces electron transfer resistance, while anion doping 
significantly alters the crystal structure, modifies active sites, or optimizes reaction kinetics[88-91].

Another strategy to improve the performance effectively is to fabricate the heterostructure with different 
materials. Carbon materials are useful for serving as electronic conductors. For example, the NiO/Ni-carbon 
nanotube (CNT) has η10 of about 80 mV. NiO can facilitate water dissociation and OH- adsorption, while Ni 
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promotes the combination of hydrogen atoms to form hydrogen molecules[92]. Co/N-carbon shows a 
comparable performance with Pt[93]. FeP/NiP requires η10 of about 14 mV, which is a bifunctional catalyst for 
both HER and OER in alkaline [Figure 4C and D][94]. CoP/Ni2P requires a low η10 of about 16 mV because of 
the optimized hydrogen adsorption strength. The heterostructure can protect the active materials, resulting 
in improved stability[95].

The exact factor for the sluggish kinetics of HER in alkaline environment is still unclear. Different 
mechanisms are proposed to interpret the reaction process under various conditions. For industrial 
applications, the good stability and high current density in corrosive electrolytes are still insufficient. 
Transition metal-based materials are economically suitable for HER, but they easily experience structure 
failure during the reaction, resulting in a deterioration in performance. Moreover, preparing materials such 
as the above-mentioned phosphides requires harsh conditions, which also should be further optimized.

OPERATION CONDITIONS
In industrial operation, four critical operational parameters are considered, including current density, 
temperature, pressure, and water quality. Conventional current density typically falls within the range of 200 
to 400 mA cm-2. Increased current densities can expedite electrochemical reaction rates, but they come with 
elevated investment requirements. Moreover, the rapid formation of bubbles at higher current densities can 
lead to heightened overpotential due to increased resistance caused by these bubbles. Striking a balance 
between cost and efficiency is pivotal in determining the optimal current density[11,39].

Temperature and pressure significantly influence the electrolysis efficiency for hydrogen production. The 
water splitting reaction, occurring at the equilibrium voltage of 1.23 V at 1 bar and 25 °C, is endothermic, 
and the thermoneutral voltage is 1.48 V. Considering that electricity is a higher value than heat, raising the 
operating temperature with a lower operating voltage can reduce cost. As shown in Figure 5A, the 
equilibrium voltage is greatly influenced by the operating temperature, which means heat exchange between 
the cell and the environment is a critical consideration[39]. Moreover, cell temperature notably influences the 
overall cell voltage during high-rate operation from the following two key factors: the decrease in 
polarizations at the anode and cathode [Figure 5B] and alterations in the ionic conductivity of the 
electrolyte. Additionally, the intrinsic properties of diaphragms change with increasing temperature. For 
example, the resistivity of commonly used 0.5 mm thick Zirfon diaphragms in alkaline water splitting 
decreases from 4 Ω·cm at 30 °C to 2 Ω·cm at 80 °C. Operating pressure primarily affects efficiency by 
altering the behavior of gas bubbles[39]. Gas bubbles are particularly sensitive to pressure during high-rate 
operations (502 mA cm-2). Increasing pressure from 1 to 15 bar results in a consistent decrease in cell 
voltage, whereas at pressures higher than 15 bar, the cell voltage fluctuates within a small range. The notable 
decrease in voltage occurs at pressures below 15 bar, likely due to the pressure (up to 35 bar) reducing the 
size of bubbles, thereby minimizing resistance from bubble overpotential[39]. Gas impurity changes due to 
increased pressure and temperature slightly influence these processes. Oxygen diffusion and permeation, 
resulting from electrolyte cross-permeation, contribute significantly to increased hydrogen impurity. The 
oxygen diffusion coefficient increases and dominates gas crossover despite decreased solubility when raising 
the operating temperature.

Gas impurity is an important indicator in industrial applications, especially in alkaline electrolyzers. 
Permeation demonstrates a significant reliance on supersaturation. However, the overall crossover is 
predominantly influenced by electrolyte cycling, attributing to approximately 90% at 0.7 A cm-2 and 1 bar. 
Implementing electrolyzers with separated cycles can help manage this concern. For safety reasons, it is vital 
to ensure that the highest concentration of hydrogen in oxygen gas does not exceed 2 vol.%. Hydrogen 
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Figure 5. (A) Equilibrium and thermoneutral voltages for water electrolysis as a function of temperature. (B) Schematic structures of an 
electrolytic cell, gap electrode assembly, and zero-gap electrode assembly. Copyright 2018, American Chemical Society[39]. (C) 
Engineering electrocatalysts for direct seawater electrolysis. Protocols for cathode modification of electronic structure modulation, 
tailoring local environment, and interface engineering. (D) Protocols for anode modification of building protective layer, tailoring local 
environment, and building Cl- repulsion layer.

permeation across the separation unit is over ten times smaller, mainly due to the considerably lower 
hydrogen solubility in concentrated KOH electrolytes, as discussed previously. Additionally, decreased 
current density and rising system pressure lead to the dissolution of gases, thus increasing the gas impurity. 
Therefore, low pressure and a high current density are recommended to generate high-purity hydrogen[39].

The water quality is another critical factor that strongly influences both efficiency and stability in 
electrocatalytic hydrogen production. These impurities may react with the species in the electrolyte, which 
could diminish Faradaic efficiency (FE), lead to undesired side reactions, and possibly escalate operational 
costs[44]. Additionally, impurities may accumulate within the system over time, leading to increased cleaning 
costs and reduced operational efficiency. Therefore, to extend the longevity of applications, regularly 
replenishing fresh water helps compensate for water consumption. Moreover, impurity metal salts 
deposited on electrodes can have varied effects, either positively or negatively, on the performance of 
catalysts. One potential approach to address this challenge involves utilizing catalyst immobilization based 
on self-assembled and self-healing films, which could aid in mitigating the effects of impurities on the 
system[11].
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ALKALINE SEAWATER SPLITTING
Alkaline water splitting is a mature technology for large-scale hydrogen production. Great efforts made in 
this field aim to increase the efficiency and reduce the cost. However, it relies heavily on the freshwater 
supply. The pretreatment of fresh water can be costly[96]. Moreover, building green hydrogen factories in 
arid areas can be a challenge due to freshwater scarcity. Therefore, large-scale electrolysis projects need 
more sustainable and flexible solutions. Many offshore and coastal renewable energy plants have been 
established.

High salinity, pH fluctuations, and complex composition of seawater pose significant hurdles for direct 
electrolysis. The intricate mix of inorganic salts, organic molecules, microplastics, living organisms, and 
dissolved gases can deactivate catalysts, electrodes, or membranes[97]. The low ionic concentration of 
seawater leads to increased energy consumption, rendering the process economically inefficient. The 
precipitation of compounds such as Mg(OH)2 and Ca(OH)2 blocks electrodes, degrading active sites for 
essential reactions[98]. Moreover, the oxidation of chloride ions in seawater will compete with OER and 
related products will corrode the non-noble metal catalysts, leading to catalyst deterioration. Alkaline 
seawater splitting is a more attractive and promising approach. Some methods can modulate the 
electrocatalysis through the functional design of catalysts and electrolytes, as shown in Figure 5C and D[14]. 
Some transition metal-based nitrides have unique electronic structures and anticorrosive properties. The 
local environment can be adjusted by inducing a Lewis acid layer, which can dynamically split water, 
capture hydroxyl anions and facilitate the HER activity. Some interfaces allow strong electron interaction 
and prevent the corrosion of Cl-. During OER, chloride oxidation is the competition reaction. Therefore, 
building the highly selective OER surface on the catalysts is an effective way to enhance the selectivity and 
activity via a permeable layer stopping the transport of Cl-. Similar to HER, the local environment can be of 
paramount importance for the OER. Some strong-proton-adsorption materials can facilitate water 
dissociation requiring lower overpotential. Cl- repulsion layers can be built on the catalyst surface, which 
can help exclude the chloride oxidation and show superior OER. However, alkaline seawater splitting is still 
limited by the above-mentioned issues, which makes it far from industrial application[14].

CONCLUSION AND OUTLOOKS
This review discussed different methods for producing large-scale clean hydrogen electrolyzers. The 
advantages and disadvantages of these electrolyzers were summarized and compared. Among them, AWE 
has been commercialized for several decades and shows successful applications, theories, experiences, and 
strategies to enhance our comprehension of this domain, bolstering energy conversion efficiency, and 
diminishing costs. However, significant room persists for improving the AWE efficiency. PEM exhibits 
great efficiency with expensive catalysts and membranes. Overall, recent advancements in applications, 
methodologies, and material engineering technologies have surfaced, introducing novel possibilities in this 
realm. Despite these advancements, several knowledge gaps remain to be addressed.

The sluggish kinetics of alkaline water splitting remain complex due to multiple factors. For example, the 
specific local environment, surface active sites, and dynamic nanostructure alterations significantly dictate 
the mechanism of alkaline water splitting. Therefore, more attention should be paid to modifying active 
sites, electronic structures, and nanostructures to enhance the intrinsic properties for improved 
performance.

Electrocatalyst failure in long-term, high-rate alkaline water splitting continues to be ambiguous. The 
stability requires more systematic and long-term study. Prevalent stability tests conducted using CV, 
chronopotentiometry, or chronoamperometry in laboratory settings fall short of simulating the prolonged 
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stability required for extensive utilization over thousands of hours in large-scale applications. The high 
current density and corrosive electrolyte may lead to the reconstruction and microstructure collapse. Hash 
operation conditions, such as higher temperature, pressure, and flowing electrolyte, can cause the catalysts 
to peel off from the electrode surface. Moreover, the detachment of gas bubbles from the electrode surface 
triggers substantial disturbances in the electrolyte, potentially dislodging catalysts, leading to structural 
failure and catalyst spalling.

Diverging from controlled laboratory experiments, industrial-scale production encounters more complex 
challenges and conditions. Factors such as the long distance between anodes and cathodes, bubble 
accumulation on electrodes, and atmospheric CO2 induced alterations in the electrolyte composition can 
elevate cell resistance, impeding efficient electron transport. Addressing these issues necessitates the 
strategic design of cell configurations. Unfortunately, the literature on enhancing these factors in industrial 
applications is limited, warranting further research and insights in this domain.

Advancements in separator technology are crucial for curbing gas crossover, enhancing ionic conductivity, 
and ensuring stability in highly corrosive electrolyte environments. This necessity spans both the separator 
requirements for AEM electrolyzers and conventional alkaline water splitting methods. In the case of AEM 
electrolyzers, the separator holds exceptional significance. However, current separators face limitations in 
terms of inadequate conductivity, limited stability in alkaline conditions, and high production costs, 
particularly inhibiting their large-scale implementation. Efforts in developing high-performance separators 
seek to address these critical issues and unlock the full potential of these systems.

To simulate industrial production, some new approaches should be considered in the lab. For example, 
industrial production usually uses different cells, as illustrated in the preceding section. Smaller but similar 
cell structures should be involved in the lab research to mimic large-scale production. Besides the cell 
configuration, operation conditions, separator and electrolyte are strongly recommended for most similar 
experiments with industrial applications. For one specific problem, for instance, bubble management, 
different electrode models can be developed. Long-term stability research is time-consuming. Calculation 
simulation can be possibly an effective approach.
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