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Abstract
This paper presents a novel trajectory tracking controller for an underactuated unmanned surface vehicle (USV). The
controller incorporates an event-triggered extended state observer (ETESO), a minimum learning parameter neural
network, an integral non-singular terminal sliding mode (INTSM) control strategy, and a dynamic event-triggered
mechanism (DETM). Firstly, an ETESO is developed to estimate unmeasurable velocities and lumped disturbances,
differentiating it from most existing extended state observers without the necessity for real-time output measure-
ments. To further alleviate the communication burden and minimize actuator wear, a DETM with an adjustable
threshold is introduced. In contrast to traditional event-triggered methods, which employ fixed threshold parame-
ters, this mechanism allows for online adaptive updates of the triggering thresholds, thereby enhancing resource
efficiency. Additionally, an INTSM is designed to ensure rapid convergence of the position and velocity errors of the
USV. To effectively counteract external disturbances and internal modeling uncertainties, a minimum learning param-
eter (MLP) neural network algorithm is implemented to approximate and compensate for these uncertainties. Finally,
using Lyapunov’s theory, it is demonstrated that all signals within the closed-loop tracking control system remain
bounded. Simulation results are given to illustrate the effectiveness of theoretical results.
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1. INTRODUCTION
The ocean is the largest and most complex ecosystem on Earth, covering approximately 71% of the planet’s
surface and harboring rich biodiversity and resources. In recent years, the rapid growth of the global popula-
tion has led to a sharp increase in energy consumption, which in turn has intensified environmental pollution,
posing a continuous threat to the living conditions of humans on land [1]. Ocean exploration is not only an
important area of scientific research but also a key factor in achieving sustainable development for humanity.
At the same time, with increasing attention on maritime rights by various countries, the ocean has become
a focal point of international competition [2]. Unmanned surface vehicles (USVs) have garnered significant
interest from the control science community [3]. This is mainly due to their advantages in a simple control
structure and low manufacturing cost [4]. In terms of application, USVs have been employed in several con-
texts, including seabed resource extraction, bathymetry, marine search and rescue, oceanographic surveys, and
sampling and patrolling [5]. However, the complexity of the marine environment, the unmodeled dynamics
in the mathematical models of the USV, and the inability to measure the speed of USV in real-world ocean
conditions can lead to a degradation of the maneuvering performance of the USV, potentially causing instabil-
ity in system performance. Moreover, the real-time transmission of command signals from the controller to
the actuators can lead to unnecessary communication burdens and excessive wear on the actuators [6]. Given
these challenges, further research into USVs and their integration into offshore engineering is crucial.

Typically, the data exchange of the USV is facilitated through wireless communication networks. This involves
connecting system components, such as sensors, controllers, filters, and actuators, through the communica-
tion network, with controllers typically situated in remote motherships or land-based stations [7]. Therefore,
it is paramount to reduce the computational cost and conserve communication resources to achieve adequate
control of the USV. In light of the circumstances above, event-triggered control has garnered increasing atten-
tion in recent years, as evidenced by the work of [8]. Jiang et al. presented a method for addressing the adverse
effects of denial of service (DoS) attacks by incorporating the phenomenon of signal non-transmission into
the event-triggered interval [9]. Zhou et al. proposed an event-triggered control mechanism scheme based
on dynamic surface control and adaptive dynamic programming [10]. This approach ensures that tracking the
reference trajectory effectively saves computation and reduces the number of controller executions. However,
the event-triggered thresholds in the above studies are static, which imposes rigid communication at the ex-
pense of performance. In order to further reduce the computational cost and save communication resources,
Girard and Antoine (2014) presented a dynamic triggering mechanism for event-triggered control [11]. Subse-
quently, dynamic event-triggered mechanisms (DETM) have been widely applied in the field of control. For
example, Cao et al. combined network-induced errors and relative threshold strategies to establish two new
DETM and dynamic rules for threshold parameters, reducing communication between the controller and the
actuator [12]. He et al. proposed a distributed dynamic event-triggered strategy, introducing an auxiliary pa-
rameter for each agent to dynamically adjust its threshold [13]. Wang and Chang proposed a new DETM [14].
By analyzing data in real time, the event-triggering parameters are adjusted to ensure better triggering perfor-
mance. Compared with the traditional static event-triggered control, dynamic event triggering has a longer
time interval. However, there is currently no trajectory tracking control algorithm for USVs based on DETM.
Therefore, researching trajectory tracking control for USVs based on DETM is of significant importance.

The theory of sliding mode control was mainly developed in the early 1990s [15]. In recent years, sliding mode
variable structure control has been widely used in the USV control field because of its strong robustness, fast
response and simple implementation [16,17]. In order to reduce the jitter of the system and improve the ex-
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emplary reading of the control system, Liu et al. utilized super-twisting sliding mode control to design the
system [18]. Yu et al. employed an integral form of the sliding mode surface for the control of the USV [19].
This approach effectively reduces the system’s steady-state error and enhances its steady-state performance. In
addition, Zhang et al. used a terminal sliding mode surface to achieve the convergence of the control error of
the USV system in a finite time [20]. Although this terminal sliding surface can make the system state converge
in finite time, it may make the system exist at a singular point of zero. Based on those mentioned above, this
paper employs an integral form of non-singular terminal sliding mode surface for trajectory tracking control
of the USV;That is, it can make the system error converge in finite time without a singular point and eliminate
the system’s steady-state error.

Many methods have been used to estimate disturbances and interferences in the control of USVs. Sun et al.
studied the optimal coverage control problem for multiple USVs under time-varying disturbances [21]. A dis-
turbance vector observer was designed to approximate the unknown time-varying disturbances to address this
issue. In the study of Han et al., a nonlinear version of the Kalman filter-based active modeling method was
proposed to provide online estimates of the unstructuredmodel to eliminate the errors due to the structural in-
accuracies between the quasi-linear parameter-varying (qLPV)-structured model and the natural system [22].
Chen et al. proposed a disturbance-observer-based sliding mode control design to achieve good tracking
performance, where the observer estimated and compensated for the modeling uncertainties and external
disturbance [23]. In the study of Chen et al., an adaptive sliding mode control design for nonlinear USVs is pro-
posed, incorporating a radial basis function neural network to approximate system modeling uncertainty and
a disturbance observer to estimate external unknown disturbances [24]. However, radial basis function neural
network algorithms require online adjustment of the ownership vector of the network, which increases the
computational effort. Therefore, the minimum learning parameter (MLP) neural network algorithm can solve
the problem effectively. Most of the above studies assume that the speed of unmanned vessels is measurable
and controllers are directly designed based on this assumption. However, the actual speed of marine vessels
during navigation is not measurable. Therefore, it is necessary to estimate the state variables using available
information (inputs and outputs) through models. Using observer-based feedback control is a very important
strategy. Typically, an observer is added to establish a simulation system with the same dynamic equations as
the actual system, thereby enabling state estimation, system performance analysis, and control design [25].

Based on the information provided, this paper puts forward an integral non-singular terminal sliding mode
(INTSM) trajectory tracking control algorithm. An event-triggered extended state observer (ETESO) is de-
veloped to estimate the velocity and utilizes an MLP neural network algorithm to estimate the internal and
external disturbances of the USV. Furthermore, dynamic event triggers are incorporated into the control chan-
nel to conserve communication resources while tracking a specified trajectory. The primary contributions of
this paper compared to existing research results are as follows:

(1) firstly, this paper introduces a DETM with adjustable thresholds into the USV’s control input. In contrast
to the existing event-triggered mechanisms widely used in USV trajectory tracking control [26,27], which have
fixed threshold parameters for triggering results, the mechanism employed in this study can adaptively update
the triggering thresholds online, thereby conserving communication resources more effectively. Additionally,
to further save communication resources, an event-triggered mechanism has also been incorporated into the
extended state observer;

(2) compared to the traditional sliding mode surfaces used for trajectory tracking control of the USV in
ref. [28,29], the INTSM surface employed in this paper not only ensures that the tracking error of the USV
converges within a finite time but also reduces the steady-state error of the system;

(3) in relation to ref. [30,31], which uses radial basis function neural networks to directly approximate USV’s
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modeling uncertainties and external disturbances, this paper further employs the MLP technique to compress
the weights of the neural network. Replacing the online learning of all weight vectors with single-parameter
online learning reduces the amount of computation required to estimate and compensate for external distur-
bances.

2. PROBLEM DESCRIPTION AND PRELIMINARY PREPARATION
2.1. Model of USV
The mathematical modeling of USVs is essential for analyzing their motion dynamics. In recent studies ad-
dressing trajectory tracking control for underactuated vessels, the Fossen model is predominantly employed,
where the longitudinal thrust and steering torque of the USV serve as control outputs to regulate its move-
ment [32]. Following this, the kinematic and dynamic models of the USV can be represented mathematically
as follows:

¤𝜂 = 𝑅 (𝜓) 𝜈, 𝑀 ¥𝜂 + 𝐶0 ¤𝜂 + 𝐷0 ¤𝜂 = 𝑅𝜏 + Δ 𝑓 + 𝜏𝑤 . (1)

The variables are defined as follows: 𝜂 = [𝑥, 𝑦, 𝜓]T represents the surge, sway, and yaw angle of the ship in
the inertial frame; 𝜈 = [𝑢, 𝑣, 𝑟]T represents the velocity vector of the ship in the body-fixed frame; 𝑅(𝜓) is the
transformation matrix between the inertial frame and the body-fixed frame, and it satisfies 𝑅−1(𝜓) = 𝑅T(𝜓);
𝑀 is the inertia matrix of the ship and satisfies 𝑀 = 𝑀𝑇 > 0; 𝐶 (𝑣) is the Coriolis and centripetal matrix
and satisfies 𝐶 (𝑣) = −𝐶 (𝑣)𝑇 ; 𝐷 is the damping matrix; 𝜏 = [𝜏𝑢, 0, 𝜏𝑟 ]T is the control force and moment
vector for the underactuated ship, where 𝜏𝑢 and 𝜏𝑟 represent the longitudinal thrust and the steering moment,
respectively. For underactuated ships, there is no lateral thruster, so 𝜏𝑣 = 0; 𝜏𝑤 = [𝜏𝑤𝑢, 0, 𝜏𝑤𝑟 ]T denotes the
unknown environmental time-varying interference in the body-fixed frame, where 𝜏𝑤𝑢 is the environmental
interference forces of the ship in the longitudinal directions, and 𝜏𝑤𝑟 is the interference force of the ship in the
yaw direction. The expressions for 𝑅(𝜓), 𝑀 , 𝐶 (𝑣), and 𝐷 are given by:

𝑅(𝜓) =

cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1

 , 𝑀 =


𝑚11 0 0
0 𝑚22 0
0 0 𝑚33


𝐶 (𝑣) =


0 0 −𝑚22𝑣

0 0 𝑚11𝑢

𝑚22𝑣 −𝑚11𝑢 0

 , 𝑫 =


𝑑11 0 0
0 𝑑22 0
0 0 𝑑33


Moreover, the parameters are defined as follows: 𝑚11 = 𝑚 − 𝑋 ¤𝑢, 𝑚22 = 𝑚 − 𝑌¤𝑣 , 𝑚33 = 𝐼𝑧 − 𝑁¤𝑡 , 𝑑11 = −𝑋𝑢 ,
𝑑22 = −𝑌𝑣 , 𝑑33 = −𝑁𝜏 . 𝑚 represents the mass of the underactuated ship, 𝐼z is the moment of inertia, and
other parameters such as 𝑋i = 𝜕𝑋/𝜕 ¤𝑢 are hydrodynamic derivatives. These symbols were standardized by the
Society of Naval Architects and Marine Engineers (SNAME) in 1950, and will not be elaborated here. The
mathematical model of the USV can also be written in the following form:



¤𝑥 = 𝑢 cos (𝜓) − 𝑣 sin (𝜓)
¤𝑦 = 𝑢 sin (𝜓) + 𝑣 cos (𝜓)
¤𝜓 = 𝑟

¤𝑢 =
1

𝑚11

(
𝑚22𝑣𝑟 − 𝑑11𝑢 + Δ 𝑓𝑢 + 𝜏𝑢 + 𝜏𝑤𝑢

)
¤𝑣 =

1
𝑚22

(
− 𝑚11𝑢𝑟 − 𝑑22𝑣 + Δ 𝑓𝑣 + 𝜏𝑤𝑣

)
¤𝑟 = 1

𝑚33

( (
𝑚11 − 𝑚22

)
𝑢𝑣 − 𝑑33𝑟 + Δ 𝑓𝑟 + 𝜏𝑟 + 𝜏𝑤𝑟

)
. (2)
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2.2. Design of ETESO
In this section, ETESO is designed to obtain accurate estimates of velocities with fewer communication re-
sources. According to the USV mathematical model in Equation (1), the composite dynamics model of the
system is given as:

¥𝜼 = R(𝝍) ¤𝝊 + ¤R(𝝍)𝜈 = R(𝝍)M−1 [−C(𝜈) − D𝒗 − 𝝉𝑤 − Δf ] + ¤R(𝝍)v + R(𝝍)M−1𝝉 = 𝝌 + R(𝝍)M−1𝝉 .

(3)
We define x1 = 𝜂, x2 = ¤𝜂. Consequently, the dynamics model of the USV can be expressed as:{

¤x1 = x2

¤x2 = 𝜒 + R(𝜓)M−1𝜏
, (4)

where 𝜒 = R(𝜓)M−1 [−C(v) − D𝑣 − 𝜏𝑤 − Δf ] + ¤R(𝜓)𝜈 represents the lumped uncertainty, which includes
unmodeled dynamics and external disturbances.

To design ETESO, we introduce Assumption 1, which is often used in the control of the USV [33].

Assumption 1 [34] The composite disturbance vector 𝜏𝑤 = [𝜏𝑤𝑢, 0, 𝜏𝑤𝑟 ] is time-varying and unknown, with its
Euclidean norm bounded by a constant, i.e., ‖ 𝜏𝑤 ‖< 𝜏𝑤 , where 𝜏𝑤 is a constant. Additionally, the lumped
uncertainty 𝜒 satisfies ‖ ¤𝜒 ‖≤ 𝐻, where 𝐻 > 0 is an unknown bounded constant.

The following ETESO is designed
¤̂x1 = x̂2 + 𝜀𝑒𝑔1

(
𝜉 (t)−x̂1 (𝑡)

𝜀2
𝑒

)
¤̂x2 = x̂3 + 𝑔2

(
𝜉 (t)−x̂1 (𝑡)

𝜀2
𝑒

)
+ 𝑅(𝜓)𝑀−1𝜏

¤𝜒 = 𝜀−1
𝑒 𝑔3

(
𝜉 (t)−x̂1 (𝑡)

𝜀2
𝑒

) , (5)

where x̂1, x̂2 and 𝜒 are estimate of x1, x1 and 𝜒, respectively. The parameter 𝜀𝑒 is a high-gain parameter to be
determined. The functions 𝑔𝑖 (∗), 𝑖 = 1, 2, 3 are defined as follows: 𝑔1(𝜗) = 𝑎1𝜗 + 𝜑(𝜗), 𝑔 𝑗 (𝜗) = 𝑎 𝑗𝜗, 𝑗 = 2, 3,

are constants to be chosen to ensure that the matrix 𝑁 =


−𝑎1 1 0
−𝑎2 0 1
−𝑎3 0 0

 is Hurwitz, and 𝜑(𝜗) is defined as

𝜑(𝜗) =
{ 1

4 𝑠𝑖𝑔𝑛(𝜗), 𝑖 𝑓 |𝜗 | > 𝜋
2

1
4 𝑠𝑖𝑛(𝜗), 𝑖 𝑓 |𝜗 | ≤ 𝜋

2
. where 𝜁 (𝑡) is the measurement output, which is defined as:

𝜁 (𝑡) =
{
𝜂(𝑡𝑜,𝑘 ), 𝑖 𝑓 Γ1 ≤ 0,
𝜂(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(6)

with an event-triggered condition given by Γ1 =
∑3

𝑖=1 𝐿𝑖 |𝜎(𝑡) | − 𝐵𝜀𝑒 , where 𝐵 is a positive constant to be
determined, and 𝐿𝑖 > 0 is a Lipschitz constant for 𝑔𝑖 (∗). The 𝜎(𝑡) is an sampled error defined as 𝜎(𝑡) =
𝜂(𝑡𝑜,𝑘 )−𝜂(𝑡)

𝜀2
𝑒

, for 𝑡 ∈ [𝑡𝑜,𝑘 , 𝑡𝑜,𝑘+1). Here, 𝑡𝑜,𝑘 denotes the triggered instant, which depends on condition 6.

Lemma 1 [35] For any ℓ > 0 and 𝑎 ∈ R, the following inequality holds:

0 ≤| 𝑎 | −𝑎𝑡𝑎𝑛ℎ( 𝑎
ℓ
) ≤ ℵ𝑎. (7)

Given that ℵ = 𝑒−(1+ℵ) , we take ℵ = 0.2785.

Lemma 2 [36] For a given unknown continuous function 𝑓 (x):<𝑚 → <, it can be approximated over a com-
pact set Ωx ⊂ <𝑚 with the following radial basis function neural network:

𝑓 = 𝑊∗𝑇 ℎ(𝑧) + 𝜀 (8)
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where 𝑊∗𝑇 = [𝑊∗
1 ,𝑊

∗
1 , ,𝑊

∗
𝑘 ]𝑇 is the ideal weight vector with 𝑘 being the number of NN nodes and matrix

𝑧 = [𝑢, 𝑣, 𝑟]𝜏 represents the input signals of radial basis function neural network. 𝜀 represents the estimated
error of neural network with the upper bound |𝜀 | ≤ 𝜀∗, where 𝜀∗ is an unknown positive constant. The basis
function ℎ(𝑥) = [ℎ1(𝑥), ℎ2(𝑥), ..., ℎ𝑛 (𝑥)]r is chosen as the Gaussian function, that is

ℎ 𝑗 (𝑥) = exp

[
−
𝑥 − 𝑐 𝑗

2

2𝑏 𝑗
2

]
,
(
𝑗 = 1, · · · , 𝑛

)
(9)

where 𝑏 𝑗 > 0 and 𝑐 𝑗 = [𝑐1, 𝑐2, · · · , 𝑐𝑚]T ∈ R𝑚 are the center of the receptive field and the width of the
Gaussian function. Formally, the optimal weight vector𝑊∗ is computed as:

𝑊∗ = 𝑎𝑟𝑔 min
�̂�∈R𝑘

{
𝑠𝑢𝑝

��� 𝑓 (𝒙) − �̂�
𝑇
𝑺(𝒙)

���} (10)

where �̂� is the estimate of𝑊∗.

Define �̃� = 𝑊∗ − �̂� , then

𝑓 = 𝑓 − 𝑓 = 𝑊∗𝑇 ℎ(𝑧) + 𝜀 − �̂�𝑇 ℎ(𝑧) = �̃�𝑇 ℎ(𝑧) + 𝜀 (11)

Lemma 3 [37] Consider a nonlinearsystem ¤x = 𝑓 (x(𝑡)),x ∈ <, if there exists a continuous and positive definite
Lyapunov function 𝑉 (x) satisfying 𝑘1(‖x‖) ≤ 𝑉 (x) ≤ 𝑘2(‖x‖) such that ¤𝑉 ≤ −𝑙𝑉+ 𝑄, where 𝑘1, 𝑘2 are class
𝜅 functions and 𝑙, 𝑄 are positive constants, and then the solution x(𝑡) is ultimately uniformly bounded.

3. TRAJECTORY TRACKING CONTROLLER DESIGN
In this section, we will design an INTSM controller to effectively track the trajectory of the USV.The complete
design procedure will be elaborated upon in the following subsections.

3.1. Virtual control design
For future use, we will define the following tracking errors:

𝑥𝑒
𝑦𝑒
𝜓𝑒

 = 𝐽T(𝜓)


𝑥𝑑 − 𝑥

𝑦𝑑 − 𝑦

𝜓𝑑 − 𝜓

 , (12)

where (𝑥, 𝑦) denotes the position of the USV in the earth - fixed frame, , and 𝜓 represents the vessel’s yaw angle.
The terms 𝑥d, 𝑦d, 𝜓𝑒 denote the longitudinal position error, transverse position error, and heading angle error,
respectively. Additionally, 𝑧𝑒 =

√
𝑥2
𝑒 + 𝑦2

𝑒 , where 𝑥e and 𝑦e represent the vertical and horizontal position errors.
These errors correspond to the horizontal and vertical coordinates of the reference trajectory. The expected
course can be given as:

𝜓𝑑 =


arctan

(
¤𝑦𝑑
¤𝑥𝑑

)
, 𝑧𝑒 = 0

0.5 [1 − sgn (𝑥𝑒)] sgn (𝑦𝑒) 𝜋 + arctan
(
𝑦𝑒
𝑥𝑒

)
, other

. (13)

In Figure 1, the coordinate system 𝑂𝑋𝑌 represents the inertial reference frame, with point 𝑂 as the initial
position. The𝑂𝑋 axis points due north, while the𝑂𝑌 is due east. Point𝑂𝑏 is defined as the midpoint between
the bow and stern of the USV. The vector 𝑜𝑏𝑥𝑏 extends toward the bow along the USV’s midline, and the
vector 𝑜𝑏𝑦𝑏 is directed along the port side of the USV. Additionally, line segment 𝐴𝐵 represents the reference
trajectory.

According to the relationships depicted in Figure 1, the variables 𝑥𝑒 , 𝑦𝑒 and 𝑧𝑒 can be expressed as:

𝑥𝑒 = 𝑧𝑒 cos𝜓𝑑 𝑦𝑒 = 𝑧𝑒 sin𝜓𝑑 . (14)
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Figure 1. Basic schematic diagram of USV trajectory tracking. USV: Unmanned surface vehicle.

Taking the time derivative of the variables 𝑧𝑒 and 𝜓𝑒 , along with utilizing Equations (2) and (14), we can derive

¤𝑧𝑒 = ¤𝑥𝑑 cos𝜓𝑑 + ¤𝑦𝑑 sin𝜓𝑑 − 𝑢 cos𝜓𝑒 − 𝑣 sin𝜓𝑒

¤𝜓𝑒 = ¤𝜓𝑑 − 𝑟
. (15)

Design the virtual control functions 𝛼𝑢 and 𝛼𝑟 as follows:

𝛼𝑢 = cos−1 (𝜓𝑒)
[
𝑘𝑧𝑒1𝑧𝑒 + 𝑘𝑧𝑒2sgn𝛿 (𝑧𝑒)

]
+ ¤𝑥𝑑 cos (𝜓𝑑) + ¤𝑦𝑑 sin (𝜓𝑑) − 𝜐 sin (𝜓𝑒) , (16)

𝛼𝑟 = 𝑘𝜓𝑒1𝜓𝑒 + 𝑘𝜓𝑒2sgn𝛿 (𝜓𝑒) + ¤𝜓𝑑 , (17)

where 𝑘𝑧𝑒1 > 0, 𝑘𝑧𝑒2 > 0, 𝑘𝜓𝑒1 > 0, 𝑘𝜓𝑒2 > 0, 0.5 ≤ 𝛿 < 1 are the design parameters.

Note that when 𝜓𝑒 = ± 𝜋
2 , 𝛼𝑢 becomes undefined. Therefore, in actual engineering, the first assumption is that

condition |𝜓𝑒 | < 𝜋
2 holds, and the assumption is guaranteed by the transformation of [38]

𝜓𝑒 =


𝜓𝑒 − 𝜋, 𝜓𝑒 ≥ 0.5𝜋
𝜓𝑒, −0.5𝜋 < 𝜓𝑒 < 0.5𝜋
𝜓𝑒 + 𝜋, 𝜓𝑒 ≤ −0.5𝜋

(18)

3.2. Design of INTSM controller
To prevent dimensional explosion, we introduce the following first-order filter.

𝜇 ¤𝛾 + 𝛾 = 𝛼 𝛾(0) = 𝛼(0), (19)

where 𝛾 is first-order filter and 𝜇 denotes the time constant.

Define the longitudinal error and the yaw velocity error as:

𝑒𝑢 = 𝑢 − 𝛾𝑢, 𝑒𝑟 = 𝑟 − 𝛾𝑟 . (20)

Introduction of an INTSM surface for longitudinal error and yaw velocity error:

𝑆𝑖 = 𝜆𝑖

∫ 𝑡

0
𝑠𝑖𝑔𝑟𝑖 (𝑒𝑖)𝑑𝜏 + 𝛽𝑖𝑒𝑖 , 𝑖 = 𝑢, 𝑟 (21)
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given that 𝜆𝑖 , 𝛽𝑖 and 𝑟𝑖 > 1 are designed constants, we proceed to differentiate 𝑆𝑖 to obtain

¤𝑆𝑖 = 𝜆𝑖𝑠𝑖𝑔
𝑟𝑖 (𝑒𝑖) + 𝛽𝑖 ¤𝑒𝑖 , 𝑖 = 𝑢, 𝑟 . (22)

The surge motion control law 𝜏𝑢 and yaw motion control law 𝜏𝑟 can be designed as:

𝜏𝑢 = 𝑚11 ¤𝛾𝑢 − 𝜏∗𝑤𝑢𝑡𝑎𝑛ℎ(𝑆𝑢/𝜀𝑢) − 4 𝑓𝑢 + 𝑑11�̂� − 𝑚22�̂�𝑟 −
𝑚11𝜆𝑢𝑠𝑖𝑔

𝑟𝑢𝑒𝑢
𝛽𝑢

− 𝑘𝑢𝑡𝑎𝑛ℎ(𝑆𝑢), (23)

𝜏𝑟 = 𝑚33 ¤𝛾𝑟 − 𝜏∗𝑤𝑟 𝑡𝑎𝑛ℎ(𝑆𝑟/𝜀𝑟 ) − 4 𝑓𝑟 + 𝑑33𝑟 − (𝑚11 − 𝑚22)�̂��̂� −
𝑚33𝜆𝑟 𝑠𝑖𝑔

𝑟𝑟 𝑒𝑟
𝛽𝑟

− 𝑘𝑟 𝑡𝑎𝑛ℎ(𝑆𝑟 ), (24)

where Δ �̂�𝑢 = 1
2 𝑠𝑢𝜙𝑢ℎℎ

𝑇 and Δ �̂�𝑟 = 1
2 𝑠𝑟𝜙𝑟ℎℎ

𝑇 represent the estimate of 4 𝑓𝑢 and 4 𝑓𝑟 , respectively. The corre-
sponding adaptive laws are given in

¤̂𝜙𝑖 = �̂�𝑖

(
1
2
𝑠2
𝑖 ℎ

Tℎ − 𝜅𝑢𝜙𝑖

)
, 𝑖 = 𝑢, 𝑣 (25)

The adaptive law for model uncertainty in the USV is defined as follows:

¤̂𝜏∗𝑊𝑖 = 𝛾𝑖

[
𝑆𝑖𝜓(𝑆𝑖) − 𝜇𝑖

(
�̂�∗𝑤𝑖 − 𝜏0

𝑤𝑖

)]
, 𝑖 = 𝑢, 𝑣 (26)

3.3. Dynamic event-triggered input scheme with ETESO
In this subsection, we present a dynamic event-triggered control scheme in the last step. First, we define
𝜏 =

[
𝜏𝑢 𝜏𝑟

]𝑇 , the dynamic event-triggered control law 𝜏 is given as:

𝜏(𝑡) = 𝜏
(
𝑡 𝑗
)
,∀𝑡 ∈ [𝑡 𝑗 , 𝑡 𝑗+1), 𝑗 ∈ N. (27)

It is evident that 𝜏(𝑡) is updated only at triggering instants 𝑡 𝑗 , where 𝑗 ∈ N. We define the measurement error
𝑧(𝑡) as

𝑧 (𝑡) = 𝜏 (𝑡) − 𝜏 (𝑡) ,∀𝑡 ∈
[
𝑡 𝑗 , 𝑡 𝑗+1

)
, 𝑗 ∈ N. (28)

The DETM is designed as:

𝑡 𝑗+1 = inf
𝑡>𝑡 𝑗

{𝑡 ∈ R≥0 |𝜂𝑖 (𝑡) + (𝑘𝑖 − 1) 𝑆2
𝑖 − 𝑍2

𝑖 ≤ 0}, 𝑡0 = 0, (29)

where 𝜂 (𝑡) is an internal dynamic variable satisfying

¤𝜂 = −𝜒𝜂 + (𝑘𝑖 − 1) 𝑆2
𝑖 − 𝑍2

𝑖 , 𝜂(0) = 𝜂0. (30)

It is evident that the inequality −𝜂𝑘 (𝑡) ≤ (𝑘𝑖 − 1) 𝑆2
𝑖 − 𝑍2

𝑖 holds all the time. We will now demonstrate that
𝜂𝑘 (𝑡) > 0 is indeed true. Based on the definition of 𝑍 (𝑡) in Equation (28), we can conclude that | |𝑍 (𝑡) | | ≤
| |𝑍 (𝑡−) | | for all 𝑡 ≥ 0. Then, the DETM (29) ensures that for all 𝑡 > 0

𝜂𝑖 (𝑡) + (𝑘𝑖 − 1)𝑆2
𝑖 − 𝑍2

𝑖 ≥ 0 (31)

from Equation (31), we have
(𝑘𝑖 − 1)𝑆2

𝑖 − 𝑍2
𝑖 ≥ −𝜂𝑖 (𝑡) (32)

Combining Equations (30) and (32), it can be deduced that for all 𝑡 ≥ 0

¤𝜂(𝑡) ≥ −𝜒𝜂(𝑡) − 𝜂(𝑡), 𝜂(0) = 𝜂0 > 0. (33)

Then by the Comparison Lemma, we can obtain that for all 𝑡 ≥ 0

𝜂(𝑡) ≥ 𝜂0𝑒
−(𝜒+1)𝑡 ≥ 0. (34)
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4. STABILITY ANALYSIS
To prove the stability of ETESO, we introduce Assumption 2, which is often used to ensure the stability of the
nominal system considered [39].

Assumption 2 [40] There exist two nonnegative definite functions 𝑃(∗) and𝑊 (∗) : R𝑛+1 → R satisfying

𝜆1 | |𝜗 | |2 ≤ 𝑃(𝜗) ≤ 𝜆2 | |𝜗 | |2, 𝜆3 | |𝜗 | |2 ≤ 𝑊 (𝜗) ≤ 𝜆4 | |𝜗 | |2, (35)
𝑛∑
𝑗=1

𝜕𝑃

𝜕𝜗 𝑗
(𝜗 𝑗+1 − 𝑔 𝑗 (𝜗1)) −

𝜕𝑃

𝜕𝜗𝑛+1
𝑔𝑛+1(𝜗1) ≤ −𝑊 (𝜗), (36)��������𝜕𝑃𝜕𝜗 �������� ≤ 𝛽 | |𝜗 | |, (37)

where 𝛽 and 𝜆𝑖 are positive constants, 𝑖 = 1, . . . , 4.

Theorem 1 Consider the closed-loop system comprising the underactuated USV dynamics given in Equation
(2), subject to modeling uncertainty and external disturbances. This system satisfies Assumptions 2, utilizing
the intermediate control laws specified in Equations (23) and (24), the triggering instants defined in Equation
(29), the ETESO in Equation (5), the MLP neural network update laws in Equation (25), and the adaptive laws
given in Equation (26). By selecting appropriate parameters, all error signals in the system converge quickly
to an arbitrarily small vicinity of the origin, while also ensuring that the Zeno phenomenon is excluded.

Proof 1 From Equations (4) and (5), we have for 𝑥𝑖 and 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1){
¤e𝑖 = 1

𝜀 (𝑒𝑖+1(𝑡) − 𝑔𝑖 (𝑒1(𝑡)) − 𝛼𝑖 (𝑒1(𝑡) − 𝜎(𝑡))), 𝑖 = 1, 2,
¤e3 = ¤x3 − 1

𝜀 (𝑔3 (𝑒1(𝑡)) + 𝛼3(𝑒1(𝑡) − 𝜎(𝑡))),
. (38)

Considering a positive semidefinite function𝑉0 = 𝑃(𝑒), and 𝑃(𝑒) is given by 𝑃(𝜗) = 〈�̃�𝜗, 𝜗〉 𝑃(∗) : R𝑛+1 → R,
the matrix �̃� is a positive definite one satisfying �̃�𝑁 + 𝑁𝑇 �̃� = −𝐼 , and 𝐼 is the identity matrix. Taking the
derivative of 𝑉0, we can compute its derivative, which yields:

𝑑

𝑑𝑡
𝑉0(𝑡) =

3∑
𝑖=1

𝜕𝑃

𝜕𝑒𝑖
¤𝑒𝑖 (𝑡) =

1
𝜀

2∑
𝑖=1

𝜕𝑃

𝜕𝑒𝑖
(𝑒𝑖+1(𝑡) − 𝑔𝑖 (𝑒1)) −

1
𝜀

𝜕𝑃

𝜕𝑒3
𝑔3(𝑒1(𝑡)) −

1
𝜀

3∑
𝑖=1

𝜕𝑃

𝜕𝑒𝑖
𝛼𝑖 (𝑒1(𝑡), 𝜎(𝑡)) + 𝜕𝑃0

𝜕𝑒3
¤x3.

(39)
From Equations (35) and (36) in Assumptions 2, we have

¤𝑉0(𝑡) ≤ −𝜆3

𝜀
| |𝑒 | |2 + 𝛽 ¤𝑥3 | |𝑒 | | −

1
𝜀

3∑
𝑖=1

𝜕𝑃

𝜕𝑒𝑖
𝛼𝑖 (𝑒1(𝑡), 𝜎(𝑡)). (40)

considering the fact that the functions 𝑔𝑖 are assumed to be Lipschitz with 𝐿𝑖 > 0, it follows

|𝛼𝑖 (𝑒1, 𝜎) | = |𝑔𝑖 (𝑒1 + 𝜎) − 𝑔𝑖 (𝑒1) | ≤ 𝐿𝑖 |𝑒1 + 𝜎 − 𝑒1 | = 𝐿𝑖 |𝜎 |. (41)

By combining Equation (6), it yields

−1
𝜀

𝑛+1∑
𝑖=1

𝜕𝑃

𝜕𝑒𝑖
𝛼𝑖 (𝑒1(𝑡), 𝜎(𝑡)) ≤

(
𝜀−

1
3 | |𝑒 | |2
2

+ 𝜀
1
3

2

)
𝐵𝛽. (42)

According to Young’s inequality, it follows that 𝛽 ¤𝑥𝑛+1 | |𝑒 | | ≤ 𝛽
2𝜀

(
𝜀

2
3 | |𝑒 | |2 + 𝜀

4
3 | ¤𝑥𝑛+1 |2

)
. Then, from Assumption

2, we can get

𝛽 ¤𝑥𝑛+1 | |𝑒 | | ≤
𝛽

2𝜀

(
𝜀

2
3 | |𝑒 | |2 + 𝜀

4
3 𝑀2

)
. (43)
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Substituting Equations (42) and (43) into Equation (40), from Assumption 2, it yields:

¤𝑉0(𝑡) ≤ −2𝜆3 − 𝛽𝜀
2
3 − 𝛽𝜀

2
3 𝐵

𝜀𝜆2
𝑉0 +

𝜀
1
3

2
𝛽(𝑀2 + 𝐵), (44)

where we choose parameters such that 2𝜆3−𝛽𝜀
2
3 −𝛽𝜀

2
3 𝐵

𝜀𝜆2
> 0. Next, consider

𝑉1 =
𝑚11

2𝛽𝑢
𝑆2
𝑢 +

𝑚33

2𝛽𝑟
𝑆2
𝑟 +

1
2𝛾𝑢

𝜏∗wu
2 + 1

2𝛾𝑟
𝜏∗wr

2 + 1
2�̂� 𝑢

𝜙2
𝑢 +

1
2�̂� 𝑟

𝜙2
𝑟 + 𝜂. (45)

Taking the derivative of 𝑉1 and substituting Equations (23)-(26) into it have:

¤𝑉1 = −𝑘𝑢𝑆2
𝑢 − 𝑘𝑟𝑆

2
𝑟 + 𝑆𝑢𝝓

∗T
u 𝒉(𝒛) + 𝜉𝑢𝑆𝑢 + ¤𝜂 − 1

2
𝑆2
𝑢𝝓𝑢𝒉

T𝒉 + 𝑆𝑟𝝓
∗T
r 𝒉(𝒛) + 𝜉𝑟𝑆𝑟 −

1
2
𝑆2
𝑟𝝓𝑟𝒉

T𝒉

+ 𝜏∗wu ( |𝑆𝑢 | − 𝑆𝑢𝜙(𝑆𝑢)) + 𝜏∗wr ( |𝑆𝑟 | − 𝑆𝑟𝜙(𝑆𝑟 )) −
1
�̂�𝑢

𝜙𝑢
¤̂𝜙𝑢 −

1
�̂�𝑟

𝜙𝑟
¤̂𝜙𝑟 + 𝜎𝑢

(
𝜏∗wu − 𝜏∗wu

) (
𝜏∗wu − 𝜏0

wu

)
+ 𝜎𝑟

(
𝜏∗wr − 𝜏∗wr

) (
𝜏∗wr − 𝜏0

wr

)
+ 𝑍𝑢𝑆𝑢 + 𝑍𝑟𝑆𝑟 + ¤𝜂

. (46)

From Young’s inequality, we have the following inequalities:

2𝑆𝑢𝜙∗Tu ℎ ≤ 𝑆2
𝑢

𝜙∗u2 ‖ℎ‖2 + 1 = 𝑆2
𝑢𝜙𝑢ℎ

Tℎ + 1, 2𝑆𝑟𝜙∗Tr ℎ ≤ 𝑆2
𝑟

𝜙∗r 2 ‖ℎ‖2 + 1 = 𝑆2
𝑟 𝜙𝑟ℎ

Tℎ + 1

− 𝜎𝑢 �̃�
∗
𝑤𝑢

(
�̂�∗𝑤𝑢 − 𝜏0

𝑤𝑢

)
≤ −𝜎𝑢

2
�̃�∗𝑤𝑢 +

𝜎𝑢

2

(
𝜏∗𝑤𝑢 − 𝜏0

𝑤𝑢

)2
− 𝜎𝑟 �̃�

∗
𝑤𝑟

(
�̂�∗𝑤𝑟 − 𝜏0

𝑤𝑟

)
≤ −𝜎𝑟

2
�̃�∗𝑤𝑟 +

𝜎𝑟

2

(
𝜏∗𝑤𝑟 − 𝜏0

𝑤𝑟

)2. (47)

Then, we have the following inequalities

¤𝑉 ≤ −𝜂1𝑠
2
1 − 𝜂2𝑠

2
2 +

1
2
𝑠2

1𝜙1ℎ
Tℎ + 1

2
𝑠2

2𝜙2ℎ
Tℎ +

𝜁2
U
2

+
𝑠2

1
2

+
𝜁2

R
2

+
𝑠2

2
2

− 1
𝜆1

𝜙1
¤̂𝜙1 −

1
𝜆2

𝜙2
¤̂𝜙2 + 0.2785𝜀1𝜏

∗
wu + 0.2785𝜀2𝜏

∗
wr

− 𝜎1

2
(
𝜏∗wu − 𝜏∗wu

)2 + 𝜎1

2

(
𝜏∗wu − 𝜏0

wu

)2
− 𝜎2

2

(
𝜏∗wr − 𝜏∗wr

)2
+ 𝜎2

2

(
𝜏∗wr − 𝜏0

wr

)2
+ 1

= −2𝜂1 − 1
2

𝑠2
1 −

2𝜂2 − 1
2

𝑠2
2 −

𝜎1

2
(
𝜏∗wu − 𝜏∗wu

)2 − 𝜎2

2
(
𝜏∗wr − 𝜏∗wr

)2 + �̃�1

(
1
2
𝑠2

1𝒉
T𝒉 − 1

�̂�1

¤̂𝝓1

)
+ �̃�2

(
1
2
𝑠2

2𝒉
T𝒉 − 1

�̂�2

¤̂𝝓2

)
+ 0.2785𝜺1 ¤𝝉wu + 0.2785𝜺2 ¤𝝉wr +

𝜁U
2

2
+ 𝜁R

2

2
+ 𝜎1

2

(
𝜏∗wu − 𝜏0

wu

)2
+ 𝜎2

2

(
𝜏∗wr − 𝜏0

wr

)2
+ 𝑁2

u
4𝛼l

+ 1

= −2𝜂1 − 1
2

𝑠2
1 −

2𝜂2 − 1
2

𝑠2
2 −

(
1
𝑇
− 𝛼1

)
𝑦2

1 −
𝜎1

2
(
𝜏∗wu − 𝜏∗wu

)2 − 𝜎2

2
(
𝜏∗wr − 𝜏∗wr

)2 + 𝜅1𝜙1𝜙1 + 𝜅2𝜙2𝜙2 + 0.2785𝜀1𝜏
∗
wu

+ 0.2785𝜀2𝜏
∗
wr +

𝜁2
U
2

+
𝜁2

R
2

+ 𝜎1

2

(
𝜏∗wu − 𝜏0

wu

)2
+ 𝜎2

(
𝜏∗wr − 𝜏∗wr

) (
𝜏∗wr − 𝜏0

wr

)
− 1
�̂�1

𝜙1
¤̂𝜙1 −

1
�̂�2

𝜙2
¤̂𝜙2

(48)

𝜙1𝜙1 and 𝜙2𝜙2 satisfy the following inequality

2𝜙1𝜙1 = 𝜙2
1 − 𝜙2

1 − 𝜙2
1 ≤ 𝜙2

1 − 𝜙2
1, 2𝜙2𝜙2 = 𝜙2

2 − 𝜙2
2 − 𝜙2

2 ≤ 𝜙2
2 − 𝜙2

2. (49)

Substituting Equation (49) into Equation (48) yields

¤𝑉 = −2𝜂1 − 1
2

𝑠2
1 −

2𝜂2 − 1
2

𝑠2
2 −

𝜎1

2
(
𝜏∗wu − 𝜏∗wu

)2 − 𝜎2

2
(
𝜏∗wr − 𝜏∗wr

)2 − 𝜅1

2
𝜙2

1 −
𝜅2

2
𝜙2

2 + 0.2785𝜀1𝜏
∗
wu

+ 0.2785𝜀2𝜏
∗
wr +

𝜉2
U
2

+
𝜉2

R
2

+ 𝜎1

2

(
𝜏∗wu − 𝜏0

wu

)2
+ 𝜎2

2

(
𝜏∗wr − 𝜏0

wr

)2
+ 𝑁2

u
4𝛼1

+ 1 + 𝜅1

2
𝜙2

1 +
𝜅2

2
𝜙2

2

. (50)

Letting 𝑉 = 𝑉0 +𝑉1 and taking the derivative of 𝑉 , we can get:

¤𝑉 ≤ −𝐶1𝑉 + 𝐶2, (51)
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where𝐶1 = 𝑚𝑖𝑛

{
2𝜂1−1

2 , 2𝜂2−1
2 , 𝜎1

2 , 𝜎2
2 , 2𝜆3−𝛽𝜀

2
3 −𝛽𝜀

2
3 𝐵

𝜀𝜆2

}
and𝐶2 = 0.2785𝜀1𝜏

∗
wu+0.2785𝜀2𝜏

∗
wr+

𝜉2
U
2 + 𝜉2

R
2 +𝜎1

2
(
𝜏∗wu − 𝜏0

wu
)2+

𝜎2
2

(
𝜏∗wr − 𝜏0

wr

)2
+ 𝑁2

u
4𝛼1

+ 1 + 𝜅1
2 𝜙

2
1 +

𝜅2
2 𝜙

2
2 +

𝜀
1
3

2 𝛽(𝑀2 + 𝐵). Solving Equation (51) gives

0 < 𝑉 (𝑡) ≤ (𝑉 (0) − 𝐶2

𝐶1
)𝑒−𝐶1𝑡 + 𝐶2

𝐶1
. (52)

Based on Lemma 3, Equations (51) and (52), we conclude that 𝑉 (𝑡) is uniformly ultimately bounded, which
implies that all error signals 𝑆𝑢 , 𝑆𝑟 , 𝜙𝑢 , 𝜙𝑟 , �̃�∗𝑢 and �̃�∗𝑟 are ultimately uniformly bounded. Furthermore, since
the error signals 𝑢𝑒 and 𝑟𝑒 are ultimately bounded, it follows that 𝑥𝑒 and 𝑦𝑒 are also bounded. By appropriately
choosing the parameter 𝐶2

𝐶1
, it can bemade arbitrarily small, ensuring that the tracking error becomes negligible,

allowing the USV to track the trajectory with high accuracy.

Next, we first prove that there exists a Zeno-free phenomenon in the ETESO. By the definition of ETESO in
Equation (6) and the definition of Equation (𝜎(𝑡)), we can get

|𝑦(𝑡 (𝑜, 𝑘) − 𝑦(𝑡)) | ≤ �̄�𝜀3∑𝑖=1
3 𝐿𝑖

. (53)

Then, for the error𝜎(𝑡) in Equation (6), as 𝑡 ∈ [𝑡𝑜,𝑘 , 𝑡𝑜,𝑘+1), the following result |𝑦(𝑡 (𝑜, 𝑘) − 𝑦(𝑡)) | =
∫ 𝑡

𝑡𝑜,𝑘
| ¤𝑥1 |𝑑𝜏 =∫ 𝑡

𝑡𝑜,𝑘
|𝑥2 |𝑑𝜏 holds. Since the system states are bounded, there exists 𝐵 > 0 such that the inequality |𝑦(𝑡 (𝑜, 𝑘) − 𝑦(𝑡)) | =∫ 𝑡

𝑡𝑜,𝑘
|𝑥2 |𝑑𝜏 ≤ (𝑡 − 𝑡 (𝑜, 𝑘))𝐵 holds. Therefore, for 𝑡 = 𝑡 (𝑜, 𝑘) + 𝜏, there exists 𝜏 = �̄�𝜀3

𝐵
∑𝑖=1

3 𝐿𝑖

such that 𝑦(𝑡) −

𝑦(𝑡𝑜, 𝑘) ≤ �̄�𝜀3∑𝑖=1
3

. Accordingly, it comes to the result that the interval between 𝑡0,𝑘 and 𝑡0,𝑘+1 satisfies {𝑡𝑜,𝑘+1 −

𝑡𝑜,𝑘 } ≥ 𝜏 > 0.

Finally, we prove that no Zeno phenomenon occurs by contradiction. Suppose that there exists Zeno phe-
nomenon, then lim 𝑗→∞ 𝑡 𝑗 = 𝑇0 < ∞, where 𝑇0 is a positive constant, and lim 𝑗→∞ 4 𝑗 = 0 with 4 𝑗 = 𝑡 𝑗+1 − 𝑡 𝑗 .
By the existence of the limit, for any constant 𝜖0 > 0, there exists a positive integer 𝑁 (𝜖0), such that

𝑡 𝑗 ∈ [𝑇0 − 𝜖0, 𝑇0] ,∀𝜎 > 𝑁 (𝜖0). (54)

Define the triggering instant as 𝜏 = 𝑡 𝑗+1. Note that once one event is triggered, then from Equation (29),
the measurement error 𝑍 (𝑡) is reset to zero, that is, | |𝑍 (𝜏+) | | = 0. Just before the triggering, the following
inequality can be obtained from Equation (30)

𝜂𝑖 (𝜏−) + (𝑘𝑖 − 1)𝑆2
𝑖 (𝜏−) − 𝑍2

𝑖 (𝜏−) ≤ 0, (55)

it is easy to see that
𝜂𝑖 (𝜏−) ≤ 𝑍2

𝑖 (𝜏−), (56)

there exists a constant 𝐿𝑖 > 0, such that

𝑍2
𝑛 (𝑡) =

(
| |𝑍 (𝑡 𝑗 ) − 𝑍 (𝑡) | |

)2 ≤ 𝐿𝑖 (𝑡 − 𝑡 𝑗 ) . (57)

From Equations (56) and (57), we can have

𝐿𝑖Δ 𝑗 ≥ 𝑍2
𝑛 (𝑡−𝑗+1) ≥ 𝜂(𝑡−𝑗+1) ≥

𝜂0𝑒
−(𝜒+ 1

𝜆 )𝑡 𝑗+1

𝜆
≥ 𝜂0𝑒

−(𝜒+ 1
𝜆 )𝑇0

𝜆
, (58)

It is easy to see by Equation (58) that when lim 𝑗→∞ 𝑡 𝑗 = 𝑇0 < ∞, the assumption about lim 𝑗→∞ Δ 𝑗 = 0 cannot
be obtained, which results in a contradiction. Therefore, the Zeno phenomenon does not occur. Based on the
above calculation, Theorem 1 is proved.
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Figure 2. The reference and actual trajectories in the x-y plane.

5. SIMULATION ANALYSIS
To provide amore convincing demonstration of the effectiveness of the proposed trajectory tracking controller,
the algorithm presented in this paper is compared with a commonly used event-triggered sliding mode algo-
rithm based on LOS. The benchmark algorithm integrates the LOS guidance rate [38], event-triggered mecha-
nism [26], linear sliding surface [28], and state observer extension [41]. In order to verify the effectiveness of the
proposed unmanned boat tracking control strategy and formation control strategy, a model boat Cybership
II USV developed by the Norwegian University of Science and Technology was selected for the simulation
experimental study. The model mass 𝑚 = 23.8 kg, length 𝐿𝑖 = 1.225 m width 𝐵𝑖 = 0.29 m, the center of gravity
is at a distance 𝑥 axis from the origin 𝑥𝑔 = 0.046 m, and the inertia moment 𝐼𝑧 = 0.046 m. The relevant model
parameters are in ref. [42].

In the ETESO, 𝛼𝑖 (𝜗) is selected as 𝛼1 = 3, 𝛼2(𝜗) = 3, 𝛼3 = 1, 𝐿1 = 3.25, 𝐿2 = 3, 𝐿3 = 1, 𝐵 = 10, 𝜀𝑒 = 0.1
We set the reference trajectory as 𝑥𝑑 = 300𝑠𝑖𝑛(0.03𝑡) and 𝑦𝑑 = 300𝑐𝑜𝑠(0.03𝑡). The initial position of the USV
is 𝑥(0)=1 m, 𝑦(0)=29 m, 𝜓(0)=0 rad, 𝑢(0)=0 m/s, 𝑣(0)=0 m/s and 𝑟 (0)=0 rad/s. The control parameters are
𝑘𝑢 = 10, 𝑘𝑟 = 10, 𝜆𝑢 = 10, 𝜆𝑟 = 10 , 𝛽𝑢 = 1.5, 𝛽𝑟 = 1.5, 𝑟𝑢 = 1.1, 𝑟𝑟 = 1.2. Parameters of adaptive laws
are 𝜏0

wu = 0.1, 𝜏0
wr = 0.1, 𝛾𝑢 = 12, 𝛾𝑟 = 12, Parameters of update laws are �̂�𝑢 = 10 and �̂�𝑟 = 10. To testify

to the robustness and effectiveness of the proposed controller, the disturbances are assumed to be as follows:
Δ 𝑓u = 0.5+0.25 sin(0.01𝑡), Δ 𝑓r = −40+2.5 cos(0.10𝑡). 𝜏𝑤𝑢 = sin

(
0.2𝑡

)
+ cos

(
0.5𝑡

)
, 𝜏𝑤𝑟 = sin

(
0.5𝑡

)
+ cos

(
0.3𝑡

)
.

The time-varying target trajectory is chosen as follows:[
𝑥𝑑
𝑦𝑑

]
=

[
30𝑠𝑖𝑛(0.03𝑡)

−40 + 2.5𝑐𝑜𝑠(0.03𝑡)

]
. (59)

The numerical results are shown in Figures 2-8. Figure 2 shows the trajectory tracking comparison simulation
results between the proposed algorithm and the control algorithm under model uncertainty and external dis-
turbances. The experimental results indicate that both controllers can accurately track the desired trajectory.
However, the proposed solution demonstrates better performance in terms of convergence speed during the
initial control phase. Meanwhile, the corresponding tracking error is shown in Figure 3, which indicates that
the USV can track the reference position within approximately six seconds and achieve faster error stabiliza-
tion compared to the control scheme. Figure 4 compares the velocity tracking results between the proposed
algorithm and the control algorithm. From the zoomed-in view of the components, it can be seen that both
the proposed algorithm and the control algorithm can track the velocity well, but the proposed algorithm
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Figure 3. The curves of reference and actual positions.

Figure 4. The comparison of actual and estimated velocities in the ETESO. ETESO: Event-triggered extended state observer.

requires fewer trigger occurrences. The control inputs 𝜏𝑢 and 𝜏𝑟 are shown in Figure 5. It can be observed
that, compared to the control scheme, the proposed scheme exhibits smaller fluctuations in the control signals.
As shown in Figure 6, the model uncertainty of USVs can be accurately estimated and approximated using
MLP neural networks. According to the above simulation results, it can be concluded that the proposed con-
troller has faster convergence and better robustness. Figure 7 shows the estimation of the lumped disturbance.
Therefore, both the proposed and contrast algorithms can observe and estimate the unmeasurable velocity and
lumped disturbance with minimal error, demonstrating excellent estimation performance. Figure 8 shows that
the adaptive law can estimate the upper bound of the external disturbance by selecting the appropriate param-
eters. Figure 9 shows triggering instants and triggering time of 𝜏𝑢 , 𝜏𝑟 and ETESO. It is clear that, compared
to the static event-triggering mechanism in the comparative experiments, the DETM used in the proposed
algorithm results in longer intervals between controller-triggered events.
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Figure 5. Controller inputs 𝜏𝑢 and 𝜏𝑟 .

Figure 6. The model uncertainty curves approximated by MLP. MLP: Minimum learning parameter.

6. CONCLUSION
Based on the nonlinear mathematical model with model uncertainties and external disturbances, a INTSM
control method based on DETM is proposed. This approach integrates ETESO, NTSM, DETM, MLP neural
networks, and adaptive techniques. To address the issue of difficult-to-measure velocity in practical applica-
tions, an ETESO is designed to accurately estimate the unmeasurable velocity and lumped disturbances. To
improve the system’s convergence speed and reduce steady-state error, INTSM is used to design the control
input. Additionally, a DETM is incorporated into the controller, considering communication and actuator
wear issues in the USV. To enhance the robustness of the control system, an MLP technique is employed to
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Figure 7. The lumped disturbances and observer estimations.

Figure 8. The external disturbances and their boundary estimations.

approximate and compensate for model uncertainties. An adaptive law is also designed to compensate for the
neural network approximation errors and disturbances. Furthermore, through rigorous theoretical analysis,
the overall stability of the closed-loop control system is proved, and it is demonstrated that the tracking error
converges to a small neighborhood of the origin. Finally, comparative numerical simulations are conducted
to analyze the tracking performance. The simulation results fully demonstrate the effectiveness and superior-
ity of the proposed approach. In the future, to further conserve communication resources, we will consider
replacing the event-triggered mechanism in ETESO with a DETM and verifying the proposed algorithm in
practical applications.
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Figure 9. Triggering instants and triggering time of 𝜏𝑢 , 𝜏𝑟 and ETESO. ETESO: Event-triggered extended state observer.
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