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Abstract
In this study, we innovatively proposed a deep learning model architecture to address the industry challenges in the 
detection of porosity in magnesium alloys. Magnesium alloys, known for their lightweight and high-strength 
characteristics, are extensively utilized in aerospace, automotive, and biomedical fields. However, the absorption of 
hydrogen during the production process leads to the formation of pores, which not only reduce the material’s 
strength and durability but may also cause premature failure of the material. The formation of pores typically 
occurs during the solidification stage of magnesium alloys, where hydrogen dissolved in the molten metal is 
released upon cooling, forming tiny gas pores. The presence of these gas pores significantly affects the mechanical 
properties of the material, potentially leading to crack initiation and propagation under high stress. Therefore, 
accurate detection and quantification of pores are crucial for enhancing the quality control of magnesium alloys. 
Our developed model integrates window-shaped perception blocks with convolutional neural networks, enhanced 
by aggregated sensing layers (ASLs) on long-range connections. Extensive training on real samples demonstrated 
that our model outperforms mainstream algorithms such as U-Net and TransUNet across various evaluation 
metrics, particularly in fine target detection tasks under complex scenarios. Specifically, our model achieved a Dice 
coefficient of 74.77% and an Intersection over Union index of 71.00%, significantly surpassing other models. 
Moreover, the method also demonstrated superior accuracy in pore edge prediction, effectively mitigating issues of 
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oversegmentation and undersegmentation, especially for small and irregular pores. An ablation study further 
confirmed the effectiveness of each component, with the ASL module showing particular strength in feature 
extraction and reducing upsampling loss. In summary, this research highlights the significant potential of deep 
learning technology in material defect detection and provides an efficient, automated solution for practical 
production, contributing to advancements in materials science and industrial quality control.

Keywords: AZ91 magnesium alloy, image segmentation, deep learning, porosity defects

INTRODUCTION
Magnesium alloys, known for their lightweight and high-strength properties[1], are widely used in aerospace, 
automotive, and biomedical industries[2-6]. However, hydrogen absorption during production often leads to 
the formation of pores[7], which severely affect the mechanical properties of the material. These pores not 
only reduce the material’s strength and durability but also may cause premature failure during service. The 
formation of pores typically occurs during the solidification of magnesium alloys, where hydrogen dissolved 
in the molten metal is released upon cooling, forming tiny gas pockets. The presence of these pores 
significantly influences the mechanical properties of the material, potentially leading to crack initiation and 
propagation under high stress. Therefore, accurate detection and quantification of pores are crucial for 
enhancing the quality control of magnesium alloys. Traditional detection methods, such as X-ray[8] and 
ultrasonic testing, are inefficient and rely heavily on operator experience, leading to unstable results. 
Therefore, there is an urgent need to develop automated and efficient detection methods to improve 
product quality. This study combines machine learning[9] and deep learning[10,11] to develop an improved 
model. The model incorporates a window-shaped (WS) perception blocks and a convolutional neural 
network (CNN) module, and adds an aggregated sensing layer (ASL) on the long skip connections at each 
level. This design retains global information while enhancing the capture of local features, thereby 
improving segmentation accuracy. Experimental results show that the model outperforms other mainstream 
segmentation methods, such as U-Net and TransUNet, in multiple evaluation metrics, including Dice 
coefficient and Intersection over Union (IoU), particularly in the accuracy of pore edge prediction. The 
method makes significant contributions to the field of material science by providing a more precise and 
efficient means of defect detection[12-15].

In recent years, thanks to the rapid development of computer vision and deep learning technologies, 
automated image segmentation methods have been successfully applied in many industrial inspection tasks. 
The core of image segmentation technology is to precisely separate different regions within an image for 
better analysis and processing. Traditional image segmentation methods, such as edge detection and region 
growing, perform well in certain scenarios but are less robust to complex textures and noise. To solve these 
problems, fully convolutional networks (FCN) and other deep learning techniques have emerged, 
significantly improving the accuracy and efficiency of image segmentation. As the field of computer vision 
has rapidly developed, image segmentation technology has become an important component of artificial 
intelligence research. From early edge-based traditional methods to advanced algorithms based on deep 
learning in recent years, image segmentation technology has made significant progress. FCN, first proposed 
by Jonathan Long, Evgeniy Shelhamer, and Trevor Darrell in 2015, revolutionarily discarded the fully 
connected (FC) layers in traditional CNNs and adopted a fully convolutional approach to process input 
data[16,17], enabling the handling of images of arbitrary size. Since its introduction, FCN has spawned many 
variants, such as U-Net, DeepLab, and Mask Region-CNN (R-CNN)[18-20], all of which have achieved 
excellent results in various applications. These models continuously drive the development of image 
segmentation technology and are widely used in medical image analysis, autonomous driving, robotics, and 
other fields[21-23]. In recent years, image segmentation algorithms based on Transformer architectures have 
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gained widespread attention and application in multiple domains due to their excellent scalability and deep 
semantic understanding capabilities. TransUNet, as an innovative framework that integrates the advantages 
of Transformer and the classic U-Net model[24-26], has shown significant advantages in tasks emphasizing 
semantic understanding[27,28]. Particularly in applications requiring a broad receptive field, TransUNet 
achieves dynamic adjustment of the receptive field by integrating Transformer components at the lower 
levels of the model, greatly enhancing the model’s ability to capture global information. However, when 
dealing with specific domain tasks such as the microscopic images of magnesium alloys, the potential 
limitations of TransUNet gradually become apparent. Such tasks often require the model to possess highly 
accurate local information extraction capabilities to accurately identify and analyze the subtle differences in 
the material’s microstructure. Although the ConvBlock in TransUNet[29] can effectively extract basic features 
of the image and perform initial downsampling, its expressiveness is insufficient for complex and dense 
local details.

In recent years, several studies have explored the application of machine learning techniques for pore 
detection in magnesium alloys. For instance, Anand et al. used PoreNet model[30] to identify pore defects. 
Compared to PoreNet model, our deep learning approach handles image data more directly and efficiently, 
automatically learning features from images, thus improving accuracy and efficiency. Bosse et al. proposed a 
CNN-based method for pore detection[31]. While their method performs well on specific datasets, our 
approach enhances detection capabilities for complex backgrounds and irregular pores by incorporating 
WS Perception Blocks and ASLs. Brown and Green combined deep learning with traditional image 
processing techniques to improve detection accuracy. However, our fully deep learning-based method 
better adapts to different types and shapes of pores while maintaining real-time processing capabilities. 
Through these comparisons, we highlight the unique advantages of our work: superior feature extraction 
and multi-scale information integration, particularly in handling complex backgrounds and irregular pore 
shapes with higher accuracy and robustness.

To address the aforementioned challenges, this study proposes a series of targeted optimization strategies. 
Considering the unique needs of the magnesium alloy microscopic image analysis task, this study 
innovatively adjusts the Transformer architecture to a cross-perception mode. This design allows the model 
to focus on capturing and analyzing subtle changes within local regions while maintaining the ability to 
understand global information, thus achieving a deeper and finer understanding of the magnesium alloy 
microstructure. Additionally, to enhance the model’s ability to capture local information, a local 
information supplement module (ASL) is introduced into the skip connections (Skip Connection) of the 
first three stages (Stage). This module draws on the characteristics of Low-Level tasks and is built based on a 
residual learning framework, aiming to optimize feature representation through a multi-kernel adaptive 
selection attention mechanism. Specifically, different types of convolutional components perform multi-
scale feature extraction, and feedforward neural networks calculate attention scores for each feature map. 
Finally, based on these scores as weights, different sources of feature maps are weighted and fused, 
prompting the network to focus more on key local details. This design not only enriches the model’s 
representation capability but also improves its robustness and accuracy in handling complex images. In 
summary, by optimizing the TransUNet framework, this study aims to develop a new generation of image 
segmentation algorithms that can converge quickly and accurately capture local features, better serving 
advanced analysis tasks in fields such as materials science.
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MATERIALS AND METHODS
Experimental process
Metallographic analysis of AZ91 magnesium alloy
Figure 1 illustrates the process of metallographic analysis of materials. The left image shows a porous 
structure of AZ91 magnesium alloy, with specific regions indicated by arrows selected for detailed 
metallographic analysis. The middle image displays the observed microstructure of the selected region 
through a microscope, including different phases and grains. The right image is recorded by the camera of 
the microscope, using polarized light to reveal the internal microstructural features of the material through 
different colors and contrasts.

Dataset introduction and preprocessing
The dataset used in this experiment was provided by the Additive Manufacturing Research Institute of the 
University of Shanghai for Science and Technology, consisting of 23 optical microscope images of AZ91 
magnesium alloy. After selection and processing, 15 images were used, divided into a training set and 
validation set at a ratio of 10:5. To improve the generalization and robustness of the model, comprehensive 
data preprocessing was performed on the original images. First, all input images were standardized to 
ensure pixel values were within the same range, enhancing training efficiency and stability. Specifically, the 
pixel values were normalized to the range [0, 1]. Additionally, to increase the diversity of training samples 
and prevent overfitting, various data augmentation techniques were employed, including random rotation, 
random flipping, random cropping, and brightness adjustment. These data augmentation methods not only 
improve the model’s generalization ability but also effectively enhance the accuracy of the image 
segmentation task.

Figure 2 shows the process of preprocessed AZ91 magnesium alloy microscopic images, which underwent 
machine segmentation followed by manual segmentation. Preprocessing steps included standardizing the 
images (ensuring pixel values were within the same range to improve training efficiency and stability) and 
data augmentation (such as random rotation, random flipping, random cropping, and brightness 
adjustment to increase sample diversity and prevent overfitting). Preprocessing ensures the quality and 
consistency of images input into the model, aiding in efficient and stable model training and enhancing the 
model’s generalization ability. As seen in the figure, machine segmentation can accurately identify most 
porosity defects, but some details remain unrecognizable. Manual segmentation supplements and refines 
the machine segmentation results, especially for small or blurred-edge porosity defects, further improving 
segmentation accuracy.

Figure 3 shows the refinement of machine segmentation results through manual segmentation, particularly 
addressing details overlooked by machine segmentation. For small or poorly defined porosity defects, 
machine segmentation may not fully accurately identify them, necessitating manual correction to ensure the 
accuracy of the final segmentation results. Human intervention compensates for the shortcomings of 
machine learning models, especially in handling complex or irregular defects, providing higher precision 
segmentation results.

Figures 2 and 3 collectively illustrate the comprehensive workflow of image preprocessing, machine 
segmentation, and manual segmentation as outlined in this study. The inclusion of manual segmentation 
serves as a critical refinement step, wherein human intervention is employed to enhance the segmentation 
outcomes, particularly for minute or poorly defined porosity defects. This approach is especially pertinent 
when dealing with the intricate micrographs of magnesium alloys, offering an efficient and robust solution 
for image segmentation tasks within the realm of materials science[32]. By integrating both machine and 
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Figure 1. Schematic of the metallographic analysis process.

Figure 2. The image was preprocessed and then subjected to machine segmentation followed by manual segmentation.

manual segmentation methodologies, not only is the accuracy of segmentation markedly improved, but it 
also establishes a solid foundation for subsequent material analysis and quality control processes.

Experimental environment and configuration
To ensure the reliability and reproducibility of the experiments, this study used high-performance hardware 
and advanced software tools for image segmentation tasks, as shown in Table 1. The specific experimental 
environment and configuration are as follows: The experimental platform was equipped with four NVIDIA 
GeForce RTX3090 GPUs, an Intel(R) Xeon(R) Platinum 8280L CPU @ 2.60GHz, and the Linux operating 
system. The training framework used Pytorch for deep learning, facilitating debugging and model 
modification, and Tensorboard for monitoring and visualizing the training process, providing an intuitive 
display of various metrics during training, helping us better understand and optimize the model. In this 
study, to ensure effective training and optimization of the model, we set a total of 10,000 training epochs, 
with a batch size of 4, an initial learning rate of 0.00001, polynomial decay, a minimum learning rate of 
0.000001, and momentum parameters (0.9, 0.999). To further enhance the model’s learning efficiency and 
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Table 1. Training parameter settings

Parameter 
name Epochs Batch 

size

Initial 
learning 
rate

Learning rate 
decay method

Minimum 
learning rate

Momentum 
parameters

Optimization 
algorithm

Weight decay 
coefficient

Setting value 10,000 4 0.00001 Polynomial decay 0.000001 (0.9, 0.999) Adam 0.005

Figure 3. Manual refinement was performed to fill in the details overlooked by the machine segmentation.

generalization ability, we used the Adam optimization algorithm, with a weight decay coefficient (L2 
regularization term) set to 0.005.

Figure 4 depicts the trend of the training loss function over 10,000 training epochs. The x-axis represents the 
training epoch, and the y-axis represents the corresponding training loss value. It can be clearly seen that as 
the number of training epochs increases, the training loss continues to decrease and eventually reaches a 
relatively stable level. This indicates that the proposed model not only effectively learns the intrinsic 
patterns of the data on the training set but also exhibits good convergence, proving the effectiveness of the 
model design and training strategy[33].

Evaluation metrics
In the field of machine learning and computer vision, especially in image segmentation, object detection, 
and classification tasks, a series of evaluation metrics[34] are frequently used to measure model performance. 
In this study, we primarily used IoU, Accuracy (ACC), F1-Score (F-Score), Precision, Recall, and Dice 
Similarity Coefficient (Dice). IoU is a metric used to evaluate the overlap between predicted and ground 
truth bounding boxes. It is calculated by dividing the area of intersection by the area of union. IoU ranges 
from 0 to 1, with higher values indicating more accurate predictions. Accuracy refers to the proportion of 
correctly predicted samples among all samples. F1-Score is the harmonic mean of Precision and Recall, 
balancing the relationship between the two. F1-Score ranges from 0 to 1, with higher values being better. 
Precision is the proportion of actual positive samples among those predicted as positive. High precision 
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Figure 4. Trend of training loss function.

indicates high confidence in the positive predictions made by the model. Recall is the proportion of actual 
positive samples correctly predicted as positive. High recall indicates that the model can capture more actual 
positive samples. Dice Coefficient is similar to IoU, measuring the similarity between two sets. It is defined 
as twice the number of intersecting elements divided by the sum of the elements in both sets. These metrics 
each have their focus and may have different importance in different application scenarios. Typically, we 
combine multiple metrics to comprehensively evaluate a model’s performance, which are defined by

Where true positive (TP) represents the number of samples actually positive and predicted as positive, true 
negative (TN) indicates the number of samples actually negative and predicted as negative, false positive 
(FP) denotes the number of samples actually negative but incorrectly predicted as positive, and false 
negative (FN) stands for the number of samples actually positive but incorrectly predicted as negative.

(1)

(2)

(3)

(4)

(5)

(6)
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Network overview
This study proposes an innovative deep learning framework aimed at improving the efficiency and accuracy 
of medical image segmentation. As shown in Figure 5, the framework integrates CNNs with improved WS 
Perception Blocks and introduces ASL modules on long skip connections. The specific process is as follows: 
input images are first processed by CNNs to generate basic hidden features. These features are then linearly 
projected into the WS Perception Block module, which includes multi-layer perceptron (MLP), layer 
normalization (LN), and a unique cross-shaped window self-attention mechanism, capable of capturing 
complex dependencies between features. The processed features are downsampled at three different 
resolution levels (1/2, 1/4, 1/8) and combined with corresponding convolution operations through long skip 
connections. At each level of the long skip connections, ASL modules are added, using spatial and channel-
level attention mechanisms to further enhance feature expression, selectively integrating key features while 
ignoring other unimportant features, thereby reducing theoretical complexity and improving performance. 
During the decoding process, features are upsampled step-by-step and fused with multi-scale features, 
ultimately generating segmentation results by the segmentation head.

WS perception block as encoder
The WS perception block constructs an efficient and powerful image processing framework, specifically 
designed to capture multi-level, multi-scale features in images. The architecture consists of four main stages, 
each progressively performing deep feature extraction on the input image, gradually reducing spatial 
resolution while increasing the number of feature channels, thereby achieving a coarse-to-fine feature 
representation process. Specifically, Stage 1 receives raw RGB images as input, and after processing through 
one or more WS perception blocks, outputs feature maps with dimensions reduced by four times and 
channel numbers of C. Subsequent stages (Stages 2 to 4) continue to process the output from the previous 
stage, halving the spatial resolution and doubling the feature dimensions each time, until the final high-
dimensional feature representation is obtained. As shown in Figure 6, the WS Perception Block, as the core 
component of this architecture, cleverly combines Lateral Self-Attention, LN, and MLP. Among them, the 
Lateral Self-Attention module significantly enhances the model’s ability to capture long-distance 
dependencies while maintaining lower computational costs through a unique window division strategy. LN 
is applied at the input and output endpoints of each Block, helping to stabilize the training process and 
accelerate convergence. The MLP further introduces non-linear mapping, enhancing the model’s expressive 
power. The WS Perception Block performs cross-window self-attention by executing self-attention in 
horizontal and vertical stripes. The specific formulas are as follows:

(a) Horizontal and vertical stripe self-attention formulas: The WS perception block performs cross-window 
self-attention by executing self-attention in horizontal and vertical stripes. For horizontal stripe self-
attention, the input feature X ∈ RH × W × C is divided into stripes of equal width and undergoes self-
attention calculation after linear projection to K heads. The output of horizontal stripe self-attention is:

where Yk
i = Attention (XiWk

Q, XiWk
K, XiWk

V), Xi ∈ R(sw*W)*C, and sw is the stripe width. The formula for 
vertical stripe self-attention is similar, with the output denoted as V-AttentionK(X).

(b) WS perception block self-attention formula: The WS perception block divides the multi-heads into two 
groups, one for horizontal stripe self-attention and the other for vertical stripe self-attention, and 
concatenates the outputs of the two groups:

(7)
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Figure 5. Overall framework of the proposed model.

Where WO ∈ RC*C is a common projection matrix.

Where

(c) Computational complexity analysis: The computational complexity of WS self-attention is:

where sw is the stripe width, which can be adjusted according to the network depth.

(d) Definition of WS Perception Block: Finally, the WS Perception Block is defined as:

ASL module
As illustrated in Figures 7-9, the ASL module represents an advanced iteration built upon the solid 
foundation of squeeze and excitation network (SENet)[35,36]. It is designed to further enhance the feature 
representation capabilities of CNNs by integrating channel-wise features with global information, thereby 

(8)

(9)

(10)

(11)
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Figure 6. Internal workflow of the WS perception block. WS: Window-shaped.

Figure 7. The feature fusion mechanism of the multi-branch FC layers. FC: Fully connected.

optimizing the network’s learning process for image features. Consequently, we have integrated this module 
into skip connections to improve the model’s segmentation performance.



Page 11 of An et al. J. Mater. Inf. 2025, 5, 23 https://dx.doi.org/10.20517/jmi.2024.96 20

Figure 8. The structure of a neural network where each neuron is connected to all input units, achieving a linear combination of the 
input data. The outputs of multiple neurons are then concatenated through a Concatenation Layer to form a more complex feature 
representation.

Figure 9. The excitation layer processes the input features using a Sigmoid activation function, and channel-wise multiplication 
combines the Sigmoid-activated features with the input feature maps through an element-wise product, ultimately generating the 
output feature maps.

The ASL module not only inherits the core concept of SENet - re-calibrating channel features to boost 
model performance - but also introduces a novel multi-branch FC layer structure for further optimization 
of feature representation. Within the ASL module, input features first pass through a Global Average 
Pooling layer to extract channel-level statistics. These channel-level features are then fed into a multi-
branch FC layer structure, which consists of several branches of FC layers of identical size, each capable of 
independently learning global feature representations.

Following the multi-branch FC layers, an excitation operation generates channel-level weights. These 
weights are used to re-calibrate the original input features, emphasizing those that are more relevant to the 
classification task while suppressing less important ones. Thanks to the richer global information provided 
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by the multi-branch FC layers, the ASL module can produce more accurate and effective channel weights. 
The features processed by the ASL module are subsequently fed into subsequent convolutional layers for 
further learning and classification.

Due to its ability to adaptively adjust channel weights and incorporate global information to optimize 
feature representation, the ASL module significantly enhances model performance without substantially 
increasing the number of parameters. Experimental results demonstrate that models incorporating the ASL 
module achieve notable improvements in accuracy and generalization capability on multiple image 
classification datasets compared to baseline models such as ResNet.

Decoder
The decoder part mainly achieves this through cascaded upsampling units (CUP). CUP consists of multiple 
upsampling steps used to decode hidden features and output the final segmentation mask. After reshaping 
the sequence of hidden features, multiple upsampling blocks are used to reach full resolution from × to H × 
W. Each upsampling block consists of a 2× upsampling operator, a 3 × 3 convolution layer, and a ReLU 
layer in sequence[37].

Loss function
When handling the segmentation task of magnesium alloy microscopic images, using BCE loss[38] might 
cause the model to overly focus on background pixels and ignore small target regions. Therefore, combining 
Dice loss helps the model better learn the features of small target regions. Simultaneously, by adjusting the 
weight parameter αα in the composite loss function, the model can ensure correct segmentation of 
background regions while improving the detection accuracy of small target regions, as given in

RESULTS AND DISCUSSION
Comparison experiments
In this study, we conducted a comprehensive comparison of the proposed improved segmentation method 
against several state-of-the-art segmentation techniques specifically for the task of segmenting AZ91 
magnesium alloy. The comparative methods included U-Net, Attention U-Net (AttU-Net), and TransUNet. 
The quantitative analysis results are summarized in Table 2, where the best performance in each metric is 
highlighted in bold. Our findings demonstrate that the proposed segmentation method outperforms the 
other models across all evaluation metrics, achieving a Dice coefficient of 74.77% and an IoU index of 
71.00%, which are notably higher than those of the competing models.

As illustrated in Figure 10A and B, experimental results clearly demonstrate that the proposed model 
outperforms mainstream algorithms such as U-Net and TransUNet across multiple evaluation metrics. 
Specifically, the Dice coefficient reached 74.77%, and the IoU index was 71.00%, significantly surpassing 
other models. Moreover, the proposed model excelled in the accuracy of pore edge prediction, with the Dice 
coefficient and IoU improving by 5.02% and 3.54%, respectively.

(12)

(13)

(14)
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Table 2. Quantitative analysis results of different methods

Method IoU Acc F1 Recall Dice

TransUNet 67.46% 44.42% 64.68% 58.31% 69.75%

Unet 63.42% 35.69% 56.95% 51.77% 63.12%

AttU-Net 62.34% 33.73% 54.66% 50.30% 61.16%

This work 71% 53.60% 70.54% 65.20% 74.77%

IoU: Intersection over Union.

Figure 10. (A) Comparison of segmentation results from different methods; (B) Comparison of pore edge prediction accuracy.

Visualization of pore segmentation results from different methods
In this study, we selected the most representative four visualizations out of fifteen to illustrate our findings. 
As shown in Figure 11, the proposed method excels in the pore segmentation task of AZ91 magnesium 
alloy, delivering both stable and optimal segmentation outcomes, along with accurate predictions of pore 
boundaries. These results substantiate the efficacy and superiority of our approach, particularly in the 
automatic pore segmentation of AZ91 magnesium alloy micrographs, thereby affirming its technological 
leadership. Figure 12 presents the input images alongside their corresponding generated labels, establishing 
a foundation for subsequent research and learning.

Figure 13 illustrates the segmentation outcomes from integrating different modules into the TransUNet 
architecture. Figure 13A-D show the results after incorporating the WS module into TransUNet, while 
Figure 13E-H depict the outcomes with the addition of the ASL module. Figure 13I-L display the combined 
effect of integrating both WS and ASL modules. Figure 14 provides a detailed comparison of segmentation 
results for detecting pore defects in AZ91 magnesium alloys using four methods: Att-UNet, TransUNet, 
UNet, and the proposed method. Each method exhibits distinct strengths and limitations in segmentation 
effectiveness.

Ablation study
To systematically evaluate the impact of each component of the proposed model on the performance of 
pore segmentation in magnesium alloy micrographs, we conducted a detailed ablation study. The 
experimental results are shown in Table 3, with the best results in each column highlighted in bold. We used 
the standard TransUNet as the baseline model and gradually introduced different components.

First, we replaced the Transformer layer in the CNN-Transformer hybrid model with a WS Perception 
Block, resulting in improvements of 2.08% in Dice and 1.41% in IoU. Next, we added the ASL module on 
top of this, further improving Dice from 73.53% to 74.77% and IoU from 70.08% to 71.0%.
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Table 3. Ablation study results

Method IoU Acc F1 Recall Dice

TransUNet 67.46% 44.42% 64.68% 58.31% 69.75%

WS 68.87% 47.38% 67.12% 60.54% 71.83%

ASL 70.08% 50.67% 69.10% 63% 73.53%

This work 71% 53.60% 70.54% 65.20% 74.77%

IoU: Intersection over Union; WS: window-shaped; ASL: aggregated sensing layer.

Figure 11. Comparison of the segmentation results of different methods. The images (A) to (D) are the results obtained using the AttU-
Net method. Images (E) to (H) show the segmentation outcomes from TransUNet. The UNet method’s results are displayed in images 
(I) to (L). Finally, images (M) to (P) present the segmentation results from this work.

Figure 12. Input images and their corresponding generated labels. Images (A) to (D) are the input images, while images (E) to (H) are 
the generated labels.
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Figure 13. Segmentation results with different module integrations into the TransUNet network structure. Images (A) to (D) display the 
results when the WS module is added to TransUNet. Images (E) to (H) show the outcomes with the ASL module integrated into 
TransUNet. Finally, images (I) to (L) present the results when both the WS and ASL modules are combined in TransUNet. WS: 
Window-shaped; ASL: aggregated sensing layer.

Figure 14. Detailed presentation of segmentation results using various methods and modules.

Figure 10A illustrates the comparative outcomes of different segmentation approaches on the porosity 
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defect detection task in AZ91 magnesium alloys. As depicted, our proposed method exhibits superior 
accuracy in both the segmentation of pore regions and the precision of edge detection compared to existing 
methods such as TransUNet, U-Net, and AttU-Net. Specifically, our approach more accurately delineates 
the boundaries of pores, effectively mitigating issues of oversegmentation and undersegmentation, 
especially when dealing with complex pore morphologies. Moreover, the proposed method excels in 
background segmentation, significantly reducing FPs. These results underscore the superior performance of 
our model in handling the porosity defect detection task in AZ91 magnesium alloys, offering an efficient 
and reliable solution for image segmentation in materials science.

Figure 10B highlights the comparative performance of different segmentation methods in terms of pore 
edge prediction accuracy. The data show that our proposed method achieves a marked advantage in 
capturing the contours of pore edges, minimizing edge blurring and fragmentation, particularly for small 
and irregular pores. In contrast, other methods such as TransUNet, U-Net, and AttU-Net exhibit varying 
degrees of error in edge prediction, leading to less refined segmentation outcomes. The enhanced 
performance of our method can be attributed to the introduction of the WS Perception Block and the ASL 
module, which significantly improve the capture of local features, thereby achieving higher accuracy and 
robustness in edge prediction.

To elaborate, while traditional U-Net performs well in many segmentation tasks, it has limitations in 
handling complex scenarios. AttU-Net builds upon U-Net by incorporating an attention mechanism, 
enabling the model to dynamically weigh the importance of different regions, thus focusing more on salient 
feature areas and improving segmentation accuracy. However, the addition of the attention mechanism 
increases computational complexity, potentially affecting the efficiency of real-time applications and 
yielding inconsistent results across different datasets. TransUNet integrates Transformer architecture into 
the conventional U-Net framework, combining the strong local feature extraction capabilities of CNNs with 
the long-range dependency modeling of Transformers, thereby enhancing the model’s understanding of 
global information. The WS Perception Block used in our method introduces a hierarchical spatial window 
mechanism, dividing the input image into multiple local windows, within which tokens undergo self-
attention calculations, significantly reducing computational overhead. Additionally, through a cross-
window connection mechanism, the WS Perception Block progressively expands the receptive field across 
layers, capturing broader contextual information while maintaining local computational efficiency. 
Furthermore, the ASL module employs multi-branch FC layers to enhance classification accuracy with 
minimal increase in model parameters, thereby contributing to the overall effectiveness of the proposed 
segmentation approach.

The experimental evidence indicates that the standalone inclusion of the WS module notably enhances 
segmentation performance, especially in capturing fine edges of pore defects. Further incorporation of the 
ASL module leads to an improvement in segmentation accuracy, demonstrating greater robustness when 
handling complex backgrounds and noise. Att-UNet achieves higher segmentation precision in the green-
marked areas by accurately capturing key features in the image, yet it suffers from some missegmentation 
issues in the red-marked regions, particularly in delineating clear segmentation boundaries in complex 
backgrounds. TransUNet leverages the global context processing capability of Transformers to achieve good 
segmentation on large-scale images; however, it performs less effectively on small targets in the red-marked 
regions and has a larger number of model parameters, which increases training difficulty. The UNet 
structure is simple and easy to implement, making it suitable for various image segmentation tasks, but its 
segmentation accuracy may decline when dealing with complex backgrounds or detail-rich images in the 
red-marked areas. In contrast, the proposed method maintains computational efficiency while enhancing 
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segmentation accuracy, especially in handling images with complex backgrounds. The WS block, through 
its unique cross-shaped window mechanism, effectively captures local features, leading to clearer and more 
precise pore defect boundaries, which is critical for applications requiring high-resolution segmentation. 
The ASL module further refines feature representation by selectively integrating crucial features and 
suppressing irrelevant ones, thereby increasing robustness and accuracy in high-noise or complex texture 
regions. Finally, Figure 14 showcases the segmentation results of our method combining the WS block and 
ASL module. This combination significantly boosts overall segmentation accuracy, enabling the high-
precision capture of fine edges of pore defects while preserving high detail in background regions. Even in 
challenging scenarios, such as overlapping structures, the boundaries of pore defects are clearly 
distinguishable.

The ablation study results indicate that each component significantly enhances segmentation performance, 
with the ASL module particularly excelling in feature extraction and reducing upsampling loss. Therefore, 
the complete proposed model achieves optimal segmentation performance, providing strong support for 
pore segmentation tasks in magnesium alloy micrographs.

The ablation study results indicate that each component significantly enhances segmentation performance, 
with the ASL module particularly excelling in feature extraction and reducing upsampling loss. Therefore, 
the complete proposed model achieves optimal segmentation performance, providing strong support for 
pore segmentation tasks in magnesium alloy micrographs.

The proposed method has significant potential for industrial applications, particularly in the aerospace, 
automotive, and biomedical industries, where the quality control of magnesium alloys is critical. Traditional 
inspection methods are often inefficient, costly, and limited in detecting small or low-contrast defects. Our 
automated and efficient segmentation approach provides a cost-effective solution for improving product 
quality. The model’s ability to accurately detect and segment porosity defects can help manufacturers 
identify potential issues early in the production process, reducing the risk of material failure and enhancing 
the overall reliability of the final product. Moreover, the model’s adaptability to different types of materials 
and microstructures opens up new possibilities for its application in various fields of materials science and 
industrial quality control. Integrating our model into existing production lines can streamline quality 
assurance processes, leading to faster and more reliable inspections.

While our proposed model demonstrates significant advantages over existing methods, there are still areas 
for improvement. One limitation is the current reliance on manual refinement for certain complex or 
irregular defects, which can be time-consuming and labor-intensive. Future work will focus on developing 
fully automated solutions that can handle these cases without human intervention. Additionally, we plan to 
explore the integration of additional sensing modalities, such as X-ray and ultrasonic data[39-42], to further 
enhance the model’s performance. Another area of interest is the optimization of the model structure to 
improve its efficiency and scalability, particularly for large-scale industrial applications. Finally, we aim to 
extend the application of our method to other types of materials and defect detection tasks, contributing to 
advancements in materials science and industrial quality control.

CONCLUSIONS
In this study, we successfully developed a novel deep learning-based image segmentation method aimed at 
addressing the challenge of detecting bubble defects in AZ91 magnesium alloys. By integrating a WS 
Perception Block and a CNN module, and innovatively adding an ASL module at each level of long skip 
connections, our model not only retains global information but also significantly enhances the capture of 
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local features, thereby greatly improving segmentation accuracy. Experimental results clearly show that 
compared to mainstream segmentation methods such as U-Net and TransUNet, our model exhibits 
significant advantages in key evaluation metrics such as Dice coefficient and IoU, particularly in the 
accuracy of pore edge prediction. Additionally, we optimized strategies by adjusting the Transformer 
architecture to a cross-shaped perception mode and introducing a local information supplementation 
module, optimizing feature representation through multi-kernel adaptive selection attention mechanisms. 
By improving the loss function, combining Dice loss and BCE loss, and adjusting the weight parameters of 
the combined loss function, we significantly improved the detection accuracy of small target areas while 
ensuring correct segmentation of background regions. To enhance the model’s generalization and 
robustness, we performed extensive data preprocessing, including normalization and various data 
augmentation techniques such as random rotation, flipping, cropping, and brightness adjustment. When 
evaluating model performance, we used multiple evaluation metrics to comprehensively and accurately 
measure the model’s performance. Finally, through comparative experiments and ablation studies, we 
further confirmed the comprehensive superiority of our model over other advanced segmentation methods 
and the significant impact of each component on segmentation performance. This research not only 
provides an efficient and automated solution for detecting bubble defects in AZ91 magnesium alloys but 
also offers valuable references for similar image segmentation tasks in materials science, demonstrating the 
effectiveness and broad application potential of our model in practical applications.
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