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Abstract
As the demands for ensuring bridge safety continue to rise, crack detection technology has becomemore crucial than
ever. In this context, deep learning methods have been widely applied in the field of intelligent crack detection for
bridges. However, existing methods are often constrained by complex backgrounds and computational limitations,
struggling with issues such as weak crack continuity and insufficient detail representation. Inspired by biological
mechanisms, a dynamic snake convolution (DSC) with tubular offsets is incorporated to tackle these challenges ef-
fectively. Additionally, a channel-wise self-attention (CWSA)mechanism is introduced to efficiently fuse multi-scale
features in U-Net, significantly enhancing the ability of the model to capture fine details. In the classification head,
the traditional linear layer is replaced with a Kolmogorov-Arnold network (KAN) structure, which strengthens the
robustness and generalization capacity of the model. Experimental results demonstrate that the proposed model im-
proves detection accuracy, achieving a mean intersection over union (mIoU) of 0.877, while maintaining almost the
same number of parameters, showcasing exceptional performance and practical applicability. Our project is released
at https://github.com/ruanyudi/KanSeg-Bi.
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1. INTRODUCTION
As the service life of bridges extends, the materials thereof are progressively subjected to the aging effects
of environmental factors. Constant exposure to ultraviolet radiation, weathering, and chemical corrosion [1]

leads to alterations in the physical and chemical properties of the bridge materials. This decline in strength
and ductility makes the materials more susceptible to the formation of cracks.

Traditional object detection methods primarily rely on techniques such as edge detection, texture and color
analysis, and sliding window and template matching. A commonly used edge detection method is the canny
edge detector, which identifies edges by calculating image gradients. For instance, Abdel-Qader et al. utilized
Fourier and Hough transforms in conjunction with the canny operator to extract crack edges [2]. Salman et al.
proposed an automatic crack classification approach using Gabor filters, while Zhou et al. applied frequency
domain filtering and contour analysis on 3D laser range data for crack detection [3,4]. Vivekananthan et al.
employed a combination of grayscale discrimination and theOtsumethod to detect cracks in diverse images [5].
Additionally, Zhu et al. developed a crack detection framework based on 2D digital image correlation, using a
displacement-based method to evaluate fracture performance in concrete structures [6]. Although traditional
methods are computationally efficient and perform well in simpler scenarios, they lack robustness and their
performance degrades significantly when handling complex backgrounds, varying shapes, or changes in scale
and rotation.

In 1998, LeCun et al. introduced the modern convolutional neural network (CNN) [7], which has since be-
come a cornerstone of computer vision tasks, excelling in feature extraction. Building on this, Shelhamer et
al. pioneered semantic segmentation with the fully convolutional network (FCN) [8]. In 2014, Adhikari et al.
proposed a change detection model [9], providing a digital representation of crack images, which enabled easy
comparison of temporal defects. Two years later, Zhang et al. developed a deep CNN for road crack detec-
tion, effectively addressing challenges in complex backgrounds and low-contrast conditions [10]. However, this
method showed limited accuracy in detecting small cracks and struggled with adaptability to varying lighting
and weather conditions. Also in 2016, Mokhtari et al. evaluated four classification techniques - artificial neural
networks (ANN), decision trees, k-nearest neighbors, and adaptive neuro-fuzzy inference systems (ANFIS) -
in a computer vision-based pavement crack detection system [11]. In 2019, Xu et al. proposed an automatic
bridge crack detection method using CNNs and high-resolution imagery, achieving efficient and accurate re-
sults [12]. Hoskere et al. introduced a deep neural network that identifies material types and structural damages
through multi-objective optimization [13]. By 2023, Iraniparast et al. advanced the field by leveraging transfer
learning and multi-resolution image processing techniques for concrete crack detection and segmentation [14].
Their use of pre-trained deep learning models reduced training time and improved the model’s generalization
capabilities. Ding et al. proposed Sw-YoloX, which leverages advanced training strategies, including simple
optimal transport assignment (SimOTA) and multi-model integration, alongside convolutional block atten-
tion (CBAM) and atrous spatial pyramid pooling (ASPP) modules, to enhance object detection performance
on blurred sea surface images [15]. Xu et al. introduced a task-significance-aware meta-learning paradigm
for multi-type structural damage segmentation [16]. Ye et al. improved the YOLOv7 network with custom
modules to enhance crack detection, achieving robust performance on images with noise and effectively iden-
tifying cracks of different sizes [17]. Some methods had significantly advanced lightweight network design;
for instance, Wu et al. proposed a DeepLabV3+ architecture with MobileNetV2 as the backbone, replacing
standard convolutions with depthwise separable convolutions to reduce parameters [18].

The aforementionedmethods are often limited by complex backgrounds and computational constraints, facing
challenges such as weak crack continuity and insufficient detail representation. To address these issues, we
propose a novel network (SKPNet) that integrates snake convolution, Kolmogorov-Arnold network (KAN),
and pyramid channel-wise self-attention (CWSA). Our approach features a multi-scale framework combined
with dynamic snake convolution (DSC) to improve feature extraction. Additionally, we introduce a CWSA
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Figure 1. Flowchart of SKPNet.

mechanism to effectively fuse themulti-scale features. Finally, we replace the traditionalmulti-layer perceptron
(MLP) with a KAN to enhance the model’s expressive power.

2. METHODS
2.1. Preliminary
The main architecture of our method is illustrated in Figure 1. The input first passes through a U-Net back-
bone to extract multi-scale features, which are then fused using a CWSA module . Subsequently, information
is further extracted via DSC with tubular offsets. Finally, the segmentation output is generated through a
classification head composed of KAN layers.

Firstly, The U-Net with residual connections is adopted as the backbone of our model, where three stages
of 2× resampling facilitate the extraction of multi-scale information from the input. During the upsampling
process, we adapt resampling parameters corresponding to those used in the downsampling stages, ensuring
that the scale at each upsampling stage matches its corresponding downsampling stage. In each upsampling
operation, residual connections are utilized to fuse information from the corresponding downsampling layers,
which helps mitigate the loss of detailed information caused by downsampling. The specific process is given
in 

𝑥𝑖+1 = 𝐷𝑜𝑤𝑛(𝐶𝑜𝑛𝑣(𝑥𝑖)), 𝑓 𝑜𝑟 𝑖 = 1, 2, 3
𝑦4 = 𝑥4,

𝑦𝑖 = 𝑈𝑝(𝐶𝑜𝑛𝑣(𝑦𝑖+1)) + 𝑅𝑒𝑠(𝑥𝑖), 𝑓 𝑜𝑟 𝑖 = 3, 2, 1,
(1)

where 𝑥1 ∈ R3×𝐻×𝑊 represents the input image to be detected, and 𝐷𝑜𝑤𝑛(·) and 𝑈𝑝(·) represent the down-
sampling and upsampling operations, respectively. 𝐶𝑜𝑛𝑣(·) and 𝑅𝑒𝑠(·) denote the convolution operation and
residual connection, respectively. Subsequently, we design a CWSA module that can process multi-scale fea-
tures and capture internal relationships using an attention mechanism. It accepts the results produced by each
upsampling operation and utilizes self-attention to extract the correlations between each channel. This oper-
ation can integrate large-scale visual detail information with small-scale semantic information. This process
can be given in

𝐹𝑒𝑎𝑡 = 𝐶𝑊𝑆𝐴(𝐶𝑜𝑛𝑐𝑎𝑡 ([𝑦1, 𝑦2, 𝑦3, 𝑦4])), (2)

where𝐶𝑊𝑆𝐴(·) represents the operation of CWSA, and𝐶𝑜𝑛𝑐𝑎𝑡 (·) represents concatenation operations. Addi-
tionally, DSC is integrated to adaptively extract tubular cracks. It is equipped with an offset specially designed
for tubular structures, enabling the convolutional kernel to dynamically deform according to the input, which
helps preserve the integrity of the information. This will be discussed further in Section “DSC”. DSC can be
expressed as

𝐹𝑒𝑎𝑡 = 𝐷𝑆𝐶 (𝐹𝑒𝑎𝑡), (3)
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where 𝐷𝑆𝐶 (·) represents the operation of the DSC module. Finally, a classification head composed of KAN
layers is used to classify each pixel, outputting the final detection results. The final outputs can be given in

𝑀𝑎𝑠𝑘 = 𝐾𝐴𝑁𝑠(𝐹𝑒𝑎𝑡), (4)

where 𝐾𝐴𝑁𝑠 represents operations in the classification head.

2.2. CWSA
Given an input feature map 𝑋 ∈ R𝐵×𝐶×𝐻×𝑊 , where 𝐵 indicates the batch size, 𝐶 stands for the number of
channels, 𝐻 represents the height, and 𝑊 denotes the width; the channel-wise attention is computed using
self-attention as follows. First, the input tensor is reshaped into a sequence of channel descriptors by applying
global average pooling as

𝑋𝑐 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (𝑋) ∈ R𝐵×𝐶 . (5)

Next, the query, key, and value matrices for self-attention are computed as

𝑄 = 𝑊𝑞𝑋𝑐, 𝐾 = 𝑊𝑘𝑋𝑐, 𝑉 = 𝑊𝑣𝑋𝑐, (6)

where𝑊𝑞 ,𝑊𝑘 ,𝑊𝑣 ∈ R𝐶×𝐶 are learned weight matrices. Then, the attention scores are computed by calculating
the similarity between the query and key matrices using dot-product attention as

𝐴 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝐾𝑇√
𝐶

)
, (7)

where 𝐴 ∈ R𝐵×𝐶×𝐶 represents the attention map between channels. Finally, the output is computed by multi-
plying the attention map with the value matrix as

𝑋′ = 𝐴𝑉, (8)

where 𝑋′ ∈ R𝐵×𝐶 is the reweighted channel descriptor. The attention weights are then applied back to the
original feature map by

�̃� = 𝑋′ · 𝑋, (9)

where �̃� ∈ R𝐵×𝐶×𝐻×𝑊 is the final channel-attended feature map. CWSA is incorporated to effectively leverage
the multi-scale information output from the U-Net model. This integration allows the network to dynamically
reweight channel features, enhancing ability of the model to focus on critical information while suppressing
noise. By capturing long-range dependencies and emphasizing relevant features across different scales, the
CWSA mechanism significantly improves the accuracy and robustness of crack detection in complex images.

2.3. DSC
In this study, DSC [19] is introduced to improve boundary delineation and feature extraction. Given an input
tensorX ∈ R𝐵×𝐶×𝐻×𝑊 , where 𝐵 is the batch size,𝐶 is the number of channels, and 𝐻×𝑊 represents the spatial
dimensions. DSC dynamically adjusts the offsets of convolutional kernels based on the geometric properties
of the cracks as shown in Figure 2. The left panel illustrates standard convolution, where fixed kernel positions
are applied, represented by green dots. The right panel demonstrates DSC, where the white dots represent the
original kernel positions, and the green dots indicate the adjusted positions after applying offsets. This tubular
offset mechanism allows DSC to better capture the detailed information of tubular structures.

This dynamic adjustment allows the convolution operation to alignmore effectively with irregular shapes, such
as the edges and contours of cracks in concrete surfaces. Unlike standard convolutions, which apply fixed filters
across spatial dimensions, DSC modifies the receptive field of kernels by learning deformation offsets during
training. This leads to more precise crack boundary detection by capturing subtle variations in crack shapes
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Standard DSC

Figure 2. Comparison between standard convolution and DSC. DSC: Dynamic snake convolution.

and orientations. Mathematically, for each convolutional operation at spatial location (𝑖, 𝑗), the kernel K is
adjusted with learned offsets Δ(𝑖, 𝑗), such that the convolution result at (𝑖, 𝑗) becomes

𝑦(𝑖, 𝑗) =
𝑘∑

𝑚=−𝑘

𝑘∑
𝑛=−𝑘

K(𝑚, 𝑛) · X(𝑖 + Δ𝑚, 𝑗 + Δ𝑛) (10)

where Δ𝑚,Δ𝑛 represent the dynamically learned offsets that adjust the position of the kernel. By incorporating
these dynamic offsets, DSC enhances the ability of themodel to detect complex crack structures, ensuringmore
accurate segmentation and classification results.

2.4. KAN: Kolmogorov-Arnold network
In the final stage of our model, the traditional MLP is replaced with a KAN [20] to leverage its superior func-
tion approximation capabilities. The MLP is commonly structured as a series of matrix multiplications and
nonlinear activation functions, defined as

𝑀𝐿𝑃(Z) = (𝑊𝐾−1 ◦ 𝜎 ◦𝑊𝐾−2 ◦ 𝜎 ◦ . . . ◦𝑊1 ◦ 𝜎 ◦𝑊0)Z (11)

whereZ is the input,𝑊𝑘 represents the weight matrices, and 𝜎 denotes a nonlinear activation function applied
between each layer. The symbol ◦ represents the composition ofmatrixmultiplication and activation functions.
While effective, this architecturemay have limitations in capturing highly complex dependencies due to its fixed
linear transformations between layers. In contrast, the KAN leverages the Kolmogorov-Arnold representation
theorem, which asserts that any multivariate continuous function can be represented as a finite composition
of continuous univariate functions. The KAN is formulated as

𝐾𝐴𝑁 (Z) = (Φ𝐾−1 ◦Φ𝐾−2 ◦ . . . ◦Φ1 ◦Φ0) Z, (12)

where each Φ𝑘 is a set of univariate continuous functions defined as

Φ =
{
𝜙𝑞,𝑝

}
, 𝑝 = 1, 2, . . . , 𝑛𝑖𝑛, 𝑞 = 1, 2, . . . , 𝑛𝑜𝑢𝑡 , (13)

where 𝜙𝑞,𝑝 represents the learned univariatemappings between input and output dimensions. These univariate
mappings are implemented through splined activation functions.

𝜙(𝑥) = 𝑤𝑏𝑏(𝑥) + 𝑤𝑠spline(𝑥), (14)

where
𝑏(𝑥) = silu(𝑥) = 𝑥

1 + 𝑒−𝑥 , (15)

and
spline(𝑥) =

∑
𝑖

𝑐𝑖𝐵𝑖 (𝑥), (16)
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Table 1. Experimental setup configuration

Type Statement

Operating system Ubuntu 22.04
RAM 64 G
CPU Intel i9-13900k
GPU NVIDIA GeForce RTX 4090
CUDA version 12.4
Pytorch version 2.4.1
Python version 3.9.19

where, 𝑤𝑏 , 𝑤𝑠, and 𝑐𝑖 are all trainable parameters. During the initialization phase, 𝑤𝑠 is set to 1 and spline(𝑥) ≈
0, while 𝑤𝑏 is initialized according to the Xavier initialization method. This structure enables KAN to capture
more complex and nonlinear dependencies between input features compared to the fixed transformations of
an MLP. By replacing the MLP with KAN, we introduce a more flexible framework capable of approximating
complex functions, which is particularly beneficial for tasks such as crack segmentation. The enhanced ability
to capture subtle relationships in the data results in improved segmentation accuracy and robustness, especially
in handling irregular and intricate patterns present in crack structures.

2.5. Experimental configuration
2.5.1. Dataset
The dataset employed for this experiment is derived from the SDNET2018 [21] collection. SDNET2018 offers
over 56,000 images depicting concrete structures, including bridge decks, walls, and pavements, intended to
facilitate the development, validation, and testing of algorithms for detecting concrete cracks. To evaluate the
performance of our optimized model, 500 images were selected from the dataset, specifically targeting bridge
crack surfaces. These images have a resolution of 512 × 512 pixels and contain three color channels. The pixel-
level annotations were carefully generated using the LabelMe tool, with white pixels indicating crack areas and
black pixels marking the background. For data augmentation, horizontal flipping and rotations were applied.
After flipping, the images were rotated by 90 and 180 degrees, ensuring the corresponding labels underwent the
same transformations to preserve alignment. As a result of data augmentation, the dataset size was expanded
to 1,600 images. The dataset was then divided into two portions, with 70% used for training and 30% reserved
for testing. As shown in Figure 3, this displays some samples from the dataset. The sample images in Figure 3
show the range of crack widths, surface conditions, and other environmental factors, such as color shifts, coarse
cracks, and fine cracks. Combined with data augmentation, these images effectively reflect the variety of crack
images encountered in real-world environments.

In addition to SDNET2018, we utilized the newly developed CrackVision dataset [22], which combines 12,000
images derived from 13 publicly available crack datasets. This unified dataset addresses the limitations of small-
scale datasets and inconsistent annotation standards by employing consistent image processing techniques to
produce standardized masks. Furthermore, to mitigate the issue of class imbalance commonly encountered
in crack datasets, images with fewer than 5,000 crack pixels were excluded. Data augmentation techniques,
including Gaussian noise addition and random rotations, were applied to further diversify the dataset.

2.5.2. Training settings
The network model described in this paper was implemented using PyTorch. Table 1 provides a detailed
summary of the experimental setup. During training, the Adam optimizer is employed to fine-tune the weights
of network. The batch size was set to 8, and the learning rate was initialized at 1e-4. We recorded the loss
changes during training, as shown in Figure 4. After 150 epochs, the model stabilized, and performance on
the test set no longer improved. Therefore, we selected 150 epochs as the performance recording point.
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Figure 3. Display of samples from the dataset.

(a) (b)

Figure 4. Visualization of training process. (A) Losses during training; (B) mIoU during training. mIoU: Mean intersection over union.

2.5.3. Evaluation metrics
In evaluating our crack segmentation task, several key metrics were applied, including mean intersection over
union (mIoU), F1 Score, Precision, and Recall. mIoU is particularly relevant in crack segmentation, as cracks
are often continuous and tubular. If the model struggles to capture the continuity of cracks, the mIoU score
will be lower, thus providing indirect insight into the model’s ability to detect continuous crack structures.

mIoU is the average ratio of the intersection between the predicted and ground truth areas to their union,
across all classes, which can be expressed as

𝑚𝐼𝑜𝑈 =
1
𝐶

𝐶∑
𝑖=1

|𝑃𝑖 ∩ 𝐺𝑖 |
|𝑃𝑖 ∪ 𝐺𝑖 |

(17)

where 𝐶 is the number of classes, 𝑃𝑖 is the predicted area for class 𝑖, and 𝐺𝑖 is the ground truth area for class
𝑖. The numerator represents the intersection of the predicted and ground truth areas, while the denomina-
tor represents their union. Precision measures the proportion of correctly predicted positive cases out of all
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Table 2. Results of ablation study

CWSA DSC KANs mIoU

Baseline × × × 0.833
A1 ✓ × × 0.857
A2 × ✓ × 0.869
A3 × × ✓ 0.846
A4 ✓ ✓ ✓ 0.877

CWSA: Channel-wise self-attention; DSC:
dynamic snake convolution; KANs:
Kolmogorov-Arnold networks; mIoU: mean
intersection over union.

predicted positives, as given by

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (18)

where 𝑇𝑃 represents true positives, indicating the number of correctly predicted positive pixels, and 𝐹𝑃 rep-
resents false positives, indicating the number of incorrectly predicted positive pixels. Recall, also known as
Sensitivity, measures the proportion of correctly predicted positive cases out of all actual positives, which is
defined by

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (19)

where 𝐹𝑁 represents false negatives, indicating the number of actual positive pixels incorrectly predicted as
negative. 𝐹1 𝑆𝑐𝑜𝑟𝑒 is the harmonic mean of Precision and Recall, as given in

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (20)

3. RESULTS
3.1. Ablation study
The effectiveness of different modules in our proposed model was investigated through ablative experiments.
The steps were as follows: (1) Experimenting with themodel using only the CWSAmechanism, denoted as A1;
(2) Incorporating the DSC with tubular offsets, denoted as A2; (3) Adding the KAN structure in the classifica-
tion head, denoted as A3; (4) The final configuration includes all three components: CWSA, DSC, and KANs,
denoted as A4. The results of the ablative experiment evaluation metrics are presented in Table 2. It provides a
detailed comparison of performance of the model with different combinations of the proposed modules. The
inclusion of the CWSA mechanism alone (A1) resulted in an mIoU of 0.857. The CWSA module, integrated
with the U-Net architecture, helps to fuse multi-scale information, enabling the model to capture both fine and
coarse details of the cracks more effectively. Adding the DSC module (A2) improved the mIoU to 0.869. DSC
is particularly effective for capturing tubular crack structures, as it adapts well to the deformable, continuous
nature of cracks, enhancing the model’s ability to detect crack continuity and handle variations in crack shapes.
Incorporating the KAN structure (A3) yielded an mIoU of 0.846. KAN boosts the model’s expressive power,
allowing it to better handle complex crack patterns and improve generalization, particularly in challenging
conditions. The final configuration, which includes all three components (A4), achieved the highest mIoU of
0.877. Compared to the baseline value of 0.833, the addition of each component has progressively improved
the model’s performance, demonstrating the complementary strengths of the CWSA, DSC, and KANmodules
in enhancing crack detection accuracy.

Additionally, Figure 5 illustrates the visual results of our ablation study, specifically comparing the performance
with and without the DSC module. The top row shows the crack detection results without the DSC module,
where the cracks appear less continuous and more fragmented. In contrast, the bottom row demonstrates the
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Figure 5. Comparison of ablation experiments for the DSC module. DSC: Dynamic snake convolution.

results with the DSCmodule, where the cracks are detected with greater continuity and accuracy. These visual
results corroborate the quantitative improvements shown in Table 2, highlighting the significant impact of the
DSC module on enhancing crack detection performance.

3.2. Comparative performance analysis of different models
In the field of crack detection, we conducted a comparative analysis of our proposed method against several
classical approaches. The models compared include: (1) U-Net [23], a symmetrical network that employs stack-
ing operations; (2) FCN [24], a semantic segmentation network that can handle input images of any size; (3)
PSPNet [25], an image segmentation network based on spatial pyramid pooling and spatial pyramid attention
mechanisms; (4) AFSM-Net [26], which synergistically integrates Transformer and attention mechanism mod-
ules, building upon the DeepLabV3+ network model; and (5) Adaptive [27], a traditional algorithm for crack
detection in digital images. During the training of these networks, the fluctuations of mIoU for each network
are documented. As depicted in Figure 6, our proposed SKPNet model demonstrates a distinct advantage over
U-Net, FCN, PSPNet, and the traditional adaptive threshold method. Our model exhibited superior crack seg-
mentation accuracy and excellent continuity in segmenting consecutive lines compared to the other methods.
U-Net, while effective, lacks precision in segmenting fine details. FCN can approximate the contours of cracks
but suffers from poor segmentation continuity. PSPNet, despite extracting crack information from multiple
scales, is affected by background noise, leading to compromised segmentation accuracy. The traditional adap-
tive threshold method is the least effective, as it struggles to capture the semantic information of images and
faces challenges in integrating higher-level semantic understanding.

Table 3 provides a detailed comparison of experimental metrics for different methods, including mIoU, F1-
score, Precision, Recall, and the number of parameters. Each result in the table represents the average per-
formance obtained from multiple experiments. Among the deep learning network methods, FCN exhibits
the poorest performance with an mIoU of 0.507. There is a significant performance gap between traditional
methods and deep learning approaches. From Table 3, it can be observed that our modified SKPNet algo-
rithm outperforms other compared algorithms in terms of accuracy-related metrics, achieving an mIoU of
0.877, F1-score of 0.865, Precision of 0.843, and Recall of 0.889, despite having a moderate parameter count of
31.15M. Furthermore, SKPNet demonstrates efficient inference performance, with an average processing time
of 4.2 ms for a 512 × 512 image on a GPU. Moreover, SKPNet achieves 52.424 GFLOPS, representing a modest
1.28% increase compared to U-Net (51.762 GFLOPS), while demonstrating a substantial improvement in seg-
mentation performance, with an mIoU of 0.877 compared to 0.832. This indicates that the improved SKPNet
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Figure 6. Results of different methods in the test dataset.

Table 3. Comparison of experimental metrics for different methods on SDNET2018

Methods mIoU F1-score Precision Recall Parameters

SKPNet 0.877 0.865 0.843 0.889 31.15M
AFSM-Net 0.857 0.843 0.824 0.874 30.23M
U-Net 0.832 0.81 0.789 0.833 24.89M
FCN 0.507 0.749 0.771 0.727 134.26M
PSPNet 0.708 0.615 0.762 0.516 2.38M
Adaptive threshold 0.187 0.326 0.657 0.216 –

The underline represents the highest metric among all meth-ods. mIoU:
Mean intersection over union; AFSM: Atrous fu-sion model; FCN: fully
convolutional network; PSPNet: pyra-mid scene parsing network.

algorithm enhances crack detection accuracy within an acceptable parameter range, enabling the network to
better fulfill the task of bridge crack detection. The results of experiments on the CrackVision test dataset are
presented in Table 4. Among the compared methods, SKPNet demonstrates superior performance, achieving
the highest IoU (0.660) and F1-score (0.774). This indicates that SKPNet consistently outperforms baseline
methods, including FCN, U-Net, DeepCrack [28], SegFormer [29], HrSegNet [30], Hybrid-Segmentor [22].

Figure 7A illustrates the performance comparison of various segmentation models, including SKPNet, FCN,
holistically-nested edge detection (HED) [31], CCS-Net [32], and U-Net, across multiple epochs. SKPNet, the
proposedmethod, consistently demonstrates superior performance throughout training. At early epochs, such
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Table 4. Comparison of experimental metrics for different methods on CrackVision

Metrics FCN U-Net DeepCrack SegFormer HrSegNet Hybrid-Segmentor SKPNet

IoU 0.598 0.603 0.592 0.580 0.612 0.630 0.660
F1-score 0.746 0.750 0.741 0.730 0.757 0.770 0.774

The underline represents the highest metric among all methods. FCN: Fully con-volutional
network.

(a) (b)

Figure 7. Model performance on the test dataset at different epochs. (A) mIoU performance of different methods at different epochs; (B)
Performance of SKPNet on the test dataset at different epochs. mIoU: Mean intersection over union.

as epoch 20, SKPNet achieves an mIoU of 0.780, significantly outperforming the baseline models. As the train-
ing progresses, SKPNet further improves, reaching an mIoU of 0.856 at epoch 120, the highest among all
compared methods. While U-Net and CCS-Net show competitive results, with mIoUs of 0.805 and 0.810 re-
spectively at epoch 120, they still lag behind SKPNet. On the other hand, HED and FCN, despite showing
gradual improvements, exhibit consistently lower performance. These results clearly demonstrate the effec-
tiveness and robustness of SKPNet in segmentation tasks, particularly in capturing detailed structural features.
Figure 7B illustrates the performance of SKPNet on the test set in terms of F1-score, Precision, and Recall over
200 epochs. The results demonstrate a consistent improvement during the initial training phase, with all three
metrics gradually stabilizing as training progresses. Notably, the F1 Score exhibits steady growth, reaching a
plateau after approximately 150 epochs, which indicates a balance between Precision and Recall. This suggests
that SKPNet maintains robust generalization capabilities on unseen data while achieving high segmentation
accuracy.

Additionally, we evaluated the performance of our model (SKPNet) and the baseline model (U-Net) on more
challenging test cases [33], as shown in Figure 8. Panels (a) and (b) depict scenarios with complex textured
backgrounds and strong background interference, while (c), (d), and (e) illustrate examples involving fine
cracks and severe illumination or shadow interference. From the output results of U-Net, it is evident that
under strong background interference, its detection results are prone to noise, leading to false positives. For
instance, in (a), U-Net misclassifies the shadowed region at the top as part of the crack, and in (d), it fails to
detect cracks located in shadowed areas. In contrast, our model, SKPNet, demonstrates a higher accuracy in
extracting crack regions and performs more robustly under challenging conditions with background interfer-
ence and shadow effects. These experimental results further validate the robustness and superiority of SKPNet
in handling complex environments.
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Figure 8. Challenges in handling adverse cases for crack segmentation.

4. CONCLUSIONS
The proposed method effectively tackles the challenges of crack detection in complex backgrounds by integrat-
ing three innovative modules. DSC with tubular offsets enhances ability of the model to capture continuous
crack structures, while the CWSAmechanism improves multi-scale feature fusion, enabling better detection of
fine cracks. Additionally, the KAN layer in the classification head further boosts robustness and generalization
of the model. Together, these components contribute to an mIoU of 0.877, demonstrating exceptional perfor-
mance while maintaining a fast inference speed and nearly identical parameter count compared to baseline
models. Future work will focus on reducing inference time and testing on more diverse datasets to validate
adaptability to various bridge types and damage forms. However, a key limitation of the current method lies in
its sensitivity to domain differences. For instance, the model’s performance decreases when testing on images
with backgrounds or crack types significantly different from those in the training data, such as cracks on brick
surfaces instead of concrete. Addressing this issue will require incorporating domain adaptation techniques
and expanding the diversity of training data.
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