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Abstract
Integrating metallic lithium (Li) with a three-dimensional (3D) host is a popular strategy for long-life Li composite 
anodes, where the structure and physicochemical nature of the framework are critical for the electrochemical 
performance. Herein, Li-rich dual-phase barium (Ba)-based alloy composed of BaLi4 intermetallic compounds and 
Li metal phases is thermally incorporated into commercial carbon cloth sheets to develop Li-Ba alloy composite 
(LBAC) anodes featuring a porous array of BaLi4 microchannels as the built-in 3D skeleton. Doping of metallic Ba 
can greatly lower the surface tension of liquid Li and improve the wettability of the molten Li-Ba alloy toward the 
carbon cloth substrate. Moreover, LBAC benefits from the superior lithiophilicity and the porous architecture of 
BaLi4 skeleton nested in a conductive carbon fiber matrix, leading to stable cycling performance by confining Li 
stripping/plating in microchannels network of BaLi4 alloy framework and dissipating high current densities. As a 
result, the LBAC symmetrical cells can run stably for 1,000 h under 1 mA cm-2 and 1 mA h cm-2, and the capacity 
retention can retain 93.3% after 300 cycles in the full cell with areal capacity of 2.45 mA h cm-2. This work offers a 
smart designing strategy of 3D Li alloy composite anodes by introducing porous and lithiophilic alloy scaffold as 
sub-framework of the carbon hosting anode, promising the prospect of Li metal batteries for future applications.
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INTRODUCTION
Lithium (Li) metal has high specific capacity (3,860 mA h g-1) and the lowest electrochemical potential 
(-3.04 V vs. standard hydrogen electrodes), which is considered to be a potential choice for high energy 
density Li-based batteries[1-4]. However, the commercialization of Li metal batteries is severely limited by the 
volume variation associated with the “hostless” bare Li anode and the uncontrolled Li dendrite growth. 
Generally, hosting Li with the three-dimensional (3D) framework has been regarded as a popular method to 
improve the lifespan of Li anodes[5-11]. To encapsulate Li metal in a 3D framework, thermal infusion 
strategies involving introducing molten Li into a 3D matrix have been developed[12-18]. Among various 3D 
hosts, carbon-based frameworks are recognized to be an ideal host architecture due to their lightweight, 
high mechanical strength, excellent electrical conductivity, low-cost, and abundance in nature[19-26]. For 
instance, Wang et al. proposed that molten Li can be easily impregnated into carbon nanotube (CNT) 
network to form Li-CNT composites, which not only exhibit high specific capacity but also suppress Li 
dendrite formation[27].

Remarkably, the liquid Li has high surface tension and the poor lithiophilicity of carbon materials causes the 
liquid Li to display a spherical shape on the most carbon-based substrates, indicating the molten Li is 
difficult to diffuse into the interior of the carbon-based skeleton, which poses an obstacle for the fabrication 
of Li composite anodes[28-31]. Therefore, further modification of carbon-based hosts is required to tune the 
wettability. Apparently, the binding energy among Li atoms can be reduced by some substances that can 
react with Li metal to form Li compounds or alloys, thus decreasing the surface tension of molten Li and 
improving the wettability[32]. Coating lithiophilic layers have been widely employed to decorate the carbon-
based framework[33-40]. For example, Zhu et al. reported a carbon scroll, which consists of vertically aligned 
carbon fibers decorated with copper oxide (CuOx) nanoparticles[33]. The CuOx can react with metallic Li to 
produce Cu and Li2O chemically, which facilitates the wettability of liquid Li to carbon scroll, thus enabling 
Li metal to be well accommodated inside the skeleton. Alternatively, Wang et al. coated carbon cloth (CC) 
with ZnO nanoarray to obtain 3D porous hosts[41]. Molten Li can be infiltrated into such a 3D host rapidly 
due to the enhanced wettability of liquid Li toward 3D porous CC@ZnO. Notably, the nano-scale ZnO 
coating not only offers the driving force for wettability but also enables the formation of a Li-Zn alloy, 
exhibiting an exceptionally high Li+ diffusion coefficient and facilitating the uniform Li deposition. 
However, the Li2O in situ deduced from metal oxide layers can increase the interfacial impedance and 
prevent the substrate from being perfectly wetted by the molten Li[28]. To avoid this shortcoming, the non-
metallic or metallic species that can react with liquid Li to produce Li2O-free Li alloy have been 
investigated[42-45]. Zhang et al. introduced Si nanowire arrays on commercial CC sheets to fabricate a 
lithiophilic host[42]. The Si nanowires enhanced the wettability due to the generation of Li22Si5. The same 
phenomenon is repeated by Ag-coated framework. Zhang et al. found that Ag nanoparticles react with Li to 
produce Li-Ag alloy, which shows favorable Li affinity[45]. In addition, Ag nanoparticles can also act as the 
lithiophilic sites, promoting the Li nucleation process uniformly. On the other hand, regulating the micro/
nanostructure on the surface of the carbon-derived substrate is also a promising strategy to improve the 
wettability[46-51]. Feng et al. introduced inactive transition metal nanoparticles (Ni, Cu) onto the surface of 
CC sheets to form capillary-like structure with conical gaps[47]. When the modified CC was in contact with 
liquid Li, the generated Laplace pressure forced the molten Li to diffuse into the CC at 220 °C, thereby 
significantly improving the wettability. It should be pointed out that the radial length of these lithiophilic 
architectures anchored on carbon-based substrate is only a few micrometers, which has relatively low 
specific area and is susceptible to being buried by the deposited Li, especially under a high Li plating 
capacity. This indicates that the conventional host has a limited ability to promote the Li stripping/plating 
behavior, and Li dendrites will grow uncontrollably on the electrode surface after multiple cycles[38,52]. 
Therefore, it is essential to design a continuous network of the lithiophilic species with the micro/nano-scale 
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pores as the sub-skeleton, which can not only confine the Li deposition/dissolution behavior in the limited 
space but also tackle the wettability issue of the carbon-based primary framework, leading to the improved 
performance of Li composite anodes.

Recently, it has been shown that generating Li-rich Li-X (where X denotes metallic element) alloy by doping 
other metals into liquid Li can significantly facilitate rapid spreading of molten Li by reducing surface 
tension[53-55]. In addition, the formed Li alloy phase can act as a 3D framework to regulate Li stripping/
plating process for prolonged cyclic lifetime. The geometric structure and physicochemical nature of the Li 
alloy framework are critical for advanced performance of Li composite anodes. Our group found that dual-
phase Li-barium (Ba) alloy has a unique micro-sized ordered array of BaLi4 microchannels, which can 
homogenize Li+ flux and provide active sites for inducing the uniform Li deposition[56]. However, the long-
term cyclic stability cannot be guaranteed due to the insufficient robustness of the Li-Ba alloy scaffold.

Herein, we infiltrate the molten Li-rich Li-Ba alloy composed of BaLi4 intermetallic compounds and Li 
metal phases into the CC sheet to fabricate a Li-Ba alloy composite anode (named LBAC). Doping of 
metallic Ba can significantly lower the binding force among Li atoms, allowing the molten liquid alloy to 
diffuse rapidly into the CC host. In addition, the BaLi4 alloy scaffold is in situ created by phase separation 
during the cooling process. The porous architecture of BaLi4 skeleton with strong lithiophilicity is nested in 
conductive carbon fiber network as the sub-framework, which provides larger surface area for the 
nucleation of Li and confines Li stripping/plating in microchannels of BaLi4 alloy framework, thus 
suppressing the Li dendrite growth efficiently. Moreover, the structural stability of the Li-Ba alloy is 
enhanced by the strong flexibility exhibited by the CC. As a result, the LBAC anode displays favorable 
cycling performance, achieving ultra-long cycle lifespan (> 1,000 h) at 1 mA cm-2 and 1 mA h cm-2 in a 
symmetric cell with carbonate-based electrolyte. The LBAC/LiFePO4 (LFP) full cell also displays 
outstanding long-term cycling lifespan and rate performance.

EXPERIMENTAL
Fabrication of LBAC electrode
The stainless steel (SS) foil was utilized as a substrate for the combination of metallic Li (99.5%, Chengdu 
Denway Newtype Metal Material Co., Ltd) and Ba (99.5%, Aladdin), with a molar ratio of 1:25. Then, the 
temperature was raised to 400 °C. A circular CC sheet measuring 12 mm in diameter was placed on the 
molten Li-Ba alloy after the complete dissolution of metallic Ba into liquid Li. The liquid Li-Ba alloy was 
quickly infiltrated into the CC sheet. Finally, the LBAC electrode was fabricated via a quick cooling 
treatment. All the operations were performed in an argon-filled glove box (Mikrouna, O2 < 0.01 ppm, 
H2O < 0.01 ppm). As a reference, except that the temperature was 500 °C, the Li-C anode was prepared by 
infiltrating the molten Li into the CC sheet.

Materials characterization
The LBAC anode and CC were recorded by X-ray diffraction (XRD) from 10 to 90° at 5° min-1 (Cu Kα, 
0.15456 nm). The anode morphology was characterized using field emission scanning electron microscopy 
(FE-SEM) with an acceleration voltage of 20 kV.

Electrochemical measurements
The CR2032-type coin cells were utilized for the assembly of all cells, which were subsequently subjected to 
testing on a CT2001A battery testing system (LAND Electronic Co. Ltd.) at 25 °C. The working electrodes 
of symmetrical cells were LBAC, Li-C, or Li-Ba sheets. To standardize, symmetric cells were prepared using 
an electrolyte containing 100 μL of LiPF6 (1 M) dissolved in a mixture of ethylene carbonate and diethyl 
carbonate (EC/DEC, v:v = 1:1), supplemented with 5% fluoroethylene carbonate (FEC). As a separator, 
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Celgard 2325 membranes were used. A CHI660C electrochemical workstation (Shanghai, Chenhua) 
measured electrochemical impedance spectra (EIS) in a frequency range of 0.1 Hz to 1 MHz.

Full cells were assembled using LFP cathodes, a Celgard 2325 separator, and a Li composite anode (Li-C, 
Li-Ba or LBAC anodes). As for LFP electrodes, a slurry of LFP powders, a super P conducting additive, and 
a binder made of polyvinylidene fluoride (PVDF) was fabricated by mixing them together in N-methyl-2-
pyrrolidone (NMP) with a weight ratio of 8:1:1. The areal capacity of LFP electrodes was about 
2.45 mA h cm-2. The voltage range for measuring the full cells based on LFP was set between 2.2 and 3.85 V.

RESULTS AND DISCUSSION
The LBAC electrode is obtained by contacting CC disk with molten Li-Ba alloy. As shown in Figure 1A, 
when the CC touches the liquid Li-Ba alloy, the silver-white molten Li-Ba alloy can fill up the entire CC in 
less than 10 s, indicating that doping of metallic Ba can significantly lower the surface tension of liquid Li 
and improve the wettability toward CC. Based on the phase diagram of Li-Ba [Supplementary Figure 1], we 
can observe that phase segregated Li-Ba dual-phase alloy is composed of BaLi4 intermetallic compounds and 
Li metal when the Li atomic percentage is larger than 80% and the temperature is lower than 143 °C. Thus, 
phase separation occurs when the temperature cools rapidly below 143 °C. On the contrary, the CC itself 
exhibits poor wettability towards liquid Li, so the Li metal does not diffuse into the CC in more than 60 s 
under the same conditions [Supplementary Figure 2A]. Notably, molten Li-Ba alloy exhibits more favorable 
wettability than other Li alloys (such as Li-Ca and Li-Ag)[57], which is one of the important merits 
considering the practical application. The top surface of LBAC is dark gray with the distinct textile pattern 
of the carbon fibers. As depicted in the top-view scanning electron microscopy (SEM) images 
[Figure 1B-D], the Li-Ba alloy fills the gaps between each bundle of carbon fibers. The phase segregation 
behavior in the cooling process forces the BaLi4 phase to condense into a porous architecture with a 
relatively small diameter of about 20 μm. Apparently, the BaLi4 sub-skeleton in LBAC can further increase 
the specific surface area of CC, providing a lower local current density and abundant sites of Li nucleation 
significantly. Meanwhile, the pores of the BaLi4 alloy scaffold were filled with metallic Li, suggesting that the 
porous framework of the BaLi4 network can host Li [Figure 1E-G]. Moreover, the pores of the BaLi4 alloy 
scaffold are filled with metallic Li completely, indicating no voids in the as-prepared LBAC anodes. By deep 
contrast, as for the Li-C composite shown in Supplementary Figure 2B and C, the metallic Li almost covers 
the skeleton surface of the CC, and the void spaces among carbon fibers have been occupied by Li metal. 
From the side-view morphology of Li-C anodes [Supplementary Figure 2D and E], the metallic Li is not 
tightly bonded to the carbon fibers. The ex-situ XRD test was performed for confirming the composition of 
LBAC. As depicted in Supplementary Figure 3, the primary diffraction peaks of LBAC originate from the 
metallic Li phase, BaLi4 and carbon. In Supplementary Table 1, the mass of Li in the LBAC anode is 16.2 mg 
with a weight percentage of ~42.1%. Additionally, LBAC exhibits a remarkable specific capacity of 
~1,519 mAh g-1 after stripping Li to 2 V [Supplementary Figure 4], which closely approaches the theoretical 
specific capacity (1,621 mA h g-1).

The Li stripping/plating behaviors of LBAC were conducted by SEM so as to analyze the function of BaLi4 
alloy sub-scaffold. After 10 mA h cm-2 Li was stripped, the internal porous array was further exposed, and 
the BaLi4 microchannels array was evidenced as a secondary scaffold in the CC framework [Figure 2A]. As 
the Li stripping capacity reaches 20 mA h cm-2, the ordered array of BaLi4 alloy microchannels is uniformly 
dispersed on the carbon fibers, providing a large number of Li nucleation sites and facilitating Li ion 
diffusion [Supplementary Figure 5]. Furthermore, the lithiophilic Li-Ba alloy can reduce Li nucleation 
overpotential and inhibit Li dendrite generation during the subsequent process of Li plating. Therefore, 
when the Li is replated at 5 mA h cm-2 [Figure 2B], the plated Li preferentially fills the microchannels in 
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Figure 1. (A) Optical images of the liquid Li-Ba alloy infusion at 400 °C to CC.  The top surface morphology of the (B) CC and the 
(C and D) LBAC electrodes. The cross-sectional view morphology of the (E) CC and the (F and G) LBAC.

Figure 2. (A, D, G) The SEM images of LBAC anode following the removal of 10 mA h cm-2 Li, (B, E, H) subsequent deposition 
5 mA h cm-2 and (C, F, I) 10 mA h cm-2 Li.

BaLi4 alloy scaffold and no Li dendrite was visualized. The BaLi4 microchannels can confine the deposited Li 
in a smaller cage, achieving uniform Li deposition behavior. As the Li plating capacity is up to 
10 mA h cm-2, the BaLi4 microchannels are completely covered by Li metal, showing a dendrite-free 
morphology [Figure 2C]. Moreover, the dense Li layer can be observed in the side-view SEM images 
[Figure 2D-I]. These results demonstrate the significant impact of LBAC on guiding highly reversible Li 
stripping/plating behavior. This is attributed to the spatial confinement provided by porous BaLi4 array 
among the bundles of carbon fibers, resulting in the reduced size of the deposited Li. In contrast, the Li-C 
electrode has a different Li stripping/plating behavior. A SEM image in Supplementary Figure 6A illustrates 
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that the Li metal in the vicinity of carbon fibers can be dissolved in a higher selectivity and increase the 
visibility of carbon fiber bundles, which may be attributed to the high electrical conductivity of the carbon 
fiber bundles. When replated with 5 mA h cm-2 Li [Supplementary Figure 6B], the severe aggregation of 
deposited Li metal on the upper surface of the CC is apparent clearly, indicating that the CC has a large Li 
nucleation overpotential which easily causes irregular Li deposition[57]. Notably, the deposited Li grows 
unrestrictedly since the Li deposition occurs on the upper surface. While the Li deposition capacity 
increases to 10 mA h cm-2, the subsequently deposited Li metal accumulates on the previously deposited Li, 
causing the generation of numerous Li dendrites on the Li-C electrode [Supplementary Figure 6C-I]. This 
undesirable behavior poses a significant safety risk. These results clearly illustrate that the limited specific 
surface area and poor lithiophilicity of CC can result in uneven nucleation and unrestricted growth of Li to 
form Li dendrites.

To further evaluate the electrochemical performance for LBAC anodes, symmetrical cells were assembled 
using LBAC electrodes for assessing electrochemical cycling performances under different current densities. 
The Li-C/Li-C and Li-Ba/Li-Ba symmetric cells were also assembled separately for comparison to highlight 
the synergistic effect of the BaLi4 alloy sub-framework and CC framework. As shown in Figure 3A, the time-
voltage curve tells that the voltage hysteresis of LBAC cells can stabilize at 30 mV for 1,000 h under 
1 mA cm-2/1 mA h cm-2, which is ascribed to the distinct multiscale scaffold structure of LBAC. By deep 
contrast, The Li-Ba symmetric cell has a much higher voltage hysteresis, especially after 200 h, 
demonstrating the aggregation of “dead Li” on the anode surface, leading to the cell failure. Similarly, the 
voltage polarization of Li-C cells increases abruptly at 350 h, which is much lower than that of the LBAC 
composite electrode. The lifespan of the Li-C and Li-Ba cells only maintains a shorter period with a larger 
overpotential after the current density exceeds 3 mA cm-2 (Li-Ba: ~120 mV for 140 h; Li-C: ~150 mV for 
170 h). However, LBAC/LBAC cells exhibit longer cycling life without any voltage fluctuation (~40 mV for 
420 h), which highlights the excellent Li affinity and structural stability of LBAC. The overpotential of 
LBAC anodes is much lower than Li-C anodes, which can be attributed to excellent lithiophilicity of Li-Ba 
alloy. Furthermore, the surface of LBAC anodes is not flat; in other words, the Li-rich Li-Ba alloy does not 
completely cover the CC surface, and the carbon fibers and Li-Ba alloy coexist on the LBAC anode surface. 
Therefore, LBAC anodes have larger specific area than Li-Ba anodes, exhibiting lower overpotential. The 
cells assembled with LBAC electrodes can cycle continuously for 220 h even at 5 mA cm-2, while Li-Ba and 
Li-C-based cells can cycle for only 70 and 110 h with significant voltage fluctuations, separately. This can be 
attributed to the fact that the extremely high current density can trigger Li dendrite formation, while the 
interconnected microchannels in LBAC can confine the Li stripping/plating behavior in the alloy scaffold. 
Additionally, the larger specific surface area of LBAC anodes eliminates the high current density, so the Li 
dendrite growth can be effectively suppressed to ensure the cycling stability. As the typical areal capacity of 
commercially available Li-ion batteries is approximately 3 mA h cm-2, the testing parameters are set to 
3 mA/3 mA h cm-2. Supplementary Figure 7 illustrates that the LBAC composite can achieve a cycling life of 
about 300 h. In contrast, the Li-Ba and Li-C cells display a short lifespan and the voltage hysteresis reaches 
1,000 mV at 120 and 150 h due to the gradual thickening of the solid electrolyte interface (SEI) and the 
accumulation of inactive Li.

EIS were measured to assess the internal stability of symmetric cells, as shown in Figure 3B. The Rct value of 
Li-Ba (~450 Ω) and Li-C symmetric cells (~550 Ω) is higher compared to LBAC symmetric cells before 
cycling (~200 Ω). After 100 cycles, the Rct of the LBAC composite decreases to ~50 Ω, which remains smaller 
than that of the Li-Ba (75 Ω) and Li-C (125 Ω) cells, indicating that LBAC has faster charge transfer kinetics 
and a SEI layer with enhanced stability that facilitates reversible process of Li stripping/plating [Figure 3C]. 
The superior electrochemical performance indicates that the microchannels of the Li deposition behavior 
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Figure 3. Electrochemical performances of LBAC, Li-Ba and Li-C symmetric cells at various current densities: (A) 1 mA cm-2; 3 mA cm-2; 
5 mA cm-2.  Nyquist impedance plots of symmetrical cells with LBAC, Li-Ba and Li-C anodes (B) before and (C) after 100 cycles while 
operating at a condition of 3 mA cm-2/1 mA h cm-2.

can be effectively regulated by LBAC and the macroscopic skeleton of the CC enhances the stability of the 
multiscale scaffolds. Compared with the published records of the carbon-based Li composite anodes under 
the carbonate electrolyte conditions [Supplementary Table 2], the LBAC electrode exhibits superior cycling 
performance.

To acquire a profound comprehension of the function of LBAC on favorable long-term cycling lifespan, 
morphological evolution of LBAC and Li-C composite electrodes after 100 cycles is investigated, as depicted 
in Figure 4. After 100 cycles, a quantity of mossy and Li dendrites emerged on the Li-C surface, as illustrated 
in Figure 4A, delivering a rough and porous Li layer as thick as about 100 μm [Figure 4B and C]. The Li 
stripping/plating behavior in the LBAC electrode is well regulated by the BaLi4 microchannels array. As 
shown in Figure 4D, the surface of the deposited Li is smooth, rather than showing Li dendrites, indicating 
that the favorable lithiophilicity and smaller pores of the BaLi4 sub-scaffold can regulate uniform Li 
deposition. Figure 4E and F depicts no obvious “dead Li” and Li dendrites on the LABC top surface. Thus, 
the LBAC with microchannels array can effectively tune the Li growth process and ensure extraordinary 
cycling stability.

For evaluating the potential application of LBAC anodes in Li metal batteries, the full cells were assembled 
using LBAC as the anode and high-areal-capacity LFP as the cathode. Additionally, Li-C-based full cells 
were also assembled. The cycling performance is shown in Figure 5A. In initial cycles, a slight increase of 
specific capacity occurred in two cells due to the process of activating the electrode. The long-term cycling 
curve at 1 C demonstrates that the LBAC/LFP cell retains 93.3% of its initial capacity after 300 cycles (equal 
to 600 h), with a consistently stable coulombic efficiency (CE) of ~99.5%. On the contrary, the capacity 
retention of the Li-C/LFP full cell is significantly reduced (38.2%) and exhibits a sharp CE fluctuation even 
within 40 cycles, suffering from continuous capacity decay. Meanwhile, the rate performance was 
characterized by varying the current rate from 0.1 to 2 C. The LBAC/LFP cell can deliver specific capacities 
of 155 mA h g-1 (0.1 C), 147 mA h g-1 (0.5 C), and 135 mA h g-1 (1 C), exhibiting superior performance 
compared to the Li-C/LFP cells (0.1 C:154 mA h g-1, 0.5 C:140 mA h g-1, 1 C:119 mA h g-1), as shown in 
Figure 5B-D. Even when the rate increases to 2 C (~4.9 mA cm-2), the LBAC/LFP still gives a higher specific 
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Figure 4. SEM images of (A-C) Li-C and (D-F) LBAC after 100 cycles. The cycling conditions are 3 mA cm-2 and 1 mA h cm-2.

Figure 5. (A) The long-term electrochemical performance of the LBAC/LFP and Li-C/LFP full cells at 1 C. (B) Rate capability evaluation 
of the LBAC/LFP and Li-C/LFP from 0.1 to 2.0 C. Capacity-voltage curves of the (C) Li-C/LFP and (D) LBAC/LFP full cells as the 
anodes.

capacity of 117 mA h g-1, with respect to 34 mA h g-1 of the Li-C/LFP cell. These results demonstrate that the 
lithiophilic BaLi4 microchannel array as the sub-skeleton can significantly promote the rate performance 
and cyclic stability by effectively regulating Li deposition/dissolution behavior and suppressing Li dendrite 
growth.
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CONCLUSIONS
In brief, we have successfully fabricated a remarkably stable Li composite anode with a porous BaLi4 alloy 
array as the sub-skeleton in the CC sheet for regulating Li stripping/plating behavior via a facile thermal 
infusion strategy within 10 s. The addition of heteroatomic Ba metal to Li can reduce the surface tension of 
liquid Li, enhancing the wettability toward the CC. Moreover, the ordered array structure of LBAC anodes 
not only restricts the Li stripping/plating behavior in the microporous space to suppress Li dendrite growth 
but also reduces the Li nucleation overpotential to achieve homogeneous Li deposition. Furthermore, the 
mechanical strength of the anode is significantly enhanced by the excellent flexibility exhibited by the CC 
host. As a result, the porous array of BaLi4 microchannels nested in CC sheet assists the high cycling 
performance over 1,000 h under a condition of 1 mA cm-2/1 mA h cm-2 with a dendrite-free morphology. 
Additionally, a LBAC composite anode exhibits excellent performance in a full cell coupled with a LFP 
cathode due to the good reversibility and rapid transfer of charge. We believe a composite anode consisting 
of flexible carbon host architecture and Li-rich Li alloy with built-in lithiophilic and porous skeleton holds 
great potential as the practical anode material for Li metal batteries.
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