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Abstract
Our knowledge of the river’s qualitative status generally relies on discrete spatial and temporal observations 
organized under what is commonly known as a “monitoring network”. Network performance is constrained by its 
spatial - temporal resolution, which is severely limited by the costs associated with the whole sampling and 
analytical process. Alternatively, modeling allows predicting the spatial - temporal variable profile at any resolution 
at affordable computing costs. However, it involves high uncertainty in the parameterization and requires 
experimental validation as well. Here, we aimed at reconciling monitoring and modeling, deriving simple steady-
state advection-reaction (reactive-transport) models from monitoring data. They are based on graph-theoretical 
concepts, notably the use of the Laplacian matrix, which captures the river network topology, the interaction 
between adjacent sites, and the advection process between them. The local reactive process is described by a first-
order decay reaction. The application of these models provided relevant information about the variables monitored, 
such as the local dynamics, the distance of the site’s influence, the degree of synchronization, or the external 
input/output to the system, which is useful for both scientific and management purposes.

The model was tested in the Llobregat River (NE Spain) basin, with 70 emerging contaminants of different classes 
(pharmaceuticals, pesticides, perfluorinated substances, endocrine disruptors, and drugs of abuse). The monitoring 
network included 14 sites (7 in the mainstream, 4 in the Cardener, and 3 in the Anoia tributaries) and was 
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monitored in 2 campaigns. These models can help water managers to optimize the design of river monitoring 
networks, a key aspect of environmental regulations.

Keywords: Monitoring network, emerging contaminants, advection-reaction, reactive transport, graph theory, 
Laplacian matrix

INTRODUCTION
Rivers are net receivers of both point and diffuse pollution, such as nutrients, metals, emerging pollutants, 
etc.[1], which are considered one of the main causes of freshwater biodiversity impairment[2,3]. Many chemical 
pollutants are not environmentally persistent; rather, they change due to multiple biotic (biodegradation) 
and abiotic processes (sorption, photolysis, hydrolysis, etc.), giving rise to additional transformation 
products. Rivers extend more or less continuously through space and time under the influence of their 
catchment area. However, only a few variables can be measured with the highest resolution in time (i.e., 
online sensors) or space (i.e., remote sensing), and none in both dimensions[4]. Therefore, our knowledge of 
the river’s qualitative status relies on discrete spatial and temporal observations of a set of physical, 
chemical, or biological parameters, organized under what is commonly known as a “monitoring network” 
[Figure 1]. Monitoring networks are typically constituted by several sites deployed throughout the river 
basin area, which are sampled at a certain time-frequency. This is a current practice used for either research 
or management purposes and has given rise to large databases. Indeed, monitoring networks are a key 
aspect of the implementation of environmental regulations such as the EU Water Framework Directive 
(Directive 2000/60/EC). The accuracy of the “picture” obtained depends on both the spatial and temporal 
“resolution” of the network used. However, it is constrained by the economic cost of the whole sampling 
and analytical process, often expensive, as is the case of emerging contaminants. To cope with the inherent 
limitations of discrete monitoring networks, dynamic modeling of chemical fate and transport processes 
was raised as a complementary alternative[5]. While both approaches - monitoring and modeling - have their 
respective pros and cons, there is a growing interest in the latter due to the increasing development and 
affordability of computation and information techniques compared to costly monitoring campaigns[5,6]. 
Modeling approaches have been mostly focused on the prediction of environmental concentrations of 
pollutants. Existing models include GREAT-ER[7,8], PhATE[9], LF2000-WQX[10,11], and MERLIN-EXPO[12], 
among others[13-16]. However, advanced modeling is not exempt from limitations. They are “data-hungry” 
and require combining a hydrological model with that of the physical - chemical processes taking place in 
the river, whose parameterization is often subjected to high uncertainty[17] that depends on local 
conditions[18-20]. Moreover, they ultimately need to be validated through experimental measurements. 
Altogether, monitoring and modeling must be regarded as complementary tools that should be 
advantageously used together[5,21].

Although the use of spatial (topological) relationships in the study of rivers is not new[21-27], here, we explore 
new possibilities for exploitation of experimental data available from river monitoring networks, and their 
interpretation in the light of simple reactive-transport (or advection-reaction) that can be readily derived 
therefrom. To do so, we make use of some graph-theoretical concepts recently used in the development of 
models (oscillation models) applied in other domains such as social networks (Internet networks, etc.)[28,29].

The proposed advection-reaction model approach was tested using an available dataset that includes 
concentrations of ca. 70 emerging contaminants belonging to several chemical families and sampled 
alongside the Llobregat River (NE Spain) during 2010-2011 as part of the project SCARCE[30].
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Figure 1. (A) Map of the Llobregat River basin showing the sampling sites. (B) Network graph representation of the area studied. The 
distances (km) between adjacent sites are indicated in blue.

MATERIALS AND METHODS
Study area
The Llobregat River (NE Spain)[31] is 156 km long and covers a catchment area of about 4957 km2 [Figure 1]. 
From the hydrologic point of view, the Llobregat is a typical Mediterranean river, its flow being 
characterized by high variability, which is closely controlled by seasonal rainfall. The mean annual 
precipitation is 3330 Hm3, and it has an annual average discharge of 693 Hm3. Its watershed is heavily 
populated with more than three million inhabitants, mostly in the lowest part located in the surroundings of 
the city of Barcelona. Together with its two main tributaries, River Cardener and River Anoia, the Llobregat 
is subjected to heavy anthropogenic pressure, receiving extensive urban and industrial wastewater 
discharges (137 Hm3/year; 92% coming from the wastewater treatment plants), which constitutes a 
significant part of its natural flow. Overall, 48% of these point sources are located in the studied area. 
Furthermore, in the middle part of the basin, it receives brine leachates from natural salt formations and 
mining operations, which have caused an increase in water salinity downstream. The Llobregat is thus an 
illustrative example of overexploited river.

Advection-reaction model based on network theoretical concepts applicable to a river network of 
discrete monitoring measurements
Network theory concepts
The river studied can be described as a set of spatially distributed connected sites (nodes) in which we carry 
out measurements of a variable x (e.g., the concentration of a contaminant) at a certain time, which 
constitute the monitoring network [Figure 1]. Its structure is conveniently described[28,29] by a graph G(E, V), 
where V = {1, …, n} denotes the set of n nodes representing the monitoring sites and E is the set of edges 
between nodes. The network structure of nodes and links is captured by the adjacency matrix A. It is an 
n × n square defined as:

We define the degree di of node i (i = 1, ..., n) as:
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where vi denotes the set of nodes adjacent (connected) to node i. The weighted degree matrix D can be thus 
defined as:

The so-called graph Laplacian matrix is defined as:

The elements of L are given by:

The Laplacian matrix L is real, symmetric, and semi-definite positive, with all the eigenvalues nonnegative, 
being always the first eigenvalue λ1 = 0 the smallest one and its associated eigenvector v1 = (1, 1, 1...1)T. This 
vector corresponds to the fully synchronized state, in which the variable studied x has the same value in all 
the nodes (i.e., x1=x2=…xi…= xn-1= xn).

The network advection-reaction model
The model provides a simple and general description capturing the network dynamics. Briefly, let the state 
of node i be xi so that x := (x1, .... , xn)T is the n-dimensional state vector of measurements of variable x for all 
the nodes. It is assumed that the time evolution of xi can be described by the following simple kinetic 
equation:

where the first term on the right side of the equation reflects a first-order decay process with a rate constant 
k and the second term is an advection process between the sites connected, characterized by a mean 
advection velocity v (see comment below). The terms δi are local inputs or sinks at each site i. We assume 
that, for a given compound, the rate constants k and the advection velocities v are equal throughout all the 
space (i.e., alongside the n measurement sites), although they may change at each sampling time. These are 
common assumptions in many models.

It can be written in the following compact vector form:

ASUS
图章
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Assuming that the measurements correspond to a stationary state (x = 0), rearranging the above equation, 
and dividing both sides by k, it becomes:

Numerically, the parameter v/k could be assimilated to the slope of the regression line of Lx over x with the 
intercept set equal to 0. Its calculation can be readily done by ordinary least squares (OLS), and the vector 
ε = δ/k of errors (ε = x - v/k ·Lx) captures the local input/output (under the OLS assumptions).

It can be shown that the inverse of the OLS calculated slope (ρ = k/v) is equal to:

Noting that the right-hand expression in the above equation is the Rayleigh quotient of the Laplacian matrix 
L (https://en.wikipedia.org/wiki/Rayleigh_quotient), for any vector x, ρ is bounded between its minimum 
and maximum eigenvalues, so that:

Furthermore, expanding x in terms of the normalized eigenvectors u of L, and considering that ci = ui
Tx 

(graph Fourier transform of x), we have the following expression that quantifies the contribution of the 
different eigenstates λi to ρ:

with Σici = 1 Equation (6). This allows defining an entropy S as:

Entropy S provides an insight into how the ρ is allocated among the different eigenstates. In turn, the terms 
c1

2 capture [Equation (5)] the respective contribution of each eigenstate i. For our purposes, the first one is 
particularly relevant, namely c1

2, the eigenstate associated with the first eigenvalue λ1 = 0, which quantifies 
the weight of the synchronized state (note, however, that the contribution of the synchronized state to ρ is 
zero since λ1 = 0).

Definition of the “weighted” Laplacian for practical use
Without loss of generality, the foregoing definitions of the adjacency and Laplacian matrices can be 
extended to “weighted” analogs, i.e., Aij = wij, that better capture real problems. Here, the weight associated 
with the edge (i, j) wij of the aquifer weighted adjacency matrix elements was set equal to the inverse of the 
distance rij between connected sites i and j: wij = 1/rij (dimension L−1). Defined in this way, it is worth noting 
that the terms (xi - xj)/rij in Equation (1) can be regarded as the discrete counterparts of a gradient ∂x/∂r. 
Hence, the term v/k has the dimension L and can be interpreted as a characteristic length (referred to 
hereafter as ℓ). In addition, v/k may be interpreted as a measure of the relative relevance of the two 

https://en.wikipedia.org/wiki/Rayleigh_quotient
ASUS
图章

ASUS
图章

ASUS
图章

ASUS
图章

ASUS
图章

ASUS
图章

ASUS
图章

ASUS
图章

ASUS
图章



Page 6 of Ginebreda et al. Water Emerg Contam Nanoplastics 2022;1:12 https://dx.doi.org/10.20517/wecn.2022.0714

processes involved, i.e., advection (between neighbor nodes) and decay (local at each node). Likely, the 
vector ε = δ/k has the dimension of concentration [Equation (3)] and provides information on the local 
inputs/output of the x variable.

Calculations
All the calculations were performed using Excel (Microdsoft®) and the R environment (version 4.1.0). 
Measurements below the limit of detection (< LOD) and the limit of quantification (< LOQ) were set equal 
to 0 for calculation purposes.

Monitoring of emerging contaminants
The sampling of water for chemical characterization was performed at the end of the summer period in 
campaigns carried out in autumn for two consecutive years, namely 2010 (C1) and 2011 (C2). Sampling 
sites (14) were distributed in the Llobregat mainstream (seven sites), and the Cardener and Anoia tributaries 
(four and three sites, respectively) [Figure 1]. At each site, grab water samples were taken for chemical 
analyses of the organic micropollutants. In total, 199 organic micropollutants were measured using 
previously published analytical methods based on gas chromatography-tandem mass spectrometry or liquid 
chromatography - tandem mass spectrometry for pesticides[32], pharmaceuticals[33], endocrine-disrupting 
chemicals (EDCs) and related compounds (hormones, plasticizers, alkylphenols, parabens, phosphate flame 
retardants, anticorrosion agents, and bactericides)[34], perfluorinated compounds[35,36], and drugs of abuse[37].

To avoid an excessive number of “0 values” (i.e., not detected or not quantified), the above-described 
methods were applied to compounds having detection frequencies equal to or greater than 20% in each of 
the two sampling campaigns performed, which resulted in a final selection of 71 compounds out of the 199 
monitored [Supplementary Table 1].

RESULTS AND DISCUSSION
Monitoring information (limits of detection, detection frequency, and mean and maximum concentrations) 
corresponding to the selected compounds and the two campaigns are collected in Supplementary Table 1. 
Compounds were grouped per class as follows: drugs of abuse (5), endocrine disruptors (13), perfluorinated 
compounds (6), pesticides (6), and pharmaceuticals (37). A full description and discussion of monitoring 
results[32-37] and their associated ecotoxicological risk[38,39], as well as their relationship with the receiving 
ecosystems[1,40,41], was previously published.

Advection-reaction network models
The application of the above-described advection-reaction model (Section “Study area”) to each of the 71 
compounds selected provided as main quantitative outputs the following information: (a) characteristic 
distances (ℓ) [Equation (3)]; (b) entropy [Equation (6)]; (c) local input/outputs [Equation (3)]; and (d) the 
contribution of the different eigenstates [Equation (5)]. Although these quantitative indicators are not fully 
independent and exhibit some quantitative relationships (see below), they provide somewhat 
complementary information useful for different interpretation purposes. Whereas the characteristic length 
(ℓ = v/k) gives an idea of the distance through which the advection process is effective compared to the 
decay process, its inverse [ ρ = xTLx/xTx, Equation (4)] is often referred to in graph theory as the “network 
energy”. Finally, its spectral decomposition in terms of the eigenvectors and eigenvalues of L allows us to 
describe it as a superposition (sum) of the different eigenstates (modes) contained in L [Equation (5)]. 
Among the latter, the contribution of the fully synchronized state, in which all sites have the same 
concentration for the variable under study, is particularly relevant, since it corresponds to the equilibrium 
state in which the concentration of the measured variable is the same in all sites. Finally, the relative 
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contribution of each eigenstate to ρ (“network energy”) is conveniently captured by an entropy 
[Equation (6)] (the parallelism of the foregoing definitions with the corresponding thermodynamic 
concepts is rather evident). The statistical distributions of characteristic lengths (ℓ), entropies, and 
synchronized state contribution are shown in Figure 2A-C, respectively, for the different families of 
compounds and sampling campaigns. Characteristic lengths of the whole compound set were between 123 
and 2.3 km, with a median of 16.4 km. This value is of the same order as the distance between adjacent 
monitoring sites (mean, 20.6 km; max, 55.2; min, 2.3 km; median, 18.2 km), meaning that the monitoring 
network fits the requirements reasonably well. In that sense, the characteristic lengths provide a relevant 
insight for the optimization of monitoring networks, whose separation between sites should ideally take into 
consideration the range of lengths of the set of compounds monitored (notably those with the shortest 
ones). In general, ℓ values in campaign C1 were larger than those in C2 for all the compound classes 
[Figure 2A], with more pronounced values and differences between campaigns corresponding to pesticides 
and perfluorinated compounds. Such small but perceptible differences could possibly be explained through 
corresponding variations in hydrology. Thus, for instance, whereas the autumn of 2010 was characterized 
by intense precipitation which resulted in a high flow, the autumn of 2011 was dry and the river flows were 
comparatively lower. High flows give rise to larger linear velocities and, hence, longer characteristic lengths, 
which tend to increase the contribution of the advection process, thus improving the river connectivity. 
This pattern (and its hydrological explanation) is also reflected in the increasing contribution of the 
synchronized state [Figure 2C]. It is worth noting that, in a hypothetical fully synchronized (i.e., 100%) 
situation, ρ = 0 [Equation (3)], and its inverse, the characteristic length ℓ, would thus be infinite. In that 
sense, the contribution of the synchronized state is typically higher in C1 than in C2, with maximum 
differences occurring in the case of pesticides.

Entropy values for the different compound classes are given in Figure 2B. They show the lowest values for 
pesticides and appear systematically lower in C1 than in C2. Entropy captures the system “complexity”, 
providing a quantitative measure of how the different eigenstates of the Laplacian matrix contribute to the 
description of the system. Entropy takes its maximum value when all the states are equally allocated. High 
entropy values thus reflect a heterogenous hydrological environment and would be indicative of a 
“fragmented” situation, as happens under water scarcity, typical of Mediterranean rivers[42].

As mentioned above, the three properties studied exhibit related trends, which are depicted in Figure 3A 
and B. Overall, the characteristic length has a negative correlation with entropy (Pearson 
correlation = -0.748, Figure 3A), while synchronization shows a positive one (Pearson correlation = 0.561, 
Figure 3B).

Further analysis of the processes involved can be achieved considering the respective contributions of the 
different eigenstates of the Laplacian matrix L to Equations (5) and (6). Specifically, the contribution of the 
synchronized state (i.e., equal values of measured pollutant x in all nodes) vs. higher states is relevant, 
considering that a fully synchronized state would have ρ = 0 [Equation (5)], and thus an infinite 
characteristic length. In that sense, as one may expect, synchronization was aligned with a characteristic 
length [Figure 2A]. Focusing on the individual compounds, the highest values and differences between 
campaigns of characteristic lengths [Figure 4A] were found in some pesticides (chlorpyriphos, imazalil, and 
diazinon), perfluorinated compounds (PFOA and PFPeA), and pharmaceuticals (non-steroidal 
antiinflammatories naproxen, ibuprofen, ketoprofen, and meloxicam), with notably higher values in the 
2010 campaign (C1).
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Figure 2. Boxplots showing the distribution of the values per sampling campaign (C1, 2010; C2, 2011) for the different compound 
classes: (A) characteristic length (km); (B) entropy; and (C) synchronized state contribution. The upper and lower bounds correspond 
to maximum and minimum values; boxes are limited by the 75th and 25th quartiles; and dots correspond to outliers.

Contrastingly, entropy values were generally higher in 2011 (C2) than in 2010 (C1) [Figure 4B], with the 
largest differences corresponding to the group of pesticides (isoproturon, imazalil, diazinon, and 
chlorpyriphos), while the synchronization showed a mixed situation [Figure 4C].

Relevant information regarding the input/output pollution load throughout the basin can be obtained from 
the vector ε = δ/k of Equation (3), whose components’ signs provide insight into each sampling site’s 
behavior, indicating if it is a net receiver (positive) or a sink (negative) of pollution. Figure 5 shows some 
examples, including the total pollution per site along with the two campaigns C1 and C2 (i.e., the variable x 
was the aggregated sum of all pollutants measured at a site) [Figure 5D], as well as some individual 
compounds representative of the different sources of pollution, namely the anticorrosion agent 
1H-benzotriazole (industrial), the insecticide chlorpyriphos (agriculture), and the pharmaceutical diclofenac 
(urban) (Figure 5A-C, respectively). Concerning the absolute input/output quantities, the observed order 
was: sum of all pollutants > 1H-benzotriazole > diclofenac > chlorpyriphos. Each one exceeded the next by 
circa one order of magnitude. Both campaigns showed similar input/output profiles for chlorpyriphos and 
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Figure 3. Scatter plots showing the relationships between characteristic length and entropy as well as synchronized state of all 
compounds studied in the two campaigns (n = 142): (A) characteristic length (km) vs. entropy; and (B) characteristic length (km) vs. 
synchronized state contribution.

the sum of all pollutants, while the industrial and urban representatives showed slightly higher input values 
in C2 than in C1, which is consistent with the hydrology (i.e., lower flow dilution in the former campaign). 
Input/output patterns per site were roughly similar for the sum of all pollutants, 1H-benzotriazole, and 
diclofenac, which is consistent with their respective contribution to the total pollutant load. They 
highlighted some sites such as ANO3 and LLO3 where pollution depletion exceeded the pollution received 
(negative sign), while others such as ANO1, CAR4, or LLO6 (positive sign) exhibited the opposite behavior, 
thus indicating that the reception of external sources of pollution exceeded their elimination capacity. The 
latter two are well-known polluted sites by both industry and urban population sources, located close to the 
Manresa and Barcelona metropolitan areas, respectively. Some other sites, mainly located in the relatively 
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Figure 4. Value distribution per compound along the two sampling campaigns monitored (C1, 2010; C2, 2011): (A) characteristic length 
(km); (B) entropy; and (C) contribution of the synchronized state (%).

clean upper course of the Cardener tributary (CAR1, CAR2, and CAR3), have a “neutral” behavior, 
characterized by null values. Contrastingly, the insecticide chlorpyriphos exhibited a somewhat different 
pattern, spread along the mid and lower river basin, with the largest inputs observed in ANO2, CAR3, 
LLO3, and LLO6.

CONCLUSIONS
River basin quality status assessment is largely determined through discrete measurements of different 
variables carried out at certain sites located alongside the catchment and specified time frequencies, under 
what is usually known as a “monitoring network”. These are currently used for both research and water 
management purposes and have given rise to large datasets. Network performance is constrained by its 
spatial-temporal resolution, which, in turn, is severely limited by the, often expensive, costs associated with 
the whole sampling and analytical process, as in the case of emerging contaminants. Alternatively, modeling 
allows predicting the spatial-temporal variable profile at any resolution at an affordable computing cost. 
However, it involves high uncertainty in the parameterization and requires, in the end, experimental 
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Figure 5. Net input/output per site along the two sampling campaigns monitored (C1, 2010; C2, 2011) at each sampling site of: (A) 1H-
benzotriazole (anticorrosion agent, industrial use); (B) chlorpyriphos (insecticide, agriculture use); (C) diclofenac (pharmaceutical, 
urban use); and (D) total pollution load (expressed as the sum of all pollutants analyzed).

validation.

In the present short contribution, we aimed at reconciling both approaches - monitoring and modeling - 
through the interpretation of the experimental data under the framework of a simple advection-reaction 
(i.e., reactive-transport) model based on graph-theoretical concepts, notably the use of the Laplacian matrix, 
which adequately captures the river network topology and the interaction between adjacent sites. Whereas 
the Laplacian matrix has been previously used in spatial geographic analysis (e.g., the so-called “Geary 
coefficient”[43], a widely used spatial correlation index, can be expressed in terms of the Laplacian matrix[44]), 
here we used it for the first time in two novel aspects: (a) to capture the advection process taking place 
between adjacent sites in the context of an advection-reaction model; and (b) the definition of an entropy 
that quantifies the contribution of the different eigenstates (modes) of the Laplacian to the measured 
variable.

Despite their obvious limitations, the approach presented here is straightforward and can provide useful 
information regarding the dynamics of the variables monitored, such as the local dynamics, the influence of 
the neighbor sites, the degree of synchronization, or the external input/output to the system. Even though 
the methods and results presented in this study were specifically concerned with emerging contaminants, 
they can be easily extended to any other site-measured variables as well, such as nutrients, inorganic 
constituents, heavy metals, or even biological parameters such chlorophyll, dissolved enzymes (alkaline 
phosphatase), etc.

Finally, since monitoring for water quality assessment is a key aspect in the implementation of 
environmental legislation, such as the Water Framework Directive (Directive 2000/60/EC), the presented 
modeling approach can provide valuable insights for water managers engaged in the proper and consistent 
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design of river monitoring networks, whether surveillance, operational, or investigative, with potential 
practical consequences on the optimization of economic costs.

DECLARATIONS
Acknowledgment
This work has been supported by the Spanish Ministry of Science and Innovation (MCIN).

Authors’ contributions
Involved in the conception: Ginebreda A, Barceló D
Involved in the design, data treatment and interpretation: Ginebreda A
Writing of manuscript and critical reading: Ginebreda A, Barceló D

Availability of data and materials
Data are available at the Supplementary Material [Supplementary Table 1].

Financial support and sponsorship
This work has been financed by the Spanish Ministry of Science and Innovation (MCIN), through Project
SINERGIA included in the Severo Ochoa Grant CEX2018-000794-S funded by MCIN/AEI/
10.13039/501100011033.

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyrights
© The Author(s) 2022

REFERENCES
Sabater S, Barceló D, De Castro-Català N, et al. Shared effects of organic microcontaminants and environmental stressors on biofilms 
and invertebrates in impaired rivers. Environ Pollut 2016;210:303-14.  DOI  PubMed

1.     

Vörösmarty CJ, McIntyre PB, Gessner MO, et al. Global threats to human water security and river biodiversity. Nature 2010;467:555-
61.  DOI  PubMed

2.     

Malaj E, von der Ohe PC, Grote M, et al. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. 
Proc Natl Acad Sci U S A 2014;111:9549-54.  DOI  PubMed  PMC

3.     

O’Grady J, Zhang D, O’Connor N, Regan F. A comprehensive review of catchment water quality monitoring using a tiered framework 
of integrated sensing technologies. Sci Total Environ 2021;765:142766.  DOI  PubMed

4.     

Johnson AC, Ternes T, Williams RJ, Sumpter JP. Assessing the concentrations of polar organic microcontaminants from point sources 
in the aquatic environment: measure or model? Environ Sci Technol 2008;42:5390-9.  DOI  PubMed

5.     

Pistocchi A, Marinov D, Pontes S, Gawlik BM. Continental scale inverse modeling of common organic water contaminants in 
European rivers. Environ Pollut 2012;162:159-67.  DOI  PubMed

6.     

Feijtel T, Boeije G, Matthies M, et al. Development of a geography-referenced regional exposure assessment tool for European rivers - 
great-er contribution to great-er #1. Chemosphere 1997;34:2351-73.  DOI

7.     

Schowanek D, Webb S. Exposure simulation for pharmaceuticals in European surface waters with GREAT-ER. Toxicol Lett 
2002;131:39-50.  DOI  PubMed

8.     

Anderson PD, D’Aco VJ, Shanahan P, et al. Screening analysis of human pharmaceutical compounds in U.S. surface waters. Environ 
Sci Technol 2004;38:838-49.  DOI  PubMed

9.     

Keller V, Young AR. Development of the Integrated Water Resources and Water Quality Modelling System, Science Report P2-10.     

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202207/5034-SupplementaryMaterials.pdf
https://dx.doi.org/10.1016/j.envpol.2016.01.037
http://www.ncbi.nlm.nih.gov/pubmed/26803786
https://dx.doi.org/10.1038/nature09440
http://www.ncbi.nlm.nih.gov/pubmed/20882010
https://dx.doi.org/10.1073/pnas.1321082111
http://www.ncbi.nlm.nih.gov/pubmed/24979762
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084479
https://dx.doi.org/10.1016/j.scitotenv.2020.142766
http://www.ncbi.nlm.nih.gov/pubmed/33092838
https://dx.doi.org/10.1021/es703091r
http://www.ncbi.nlm.nih.gov/pubmed/18754451
https://dx.doi.org/10.1016/j.envpol.2011.10.031
http://www.ncbi.nlm.nih.gov/pubmed/22243861
https://dx.doi.org/10.1016/s0045-6535(97)00048-9
https://dx.doi.org/10.1016/s0378-4274(02)00064-4
http://www.ncbi.nlm.nih.gov/pubmed/11988357
https://dx.doi.org/10.1021/es034430b
http://www.ncbi.nlm.nih.gov/pubmed/14968872


Page 13 of Ginebreda et al. Water Emerg Contam Nanoplastics 2022;1:12 https://dx.doi.org/10.20517/wecn.2022.07 14

248/SR. The Environmental Agency, Bristol, UK, 2004.
Johnson AC, Keller V, Williams RJ, Young A. A practical demonstration in modelling diclofenac and propranolol river water 
concentrations using a GIS hydrology model in a rural UK catchment. Environ Pollut 2007;146:155-65.  DOI  PubMed

11.     

Ciffroy P, Tediosi A, Capri E (Eds. ). Modelling the fate of Chemicals in the Environment and the Human Body. The Handbook of 
Environmental Chemistry, Vol 57. Springer Int. Publ. Switzerland; 2018. Available from: https://link.springer.com/book/10.1007/978-
3-319-59502-3 [Last accessed on 13 Jul 2022].

12.     

Pistocchi A, Sarigiannis DA, Vizcaino P. Spatially explicit multimedia fate models for pollutants in Europe: state of the art and 
perspectives. Sci Total Environ 2010;408:3817-30.  DOI  PubMed

13.     

Osorio V, Marcé R, Pérez S, Ginebreda A, Cortina JL, Barceló D. Occurrence and modeling of pharmaceuticals on a sewage-impacted 
Mediterranean river and their dynamics under different hydrological conditions. Sci Total Environ 2012;440:3-13.  DOI  PubMed

14.     

Lindim C, van Gils J, Cousins IT. A large-scale model for simulating the fate & transport of organic contaminants in river basins. 
Chemosphere 2016;144:803-10.  DOI  PubMed

15.     

Acuña V, Bregoli F, Font C, et al. Management actions to mitigate the occurrence of pharmaceuticals in river networks in a global 
change context. Environ Int 2020;143:105993.  DOI  PubMed

16.     

Banjac Z, Ginebreda A, Kuzmanovic M, et al. Emission factor estimation of ca. 160 emerging organic microcontaminants by inverse 
modeling in a Mediterranean river basin (Llobregat, NE Spain). Sci Total Environ 2015;520:241-52.  DOI  PubMed

17.     

Kunkel U, Radke M. Reactive tracer test to evaluate the fate of pharmaceuticals in rivers. Environ Sci Technol 2011;45:6296-302.  
DOI  PubMed

18.     

Kunkel U, Radke M. Fate of pharmaceuticals in rivers: deriving a benchmark dataset at favorable attenuation conditions. Water Res 
2012;46:5551-65.  DOI  PubMed

19.     

Acuña V, von Schiller D, García-Galán MJ, et al. Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in 
Iberian rivers. Sci Total Environ 2015;503-504:133-41.  DOI  PubMed

20.     

Ginebreda A, Sabater-Liesa L, Rico A, Focks A, Barceló D. Reconciling monitoring and modeling: an appraisal of river monitoring 
networks based on a spatial autocorrelation approach - emerging pollutants in the Danube River as a case study. Sci Total Environ 
2018;618:323-35.  DOI  PubMed

21.     

Ort C, Hollender J, Schaerer M, Siegrist H. Model-based evaluation of reduction strategies for micropollutants from wastewater 
treatment plants in complex river networks. Environ Sci Technol 2009;43:3214-20.  DOI  PubMed

22.     

Sabater-Liesa L, Ginebreda A, Barceló D. Shifts of environmental and phytoplankton variables in a regulated river: a spatial-driven 
analysis. Sci Total Environ 2018;642:968-78.  DOI  PubMed

23.     

Mainali J, Chang H, Chun Y. A review of spatial statistical approaches to modeling water quality. Prog Phys Geogr 2019;43:801-26.  
DOI

24.     

Rashid A, Amin M, Li Y, et al. Reconciliation of spatiotemporal influences on two-dimensional distribution and fate of emerging 
contaminants in a subtropical river. ACS EST Water 2021;1:2305-17.  DOI

25.     

Sebestyén V, Czvetkó T, Abonyi J. Network-based topological exploration of the impact of pollution sources on surface water bodies. 
Front Environ Sci 2022;9:723997.  DOI

26.     

Zhang Y, Rashid A, Guo S, et al. Spatial autocorrelation and temporal variation of contaminants of emerging concern in a typical 
urbanizing river. Water Res 2022;212:118120.  DOI  PubMed

27.     

Aida M, Takano C, Murata M. Oscillation model for describing network dynamics caused by asymmetric node interaction. IEICE 
Trans Commun 2018;E101.B:123-36.  DOI

28.     

Aida M, Takano C, Ogura M. On the fundamental equation of user dynamics and the structure of online social networks. In: Masuda 
N, Goh K, Jia T, Yamanoi J, Sayama H, editors. Proceedings of NetSci-X 2020: Sixth International Winter School and Conference on 
Network Science. Cham: Springer International Publishing; 2020. pp. 155-70.  DOI

29.     

Navarro-Ortega A, Acuña V, Batalla RJ, et al. Assessing and forecasting the impacts of global change on Mediterranean rivers. The 
SCARCE Consolider project on Iberian basins. Environ Sci Pollut Res Int 2012;19:918-33.  DOI  PubMed

30.     

Eljarrat E, Barceló D. Occurrence and behavior of brominated flame retardants in the llobregat river basin. In: Sabater S, Ginebreda A, 
Barceló D, editors. The Llobregat. Berlin: Springer Berlin Heidelberg; 2012. pp. 135-50.  DOI

31.     

Masiá A, Campo J, Navarro-Ortega A, Barceló D, Picó Y. Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and 
comparison with historical data. Sci Total Environ 2015;503-504:58-68.  DOI  PubMed

32.     

Osorio V, Larrañaga A, Aceña J, Pérez S, Barceló D. Concentration and risk of pharmaceuticals in freshwater systems are related to 
the population density and the livestock units in Iberian Rivers. Sci Total Environ 2016;540:267-77.  DOI  PubMed

33.     

Gorga M, Petrovic M, Barceló D. Multi-residue analytical method for the determination of endocrine disruptors and related 
compounds in river and waste water using dual column liquid chromatography switching system coupled to mass spectrometry. J 
Chromatogr A 2013;1295:57-66.  DOI  PubMed

34.     

Llorca M, Farré M, Picó Y, Müller J, Knepper TP, Barceló D. Analysis of perfluoroalkyl substances in waters from Germany and 
Spain. Sci Total Environ 2012;431:139-50.  DOI  PubMed

35.     

Onghena M, Moliner-Martinez Y, Picó Y, Campíns-Falcó P, Barceló D. Analysis of 18 perfluorinated compounds in river waters: 
comparison of high performance liquid chromatography-tandem mass spectrometry, ultra-high-performance liquid chromatography-
tandem mass spectrometry and capillary liquid chromatography-mass spectrometry. J Chromatogr A 2012;1244:88-97.  DOI  PubMed

36.     

Mastroianni N, Bleda MJ, López de Alda M, Barceló D. Occurrence of drugs of abuse in surface water from four Spanish river basins: 37.     

https://dx.doi.org/10.1016/j.envpol.2006.05.037
http://www.ncbi.nlm.nih.gov/pubmed/16905225
https://link.springer.com/book/10.1007/978-3-319-59502-3
https://link.springer.com/book/10.1007/978-3-319-59502-3
https://dx.doi.org/10.1016/j.scitotenv.2009.10.046
http://www.ncbi.nlm.nih.gov/pubmed/20089295
https://dx.doi.org/10.1016/j.scitotenv.2012.08.040
http://www.ncbi.nlm.nih.gov/pubmed/23022258
https://dx.doi.org/10.1016/j.chemosphere.2015.09.051
http://www.ncbi.nlm.nih.gov/pubmed/26414740
https://dx.doi.org/10.1016/j.envint.2020.105993
http://www.ncbi.nlm.nih.gov/pubmed/32738769
https://dx.doi.org/10.1016/j.scitotenv.2015.03.055
http://www.ncbi.nlm.nih.gov/pubmed/25817761
https://dx.doi.org/10.1021/es104320n
http://www.ncbi.nlm.nih.gov/pubmed/21671643
https://dx.doi.org/10.1016/j.watres.2012.07.033
http://www.ncbi.nlm.nih.gov/pubmed/22898670
https://dx.doi.org/10.1016/j.scitotenv.2014.05.067
http://www.ncbi.nlm.nih.gov/pubmed/24908335
https://dx.doi.org/10.1016/j.scitotenv.2017.11.020
http://www.ncbi.nlm.nih.gov/pubmed/29132000
https://dx.doi.org/10.1021/es802286v
http://www.ncbi.nlm.nih.gov/pubmed/19534137
https://dx.doi.org/10.1016/j.scitotenv.2018.06.096
http://www.ncbi.nlm.nih.gov/pubmed/29929148
https://dx.doi.org/10.1177/0309133319852003
https://dx.doi.org/10.1021/acsestwater.1c00153
https://dx.doi.org/10.3389/fenvs.2021.723997
https://dx.doi.org/10.1016/j.watres.2022.118120
http://www.ncbi.nlm.nih.gov/pubmed/35114530
https://dx.doi.org/10.1587/transcom.2017ebn0001
https://dx.doi.org/10.1007/978-3-030-38965-9_11
https://dx.doi.org/10.1007/s11356-011-0566-5
http://www.ncbi.nlm.nih.gov/pubmed/22544550
https://dx.doi.org/10.1007/698_2011_139
https://dx.doi.org/10.1016/j.scitotenv.2014.06.095
http://www.ncbi.nlm.nih.gov/pubmed/25034205
https://dx.doi.org/10.1016/j.scitotenv.2015.06.143
http://www.ncbi.nlm.nih.gov/pubmed/26170112
https://dx.doi.org/10.1016/j.chroma.2013.04.028
http://www.ncbi.nlm.nih.gov/pubmed/23683400
https://dx.doi.org/10.1016/j.scitotenv.2012.05.011
http://www.ncbi.nlm.nih.gov/pubmed/22683491
https://dx.doi.org/10.1016/j.chroma.2012.04.056
http://www.ncbi.nlm.nih.gov/pubmed/22633866


Page 14 of Ginebreda et al. Water Emerg Contam Nanoplastics 2022;1:12 https://dx.doi.org/10.20517/wecn.2022.0714

spatial and temporal variations and environmental risk assessment. J Hazard Mater 2016;316:134-42.  DOI  PubMed
Kuzmanović M, Ginebreda A, Petrović M, Barceló D. Risk assessment based prioritization of 200 organic micropollutants in 4 Iberian 
rivers. Sci Total Environ 2015;503-504:289-99.  DOI  PubMed

38.     

Kuzmanović M, López-Doval JC, De Castro-Català N, et al. Ecotoxicological risk assessment of chemical pollution in four Iberian 
river basins and its relationship with the aquatic macroinvertebrate community status. Sci Total Environ 2016;540:324-33.  DOI  
PubMed

39.     

Ponsatí L, Corcoll N, Petrović M, et al. Multiple-stressor effects on river biofilms under different hydrological conditions. Freshw Biol 
2016;61:2102-15.  DOI

40.     

Kuzmanovic M, Dolédec S, de Castro-Catala N, et al. Environmental stressors as a driver of the trait composition of benthic 
macroinvertebrate assemblages in polluted Iberian rivers. Environ Res 2017;156:485-93.  DOI  PubMed

41.     

Acuña V, Datry T, Marshall J, et al. Conservation. Why should we care about temporary waterways? Science 2014;343:1080-1.  DOI  
PubMed

42.     

Geary RC. The contiguity ratio and statistical mapping. The Incorporated Statistician 1954;5:115.  DOI43.     
Yamada H. Geary’s c and spectral graph theory. Mathematics 2021;9:2465.  DOI44.     

https://dx.doi.org/10.1016/j.jhazmat.2016.05.025
http://www.ncbi.nlm.nih.gov/pubmed/27232724
https://dx.doi.org/10.1016/j.scitotenv.2014.06.056
http://www.ncbi.nlm.nih.gov/pubmed/25017637
https://dx.doi.org/10.1016/j.scitotenv.2015.06.112
http://www.ncbi.nlm.nih.gov/pubmed/26170110
https://dx.doi.org/10.1111/fwb.12764
https://dx.doi.org/10.1016/j.envres.2017.03.054
http://www.ncbi.nlm.nih.gov/pubmed/28415043
https://dx.doi.org/10.1126/science.1246666
http://www.ncbi.nlm.nih.gov/pubmed/24604183
https://dx.doi.org/10.2307/2986645
https://dx.doi.org/10.3390/math9192465

