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Abstract
Aim: We report an exploratory analysis of cfRNA as a biomarker to monitor clinical responses in non-small cell 
lung cancer (NSCLC), breast cancer, and colorectal cancer (CRC). An analysis of cfRNA as a method for measuring 
PD-L1 expression with comparison to clinical responses was also performed in the NSCLC cohort.

Methods: Blood samples were collected from 127 patients with metastatic disease that were undergoing therapy, 
52 with NSCLC, 50 with breast cancer, and 25 with CRC. cfRNA was purified from fractionated plasma, and 
following reverse transcription (RT), total cfRNA and gene expression of PD-L1were analyzed by real-time 
polymerase chain reaction (qPCR) using beta-actin expression as a surrogate for relative amounts of cfDNA and 
cfRNA. For the concordance study of liquid biopsies and tissue biopsies, the isolated RNA was analyzed by RNAseq 
for the expressions of 13 genes. We had to close the study early due to a lack of follow-up during the Covid-19 
pandemic.
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Results: We collected a total of 373 blood samples. Mean cfRNA PCR signals after RT were about 50-fold higher 
than those of cfDNA. cfRNA was detected in all patients, while cfDNA was detected in 88% of them. A high 
concordance was found for the expression levels of 13 genes between blood and solid tumor tissue. Changes in 
cfRNA levels followed over the course of treatments were associated with response to therapy, increasing in 
progressive disease (PD) and falling when a partial response (PR) occurred. The expression of PD-L1 over time in 
patients treated with immunotherapy decreased with PR but increased with PD. Pre-treatment levels of PD-L1 were 
predictive of response in patients treated with immunotherapy.

Conclusion: Changes in cfRNA correlate with clinical response to the therapy. Total cfRNA may be useful in 
predicting clinical outcomes. PD-L1 gene expression may provide a biomarker to predict response to PD-L1 
inhibition.
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INTRODUCTION
Detection of oncogenic driver genomic alterations has historically been accomplished with tumor tissue-
based tests, which are highly dependent on the amount of tumor tissue recovered in the biopsy after the 
tissue was first analyzed to establish the diagnosis[1]. This can be challenging in cases with limited tissue 
availability. However, the analysis of genetic material in the blood provides less invasive testing as a 
collection method for “liquid biopsies”[2]. Circulating cell-free DNA (cfDNA) and cfRNA are the results of 
apoptotic and necrotic events, which are increased in cancer due to both a higher replication rate of the 
tumor cells and the release of tumor-derived material, including nucleic acids, into the blood. The 
combination of high sensitivity techniques for detection, such as digital droplet polymerase chain reaction 
(PCR) and next-generation sequencing (NGS) techniques, have led to increasing use of cfDNA to detect 
molecular alterations with clinical value[3-5]. In non-small cell lung cancer (NSCLC), cfDNA can be used to 
detect both oncogenic driver mutations and resistance mutations. The value of these strategies has been well 
validated for genes like EGFR and now is well studied for KRAS but not only for diagnostic purposes but 
also for evaluation of resistance like T790 mutations after the use of tyrosine kinase inhibitors[6-10].

Early change in cfDNA volume has been shown to predict response to chemotherapy in patients with 
metastatic colorectal cancer (CRC)[11,12]. However, sometimes it is difficult to isolate enough cfDNA from the 
blood for analysis. There are several potential advantages in the analysis of cfRNA compared with cfDNA. 
First, cfRNA may be present at higher levels than the corresponding gene in cfDNA. cfRNA should contain 
only those mutations that are consequential for tumor development. Importantly, the quantitative analysis 
of genes in RNA allows the measurement of tumor gene expressions, some of which are often elevated in 
tumors compared to normal tissues. The presence of cfRNA may increase the yield of gene expression 
information, including cases where the amount of cfDNA is insufficient for detection.

PD-L1 is a clinically meaningful biomarker that has treatment implications for solid tumors, including 
NSCLC, but analysis currently requires tissue availability for immunohistochemical (IHC) staining. An 
effective blood-based test that can categorize PD-L1 level of expression would reduce or eliminate the need 
for tumor tissue biopsies when determining treatment options. As an immune suppression mechanism, the 
expression of PD-L1 is elevated in many types of cancer and is often correlated with poor prognosis, and is 
predictive of responses to the antibodies against PD-1/PD-L1[13,14]. Therapies that block this interaction have 
demonstrated very promising clinical activity in several cancer types[15,16]. Preliminary data from our group 
on the measurement of PD-L1 by reverse transcription (RT)-PCR using cfRNA from 760 patients 
demonstrated PD-L1 expression by cfRNA was similar to levels detected by IHC analysis of tumor tissue[17]. 
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Gene expression in plasma has also demonstrated a correlation with response to nivolumab similar to IHC 
measurement of PD-L1 in tumor tissue[18]. These exploratory results paved the way for further studies aimed 
at determining whether monitoring the quantitative levels of PD-L1 mRNA in the blood before and during 
treatment can provide additional predictive value for anti-PD-L1 therapy[18]. Moreover, the lack of 
measurable PD-L1 cfRNA in cancer-free individuals suggests that the presence of PD-L1 cfRNA in the 
blood may be a potential marker for detecting the recurrence of cancer since we have not detected PD-L1 in 
cfRNA from healthy individuals[17]. In the current study, we compared levels of cfDNA and cfRNA to assess 
the utility of cfRNA as a biomarker to follow therapy outcomes in NSCLC, breast cancer, and CRC. We also 
measured PD-L1 gene expression in cfRNA to evaluate its relationship to immunotherapy outcomes.

METHODS
Blood sample processing
Blood samples (20 cc) from patients with metastatic NSCLC, breast cancer, and CRC were drawn into RNA 
and DNA BCT tubes (Streck) pre-treatment and at three-month intervals or progression for a year while 
patients were monitored for their clinical therapy outcomes by CT scan as a standard of care for these solid 
tumors. The two tubes contained a proprietary nucleic acid preservation cocktail and were transferred to 
Liquid Genomics, Inc. as soon as possible (usually the first 24 h after drawing the sample). After blind 
accessioning, all samples proceeded to the isolation process within five days after collection. A two-
dimensional bar code was placed on all plasma samples for automatic identification. Streck BCT tubes with 
the whole blood were centrifuged to fractionate plasma at 16,000 rcf for 20 min. cfRNA was extracted from 
2 cc of plasma with a proprietary in-house protocol developed by Liquid Genomics, Inc., specially designed 
to remove potential contaminating blood cells during the extraction. All nucleic acids were kept in bar-
coded matrix storage tubes. RNA was immediately reverse-transcribed to complementary DNA (cDNA) 
upon extraction, and cDNA was stored at 4 °C. The remaining plasma was stored at -80 °C and yielded 
cfRNA with concordant gene expressions for over two years of storage.

PCR quantitation
Quantitative real-time RT-PCR was used to detect gene expressions in cfRNA, as described previously[17]. 
Briefly, PCR analysis was accomplished using random primed reverse transcription and amplification with 
gene-specific primer-probes. We analyzed the relative cfRNA and cfDNA content of patients’ blood by 
comparing their respective PCR signals for the house-keeping gene beta-actin (Β-actin). The RNA and 
DNA were separately quantitated in plasma isolated from two identical blood samples taken from each 
patient. Changes in relative levels of cfRNA, cfDNA, and gene expressions quantitated by qPCR were 
correlated with patients’ response to therapy as per RECIST criteria: complete response (CR), partial 
response (PR), stable disease (SD), and disease progression (PD), as determined by CT scans. The current 
study was approved by the Memoria Health Care System Institutional Review Board. We were unable to 
collect several blood samples during the year of follow-up due to the COVID-19 pandemic in 2020 that 
limited in-person follow-up as most visits were done by telemedicine, preventing the opportunity to collect 
blood samples in some cases. The decision was made to stop enrollment and report all the available 
preliminary data in this manuscript. A total of 373 blood samples were collected, including 154 breast 
cancer samples, 135 NSCLC samples, and 84 CRC samples among 127 patients.

RNAseq analysis
In a concordance study, whole transcriptome RNA seq analysis was performed on 87 tissue-plasma paired 
samples by Burning Rock Biotech LTD. Cell-free nucleic acids were extracted from plasma and treated with 
DNase to remove cfDNA and genomic DNA. RNA was reverse-transcribed using random hexamer primers 
to capture the whole transcriptome for each sample. The resulting cDNA was converted into DNA libraries 
and amplified. Depletion of ribosomal and mitochondrial RNA sequences was performed. This procedure 
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was used to create and analyze RNAseq libraries from matched tumor tissue RNA. RNASeq analysis of the 
total transcriptome was performed in 87 tissue - plasma paired samples (including lung cancer and colon 
cancer). Representative biomarker expressions were compared in paired tissue and plasma samples.

RESULTS
A total of 127 patients with metastatic disease that were undergoing active therapy were enrolled in the 
study: 52 with NSCLC, 50 with breast cancer, and 25 with CRC [Table 1]. Most of the patients were female 
(63%) and non-Hispanic (67%). Among individuals with NSCLC, most of them (87%) had prior or current 
smoking histories. The median cfRNA signal in blood was about 50-fold higher than the cfDNA median (P 
< 0.001) [Figure 1]. Most of the cfRNA and cfDNA values fall within about a 10-fold range, with a few high 
and low outliers. cfRNA was quantifiable in all samples, while cfDNA was too low to be quantifiable in 12% 
of the samples. In 10 healthy volunteers, cfRNA was too low to be accurately measured (ct > 36). A 
concordance study done by our group between biomarker expression in blood and tumor tissue using 
RNAseq analysis of the total transcriptome in 87 tissue - plasma paired samples (including NSCLC and 
CRC) shows 13 genes, including PD-L1, PDL2, and PD [Figure 2]. The qualitative concordance between 
tissue and plasma expressions reached 84%, and the quantitative relative expression concordance reached 
76% (Unpublished data). We had a total of 373 samples collected for the study before it was suspended. To 
evaluate the concordance between any variations in cfRNA and cfDNA content with the results of the 
therapy, cfRNA and cfDNA were measured at initiation of treatment and at various times during 
chemotherapy treatments using PCR amplification of Β-actin [Figures 3 and 4]. Treatment efficacy of the 
chemotherapy regimen as determined by CT scans was compared with changes in cfRNA and cfDNA levels. 
As an example, patient 2 [Figure 3] experienced an initial PR with a concomitant decline in both total 
cfRNA and cfDNA, followed by a parallel increase in both nucleic acids as the patient transitioned into SD 
status. Patient 25 suffered PD under the therapy with substantial increases in cfRNA and smaller increases 
in cfDNA during this time. These results show that changes in total cfRNA and cfDNA levels are 
concordant when cfDNA is measurable, and thus that cfRNA may be a valid monitor of the efficacy of 
treatment over time. Notably, the PCR signals of cfDNA were considerably lower than the cfRNA signals.

In 6/48 blood samples from individuals with NSCLC (12%), the PCR signal for cfDNA was out of the range 
of PCR quantitation, but cfRNA was still robustly quantifiable. In three patients without quantifiable cfDNA 
levels, changes in cfRNA were readily followed [Figure 4]. Patient 29 showed an increase in cfRNA while 
experiencing PD under carbo/pemetrexed but then a decrease in cfRNA when a switch to nivolumab 
induced a PR. In both patients 4 and 11, cfRNA levels began to increase with the onset of PD. These results 
indicate that cfRNA may be a useful biomarker for chemotherapy efficacy when cfDNA is too low to 
measure. Correlation between response to therapy and changes in cfRNA levels using data from 154 breast 
cancer, 84 CRC, and 135 NSCLC patient samples is noted [Figure 5]. An increase in cfRNA was 
predominantly associated with PD, while the cfRNA levels in the majority of PR or SD cases did not 
increase but spanned a spectrum of little or no change to a marked decrease (P < 0.001, Kruskal-Wallis test). 
From these data, the sensitivity and specificity of using changing levels of cRNA to predict the outcome of 
therapy are calculated to be 95.8% and 93.3%, respectively. One of the advantages of cfRNA analysis is that it 
can be used to measure the expression levels of specific genes. PD-L1 expression was monitored throughout 
a course of immunotherapy in 5 individuals with NSCLC [Figure 6]. In the three patients of this group who 
had a PR to the therapy, either at first (pts. 2 and 5) or following unsuccessful initial therapy (pt. 46), the 
occurrence of the PR was associated with a decrease in PD-L1 expression, while an increase in PD-L1 
occurred in the two patients who had PD (pts. 7 and 46). Especially interesting in this regard is patient 46, 
whose initial PD was accompanied by a steep increase in PD-L1, followed by an equally steep decrease in 
PD-L1after a change of therapy resulted in a PR. The association between increasing PD-L1 expression and 
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Table 1. Demographic information of the patients enrolled in the study

Lung cancer 
n = 52 (%)

Breast cancer 
n = 50 (%)

Colon cancer 
n = 25 (%)

Total 
n = 127

Male 31 (60%) 3 (6%) 13 (52%) 47 (37%)Gender

Female 21 (40%) 47 (94%) 12 (48%) 80 (63%)

Smoker 7 (13%) n/a n/a 7 (13%)Tobacco

Former smoker 45 (87%) n/a n/a 45 (87%)

Hispanics 13 (39%) 20 (40%) 9 (36%) 43 (33%)Ethnicity

Non-Hispanics 25 (75%) 30 (60%) 16 (64%) 85 (67%)

Figure 1. PCR signals of beta-actin from cfRNA (as its cDNA) and from cfDNA in identical aliquots of patients’ plasma. P < 0.001 for the 
difference in median signal values (Wilcoxon/Kruskal-Wallis rank sums). PCR: Polymerase chain reaction.

Figure 2. Concordance between the expressions of 13 genes in paired plasma and tissue samples a is determined by RNAseq.

PD was confirmed in a larger set of patients treated with immunotherapies [Figure 7]. Pre-treatment levels 
of PD-L1 expression correlated with response to immunotherapies [Figure 8A]. High PD-L1 expression was 
associated with response, while low PD-L1 correlated with PD. PD-L1 expression was not predictive in 
patients not receiving immunotherapies [Figure 8B].
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Figure 3. Changes in levels of cfRNA and cfDNA during therapy. cfRNA and cfDNA were measured at initiation of therapy and at various 
times during the chemotherapy using PCR amplification of B-actin. Treatment efficacy was determined by CT scans. PCR: Polymerase 
chain reaction.

Figure 4. Changes in cfRNA levels during therapy when cfDNA is unmeasurable. cfRNA and cfDNA were measured at initiation of 
treatment and at various times during chemotherapy using PCR amplification of Β-actin. Treatment efficacy of chemotherapy regimens 
was determined by CT scans. PCR: Polymerase chain reaction.

DISCUSSION
In recent years, cfDNA has been widely studied as a source for determining cancer-related genomic 
alterations, including point mutations, copy number variations, and methylation markers[19]. However, there 
are a number of practical technical problems associated with the use of cfDNA, the main ones being that 
cfDNA is substantially fragmented (ca.160 bp), its concentrations are typically low (< 10 ng/mL of plasma), 
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Figure 5. Changes in total cfRNA vs. outcome in response to various therapies across different tumor types. The bars represent analyses 
of 154 BC, 84 CRC, 135 NSCLC patient samples. BC: Breast cancer; CRC: colorectal cancer; NSCLC: non-small cell lung cancer.

Figure 6. Association of response to chemotherapy with PD-L1 gene expression determined using cfRNA in patients’ blood draws.
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Figure 7. Measurement of PD-L1 gene expressions in NSCLC patients during treatments with immunotherapy agents. Chemotherapy 
includes carbo-pemetrexed; targeted therapy includes erlotinib, osimertinib, and crizotinib. NSCLC: Non-small cell lung cancer.

Figure 8. Pre-treatment measurement of PD-L1 gene expressions. (A) NSCLC patients treated with immunotherapy. P = 0.003 for the 
difference in median values. (Wilcoxon /Kruskal Wallis Rank Sums). Immunotherapy includes pembrolizumab, nivolumab, 
atezolizumab. (B) Non-immunotherapy of NSCLC patients. NSCLC: Non-small cell lung cancer.

and the fraction of tumor-derived cfDNA in a typical patient’s blood draw is often quite small (often < 
1%)[20]. These issues represent potential obstacles for application to early-stage cancer detection or analysis. 
The presence of cfRNA may serve as a more sensitive means of blood-based screening for cancer, but this 
will require much more extensive study. Another problem has been the ability to distinguish informative 
cfDNA mutations from a background of benign variants such as clonal hematopoiesis[21]. The detection of 
cfRNA may not have the same potential limitation, but further research and experience are necessary before 
drawing conclusions. DNA contains only one copy of a gene, or a few copies in the case of gene 
amplification, while expressed genes can be transcribed many times and moreover, overexpression of 
specific genes often occurs in tumors, leading to further amplification of tumor-derived RNA signals in the 
blood. This approach to cancer detection and characterization was developed in a recent study in which 
cfRNA biomarker genes were identified that were highly expressed in a tissue and subtype-specific manner 
in breast and lung cancer patients, allowing not only increased detection capability but also identification of 



Raez et al. Cancer Drug Resist 2021;4:1061-71 https://dx.doi.org/10.20517/cdr.2021.78                                          Page 1069

the different cancers[22,23].

Full-length mRNAs can be recovered from plasma, indicating that cfRNA is relatively stable in blood, 
possibly being protected by binding to proteins or by tightly wound secondary structures[24,25]. RNA storage 
tubes (Streck RNA BCT tubes) that stabilize the cfRNA and also prevent hemolysis provide further 
opportunity for stabilizing cfRNA for evaluation[26]. The results of this study are consistent with the 
expectation that cfRNA is often more abundant than cfDNA due to multiple transcription events. We found 
that the mean Β-actin signal from cfRNA was about 50 times greater than from the cfDNA [Figure 1], 
although it should be noted that this signal ratio does not indicate the actual relative amounts of cfRNA and 
cfDNA in plasma because of the extra amplification step when the RNA is reverse transcribed to its cDNA. 
Nevertheless, this difference in signal strength between cfRNA and cfDNA potentially results in greater 
sensitivity. For example, the higher signal strength of cfRNA may enhance the ability to detect and monitor 
post-surgical minimal residual disease (MRD), which demands highly sensitive detection of mutations to 
reliably predict disease relapse[27]. We observed cases in which cfRNA was quantifiable, and changes 
correlated with RECIST-defined responses, whereas cfDNA was not detectable [Figure 4], but the reliability 
of this requires more study. The concordance between biomarkers in cfRNA and tumor tissue is critical if 
cfRNA analysis is to be useful for cancer detection and monitoring. In this study, NGS analysis [Figure 2] 
showed a good concordance between a number of gene expressions in cfRNA and in the paired tissue 
samples. Our previous study on PD-L1 expression in cfRNA from various cancers also showed a good 
correlation between relative levels of PD-L1 gene expression in cfRNA and IHC analysis of PD-L1 in the 
corresponding tumor tissues[18]. Recently, Larson et al.[22] identified tissue- and cancer-specific genes whose 
levels in plasma correlated with their RNA expression in matched tissue. These results, showing that the 
expression of genes in tumor tissue is also reflected in the cfRNA, further advocate the use of cfRNA for 
enhanced cancer detection in patients who have low amounts of cfDNA. To evaluate its usefulness as a 
treatment monitoring tool, we try to follow total cfRNA in individuals with cancer over the course of their 
treatment. There were multiple time points of consistency between cfRNA levels and RECIST responses 
that occurred regardless of the tumor type or treatment regimen. The increasing cfRNA signal associated 
with PD presumably reflects a rising cfRNA level due to growth of the tumor mass and/or to increased 
shedding of tumor material into the blood, whereas a decrease in the cfRNA signal often accompanies a 
radiographic response.

Aside from the use of total cfRNA as a general marker for tumor response, cfRNA may also provide an 
opportunity for blood-based testing of a correlative for PD-L1 expression that may be at least as reliable as 
PD-L1 IHC from tissue. Some therapies are thought to be most effective when PD-L1 expression is high 
(e.g., pembrolizumab or atezolizumab without chemotherapy)[28], and the blood-based test for PD-L1 
provides a non-invasive means to identify those patients. The relative gene expression of PD-L1 was 
obtained by normalizing its PCR signal expression to that of Β-actin and thus was independent of the total 
cfRNA level. The data presented suggest that cfRNA may also serve as a marker for response in individuals 
treated with checkpoint inhibitor [Figures 6 and 7].

We acknowledge that this work has limitations as an exploratory analysis with limited numbers and limited 
clinical data, and although definitive conclusions cannot yet be drawn, this serves as a justification for more 
substantial research on cfRNA.

In conclusion, although definitive conclusions are not possible from this exploratory cohort, the results are 
compelling for the potential use of cfRNA in clinical practice and serve as justification for further analysis. 
An important aspect to highlight is cfRNA levels were measurable in all patient samples in this study, while 
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12% of patient samples were “out of range” of the assay and not useful for accurate measurement of cfDNA 
levels. cfRNA levels were measurable in all of the over 2000 cancer patient samples analyzed in multiple 
tumor types in our experience. These results suggest the use of cfRNA may be a useful supplement in the 
monitoring of patient disease states. Monitoring gene expression for PD-L1 by cfRNA appears to correlate 
with RECIST response in patients being treated with a checkpoint inhibitor. As expected, the PD-L1 cfRNA 
level that correlates with checkpoint inhibitor treatment is not seen when the treatment is chemotherapy or 
targeted therapy. Monitoring cfRNA expression of Β-actin more broadly correlates with response to 
treatment in general. A noteworthy concordance was observed between clinical response and changes in 
cfRNA levels in lung, breast, and CRC patients, independent of the chemotherapy regimen. Changes in 
relative PD-L1 gene expression correlated specifically with the outcome of immunotherapy (90%). We 
conclude that changing cfRNA levels may indicate treatment response, and PD-L1 may provide valuable 
information to monitor response to immunotherapy. There is significant potential for cfRNA to provide 
clinical utility as a blood-based correlate to PD-L1 for treatment planning and as an ongoing biomarker for 
response assessment in patients being treated with a checkpoint inhibitor. General cfRNA expression of Β-
actin may provide an opportunity for ongoing disease assessment. The greater sensitivity relative to cfDNA 
in a group of patients in this study also highlights a potential advantage for MRD assessment. Our results 
suggest that there is considerable potential for cfRNA detection related to cancer care. Further research is 
needed in all of these settings to help guide where adoption in practice may be warranted.
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