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Abstract
Intrahepatic cholangiocarcinoma (ICC), a highly malignant tumor characterized by poor prognosis, has shown 
limited response to conventional treatments. Recently, advances in immunotherapy have offered new hope for 
treating such tumors. This article reviews the tumor immune microenvironment (TIME) of ICC, its pivotal role in 
immunotherapy, and methods to enhance ICC treatment by converting ‘cold tumors’ to ‘hot tumors’ through 
immune activation. Additionally, the article examines the characteristics of immune checkpoint inhibitors and their 
essential role in immunotherapy. Recent research and clinical trial outcomes for various immunotherapeutic 
approaches - namely immune checkpoint inhibitors (ICIs), cancer vaccines, and adoptive cell therapy (ACT) - are 
detailed, highlighting challenges in patient variability, side effect management, cost, and treatment accessibility. 
Furthermore, the article explores future research directions such as identifying new immunotherapy targets, 
applying precision medicine, and developing integrated therapeutic strategies to enhance immunotherapy efficacy 
and improve survival rates for ICC patients.
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INTRODUCTION
Intrahepatic cholangiocarcinoma (ICC), a malignant tumor originating from the intrahepatic secondary bile 
ducts and their branches, has seen a rising incidence over recent decades, particularly in Asia[1]. The 
complex pathophysiology and absence of early symptoms typically lead to diagnoses at advanced stages for 
most patients[2]. Traditional treatments such as surgical resection, chemotherapy, and radiotherapy are often 
limited in effectiveness due to the tumor’s complex biology and high heterogeneity, resulting in a 5-year 
survival rate of approximately 30% after radical resection - a prognosis significantly poorer than that of 
hepatocellular carcinoma (HCC)[3]. Particularly for advanced cases, the likelihood of successful surgical 
resection is low, and chemotherapy and radiotherapy are often ineffective and associated with significant 
side effects[4]. Consequently, developing more effective treatments has become a critical research focus in 
this field[5].

In recent years, immunotherapy has emerged as a groundbreaking cancer treatment by activating or 
enhancing the patient’s immune system, demonstrating significant potential across various tumors[6,7]. 
Despite the significant advances in immune checkpoint inhibitors (ICIs) for various malignancies, their 
efficacy in biliary tract cancer (BTC) remains limited. This limitation may be due to the unique tumor 
microenvironment and immune escape mechanisms specific to BTC[4], with most supporting evidence 
derived from small trials and subgroup analyses. Future research should prioritize combining ICIs with 
other therapies and exploring biomarkers to enhance the prediction of patient responses to 
immunotherapy[8].

This review aims to systematically examine the progress of ICC immunotherapy research, analyze current 
challenges, and anticipate future research directions, with the goal of providing a scientific basis and new 
ideas for clinical treatment. Through in-depth exploration, we aim to offer valuable references for future 
research and treatment strategies, thereby contributing to the advancement of ICC immunotherapy.

FUNDAMENTALS OF ICC IMMUNOTHERAPY
The immune system and cancer
The human immune system, a sophisticated and complex defense mechanism, is specifically designed to 
identify and eliminate foreign or abnormal cells, including cancer cells[9]. It comprises two primary 
components: innate immunity and adaptive immunity. Innate immunity, serving as the first line of defense, 
includes macrophages, neutrophils, and natural killers (NKs) that swiftly identify and neutralize non-
specific targets. Conversely, adaptive immunity depends on the specific responses of T and B cells to 
particular antigens, with memory functions enabling rapid and robust responses to similar subsequent 
attacks[10]. The immune system monitors cellular activity, effectively identifying and eliminating cancerous 
cells through a sophisticated network of cell signaling. However, cancer cells can evade immune surveillance 
by mechanisms such as altering antigen expression or secreting immunosuppressive molecules[11].

The relationship between cancer and the immune system, termed “immunoediting”, encompasses three 
phases: elimination, equilibrium, and escape[12]. During the elimination phase, the immune system identifies 
and eradicates most abnormal cells. In the subsequent equilibrium phase, some cancer cells may 
temporarily evade immune detection and achieve a dynamic balance with the immune system[13]. 
Eventually, during the escape phase, cancer cells advance their immune evasion strategies through genetic 
and epigenetic modifications, such as impairing antigen presentation or amplifying the immunosuppressive 
environment - for example, by inducing T cell depletion or activating regulatory T cell (Treg) - thereby 
facilitating their survival and proliferation[14]. Understanding these mechanisms is crucial for developing 
targeted immunotherapeutic strategies for specific cancers.
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The tumor immune microenvironment in ICC
The tumor immune microenvironment (TIME) of ICC comprises a highly complex and dynamic array of 
cellular and non-cellular elements[15]. Cellular elements include cancer cells, immune cells, fibroblasts, and 
endothelial cells[16]. These cells contribute to tumor growth and proliferation and interact via various 
cytokines, chemotactic factors, and growth factors that influence tumor growth and invasion. Non-cellular 
elements, including the extracellular matrix (ECM) and soluble signaling mediators like platelet-derived 
growth factor (PDGF), also play crucial roles[17]. A distinctive feature of ICC is the abundant fibrous stroma 
within its TIME, which is highly reactive and exhibits immunosuppressive and protumorigenic functions, 
impacting the efficacy of cancer therapy[18]. Therefore, a thorough understanding of both the cellular and 
non-cellular components of the TIME and their interactions is crucial for developing effective 
immunotherapeutic strategies, as illustrated in Figure 1.

Cellular elements of TIME
Cancer-associated fibroblasts

Cancer-associated fibroblasts (CAFs) contribute to both tumor fibrosis formation and tumor progression 
through various mechanisms[19]. CAFs promote angiogenesis, lymphangiogenesis, and a pro-inflammatory 
tumor environment by secreting growth factors, cytokines, and chemotactic factors, including vascular 
endothelial growth factor (VEGF), fibroblast growth factor (FGF), and C-X-C motif chemokine ligand 12 
(CXCL12)[20]. Additionally, CAFs exacerbate tumor invasiveness and growth by altering the ECM and 
releasing matrix metalloproteinases (MMPs) along with other stromal proteins[21]. This modified, more rigid 
ECM serves as a barrier, restricting immune cell penetration and correlating with decreased cytotoxic T cell 
infiltration, increased tumor-associated macrophages (TAMs) infiltration, and a poorer clinical prognosis.

In ICC, CAFs are activated from various cells, including hepatic stellate cells, portal fibroblasts, bone 
marrow mesenchymal stem cells, and fibroblasts derived from epithelial-mesenchymal transition (EMT) 
and endothelial-mesenchymal transition (EndMT)[22]. Recent studies indicate that inducing apoptosis in 
CAFs with specific drugs like the BH3 mimetic navitoclax significantly slows tumor growth and inhibits 
lymphovascular invasion and metastasis[23]. Furthermore, CAFs interact complexly with tumor cells and 
immune cells, particularly through the CCL2-STAT3 signaling pathway, displaying immunosuppressive 
properties like T cell proliferation and function inhibition, thereby promoting tumor immune escape[24]. 
Consequently, research and therapeutic approaches targeting CAFs and their specific signaling pathways 
not only deepen our understanding of tumor biology but also pave the way for new immunotherapeutic 
developments.

Tumor-associated macrophages

Tumor-associated macrophages (TAMs), particularly the M2-type, play a crucial role in the TIME[25]. These 
macrophages are primarily involved in tissue repair and angiogenesis, thereby contributing to tumor 
development[26]. M2-type TAMs exacerbate tumor invasiveness and metastasis by secreting pro-
inflammatory and pro-angiogenic factors, including TNF-α, IL-6, TGF-β, and VEGF-A[27]. Specifically, these 
macrophages actively remodel the TIME by interacting with cancer cells, thereby enhancing tumor growth 
and local invasiveness[28]. Furthermore, M2-type TAMs inhibit the immune system’s phagocytic functions 
by expressing inhibitory receptors like PD-1 and Siglec-10, which bind to ligands on tumor cells, aiding in 
tumor immune escape[29].
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Figure 1. Biological principles of tumor immune microenvironment and immunotherapy in intrahepatic cholangiocarcinoma. NKs: 
Natural killers; MDSCs: myeloid-derived suppressor cells; TAMs: tumor-associated macrophages; TANs: tumor-associated neutrophils; 
Treg: regulatory T cell; PD-1: programmed cell death protein 1; PD-L1: programmed death-ligand 1; CTLA-4: cytotoxic T-lymphocyte-
associated protein 4; DCs: dendritic cells; ACT: adoptive cell therapy; CAFs: cancer-associated fibroblasts; TGF-β: transforming growth 
factor β.

Studies indicate that a high density of M2-type TAMs correlates strongly with ICC aggressiveness, increased 
Treg infiltration, and poor prognosis[30,31]. To counteract this immunosuppressive state, novel therapeutic 
strategies are under development. These include using IFN-γ or activating the Notch pathway to repolarize 
M2-type TAMs to M1-type, enhancing their antitumor capabilities[32]. Recent studies have explored 
genetically engineered macrophages, known as chimeric antigen receptor macrophages (CAR-M), that 
express specific tumor antigen receptors. These CAR-M cells target and phagocytose tumor cells and 
activate T cell responses, thereby enhancing the efficacy of immunotherapy[33]. This interdisciplinary and 
innovative approach provides new avenues for ICC therapy and shows significant potential in addressing 
the limitations of conventional immunotherapy.

Tumor-associated neutrophils

The role of tumor-associated neutrophils (TANs) in the TIME and their impact on patient prognosis is 
complex and controversial. High levels of TAN infiltration are typically linked to a poor prognosis, notably 
marked by reduced overall survival (OS) and recurrence-free survival (RFS)[34,35]. However, recent studies 
suggest that, in some cases, high neutrophil infiltration may correlate with a better prognosis in patients 
with BTC[36]. This discrepancy could stem from the varied phenotypes of TANs and their behaviors within 
TIME[37]. Studies indicate that the polarized phenotypes of TANs, N1 and N2, function differently across 
tumor progression stages: N1 exhibits antitumor properties in early stages, while N2 becomes 
immunosuppressive and promotes tumor growth and metastasis in later stages[38].

The function and polarization of TANs are primarily regulated by tumor cells and factors secreted by 
TAMs, including TGF-β[39]. TGF-β facilitates the conversion of N1-type TANs to N2-type and boosts tumor 
growth and metastatic potential by upregulating factors like arginase 1 (ARG1) and CCL2[40]. Moreover, 
single-cell RNA sequencing has uncovered the role of TANs in enhancing the metastatic capabilities of 
circulating tumor cells. These N2-type TANs stimulate angiogenesis via the release of growth factors and 
cytokines and inhibit effector T cell function, thereby further promoting tumor immune escape[41]. 
Therapeutically, using TGF-β receptor inhibitors or radiotherapy to expose tumor-specific antigens, in 
conjunction with granulocyte colony-stimulating factor, can effectively modify TAN polarization and boost 
the antitumor activity of CD8+ T cells[42]. As research into TANs continues, neutrophil-based therapeutic 
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strategies are poised to become a rapidly evolving field in cancer therapy.

Myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature myeloid cells within the 
TIME that primarily promote tumor growth and metastasis by suppressing both innate and adaptive 
immune responses, particularly targeting CD8+ T cells[43]. Their accumulation in TIME not only impedes T 
cell activation and function but also facilitates tumor angiogenesis through the secretion of VEGF and other 
pro-angiogenic factors[44]. Furthermore, MDSCs contribute to T cell depletion and promote immune escape 
by highly expressing programmed death ligand 1 (PD-L1), which interacts with PD-1 on T cells[45].

The functional diversity of MDSCs makes them significant targets in immunotherapy[46]. Studies indicate 
that in tumor patients, MDSCs block T cell activation by catabolizing or depleting arginine and cysteine, 
which inhibits the metabolic activity of T cells and reduces the expression of homing receptors on their 
surfaces[47,48]. In cholangiocarcinoma patients, circulating levels of MDSCs (CD11b+CD14+HLA-DR-) are 
significantly elevated, strongly correlating with disease severity and prognosis[49]. Strategies targeting 
MDSCs, like reducing their numbers using anti-granulocyte differentiation antigen-1 specific antibodies, 
have demonstrated the potential to inhibit tumor growth in animal studies[50]. Furthermore, reducing the 
aggregation and activation of MDSCs at the tumor site could enhance the effectiveness of immune 
checkpoint inhibitors, potentially offering more effective treatment options for ICC patients[51].

Natural killers

Natural killers (NKs), as a key component of the innate immune system, demonstrate significant antitumor 
activity within the TIME. NKs can directly kill cancer cells through non-specific recognition, without the 
need for antigenic pretreatment[52]. In the liver, NKs constitute about 30%-40% of all lymphocytes. Besides 
releasing cytotoxic factors like TRAIL and FasL to perform antitumor functions, NKs regulate cytotoxic 
responses by activating and inhibiting surface receptors to directly kill tumor cells. Additionally, interferon-
γ (INF-γ) and tumor necrosis factor-α (TNF-α) secreted by NKs are crucial in tumor immune responses[53]. 
However, the tumor microenvironment can alter the phenotype and function of NKs, reducing their 
cytotoxicity and even promoting tumor growth by producing pro-angiogenic factors. Furthermore, NKs are 
vital in tumor control by inducing apoptosis and inhibiting the proliferation and metastasis of tumor 
cells[54]. Recent studies suggest that enhancing the number or function of NKs can effectively delay 
cholangiocarcinoma progression, highlighting NKs as a potential therapeutic target[55].

Studies have indicated that the expression of the NKs activating receptor NKG2D is closely linked to the 
prognosis of ICC patients[56]. Patients exhibiting high levels of NKG2D expression generally have a better 
prognosis, likely due to NKG2D’s role in enhancing NKs’ ability to recognize and eliminate cancer cells[57]. 
Additionally, NKs demonstrate potential in precision immunotherapy by inducing tumor cell apoptosis and 
modulating adaptive immune responses, reducing off-target effects through cytokine release[58]. 
Experimental studies have shown significant inhibition of tumor growth following the infusion of human 
NKs into a xenograft mouse model using the human cholangiocarcinoma cell line HuCCT-1, underscoring 
the promise of NKs-based immunotherapeutic strategies[59].

Tumor-infiltrating lymphocytes
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Tumor-infiltrating lymphocytes (TILs) perform a complex immunomodulatory role within the TIME, 
comprising various subpopulations like CD8-positive cytotoxic T cells and CD20-positive B cells, which 
directly engage in the immune response against tumor cells[60]. Studies have demonstrated that TILs can 
detect tumor antigens and elicit antitumor immune responses[61]. Specific signaling pathways, including 
Wnt/β-catenin, TGF-β, and PD-1/PD-L1, contribute to tumor immune escape by promoting the apoptosis 
of TILs[62]. High levels of CD8+ TILs are generally associated with improved patient survival, and extensive 
infiltration of CD4+ T cells correlates with longer overall and recurrence-free survival[63,64].

The types and functions of TILs exhibit considerable heterogeneity within the TIME. For instance, CD8+ 
TILs typically concentrate in the tumor’s inner regions, while CD4+ T cells are more commonly found in 
the peripheral areas[65]. CD8+ T cells tend to accumulate at sparse fibrous junctions and the collagen-rich 
peripheral matrix; however, they struggle to penetrate dense tumor tissue due to their inability to produce 
proteases that degrade the extracellular matrix. Additionally, the distribution of TILs within TIME can be 
influenced by the density and orientation of the matrix structures.

Tumor-associated antigens (TAAs) identified in ICC serve as potential targets for cancer vaccine 
candidates, aiming to enhance the immune responses of TILs[60]. Recent transcriptomic studies have 
highlighted variations among T cell populations in ICC, particularly noting that CD8+ TILs from highly 
heterogeneous tumors exhibit diminished cytotoxic capabilities[66]. It was also observed that CD8+ TILs 
primarily localize at the invasive margins of tumors, while IL-17-positive immune cells (likely Th17 cells) 
and Tregs are more prevalent inside the tumor, a distribution that correlates with poorer prognosis[67].

Additionally, FOXP3, a transcription factor predominantly overexpressed by Tregs, is associated with 
increased CTLA-4 expression and may indicate the potential for tumor recurrence and chemoresistance[68]. 
Within the Tumor Immune Microenvironment (TIME), Tregs modify the cellular phenotype by inducing 
CCL2, resulting in the secretion of immunosuppressive factors like TGF-β and IL-10[69]. This suppresses 
effector T cell function and promotes tumor immune escape. A deep understanding of the functional and 
regulatory mechanisms targeting TILs, particularly in overcoming their immunosuppressive state in ICC, is 
crucial for developing more effective immunotherapeutic strategies[70].

Dendritic cells

Dendritic cells (DCs), as specialized antigen-presenting cells, play a central role in the TIME of ICC. These 
cells are adept at uptaking, processing, and presenting antigens. Immature DCs exhibit strong migratory 
capabilities, whereas mature DCs are effective in activating initial T and B cells, which are crucial for 
initiating, modulating, and sustaining the immune response. In ICC, mature DCs (CD83+) are 
predominantly found at the invasive tumor margins, whereas the tumor interior hosts a significant number 
of immature DCs (CD1a+). The presence of mature DCs correlates positively with the number of CD4+/
CD8+ cells in TIME, enhancing T cell activation and the antitumor immune response, closely linked to a 
favorable prognosis[71].

However, in TIME, the density of DCs is notably lower, possibly due to reduced concentrations of 
chemokines (such as CCL4 and CCL5) that recruit DCs[72]. Typically, these chemokines are produced by 
NKs and other lymphocytes. Elevated levels of hypoxia, adenosine, IL-10, and TGF-β in TIME can induce 
an immunosuppressive phenotype in DCs[73,74]. This phenotype not only negates the tumor-fighting effects 
of effector T cells through immune checkpoint ligands, leading to T cell depletion, but also, by secreting IL-
6 and inducing TGF-β production, fosters the recruitment of MDSCs, M2-type TAMs, N2-type TANs, and 
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the polarization of Tregs.

The biological properties of DCs offer significant opportunities for tumor vaccine technology. Tumor 
vaccine technologies that exploit DC properties to load tumor antigens and activate immune effector cells 
have been clinically used to treat various tumors, including Provenge, a DC-based vaccine for advanced 
prostate cancer[75]. In animal models of ICC, enzyme-loaded DCs have increased CD3+ lymphocyte 
infiltration, effectively inhibiting tumor growth and metastasis[76]. These findings indicate that enhancing the 
antigen presentation and immune activation capabilities of DCs, particularly in combination with other 
immunomodulatory strategies, may further improve immunotherapeutic efficacy against ICC.

Non-cellular elements of TIME
Extracellular matrix

Extensive reorganization of the Extracellular Matrix (ECM) is crucial for tumorigenesis and progression, 
facilitating structural remodeling of tumor tissues through the release of key components like MMPs, 
osteoprotegerin, junctional protein-C, and osteonectin. Overexpression of these components is closely 
linked to tumor growth, increased lymph node metastasis, and OS[77]. Specifically, increased expression of 
osteonectin in the TIME of ICC significantly correlates with tumor size, local and distant invasion, and 
advanced cancer stages, influencing tumor behavior and progression through activation of the RAS-RAF-
MEK-ERK and Wnt/β-catenin signaling pathways[78]. Additionally, osteonectin enhances the development 
of NKs and the survival of T cells, further illustrating the multifaceted roles of the ECM in regulating the 
TIME.

In studies on ICC, increased stiffness of the ECM is identified as a distinctive feature of tumor progression. 
The increased stiffness of the ECM not only drives tumor progression by promoting cell proliferation, 
survival, migration, and differentiation but also influences tumor behavior through extracellular vesicles, 
which contain nucleic acids, lipids, and proteins secreted by tumor cells[79]. These vesicles contribute to the 
reconstitution of the TIME, immune regulation, and tumor angiogenesis, representing a complex and 
crucial mechanism in tumor progression. Current research is investigating the therapeutic potential of 
targeting the ECM, particularly aiming to enhance the outcomes and prognosis of ICC patients by 
modulating key ECM components to influence TIME.

Chemokines

Chemokines, a class of small molecule cytokines, direct the chemotactic migration of leukocytes such as 
monocytes, macrophages, and T-lymphocytes[80]. They play a crucial role in tumor development in ICC, 
influencing cancer cell migration, invasion, and immune escape[81]. Chemokines such as CXCL1-CXCL3, 
CXCL5-CXCL6, CXCL8, CXCL12, CCL2, CCL11, and CCL16 promote angiogenesis directly or indirectly, 
facilitating the necessary nutrient and oxygen supply to tumors[82]. Specifically, in cholangiocarcinoma, 
CXCL12 is positively regulated by angiotensin II and negatively by TGF-β. Meanwhile, TNF-α, secreted by 
TAMs, promotes the expression of CXCR4.

These chemokines promote tumor cell survival and proliferation by activating several signaling pathways, 
including the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), extracellular signal-regulated 
kinase (ERK1/2), and Wnt/β-catenin pathways, through interactions with their specific receptors[83,84]. For 
instance, CXCL5 serves as a chemokine for neutrophils, and CCL2, induced by fibroblast activating protein 
(FAP), regulates the migration of macrophages and MDSCs. Current clinical trials targeting chemokines 
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extend beyond hematological malignancies and breast cancer to include solid tumors such as 
cholangiocarcinoma, actively exploring the clinical utility of chemokines in oncology treatment. The 
progress in these studies could offer vital biological insights and therapeutic targets for developing new 
immunotherapeutic strategies against cholangiocarcinoma.

Extracellular vesicles

Extracellular vesicles (EVs) are small membrane structures secreted by cells that function as intercellular 
messengers and play a crucial role in the TIME[85]. These vesicles are categorized by size into exosomes (30-
100 nm in diameter), microvesicles (0.1-1 µm in diameter), and apoptotic bodies (greater than 1 µm in 
diameter), with the latter typically being cleared by phagocytosis soon after their release. The components of 
EVs include proteins, lipids, messenger RNAs (mRNAs), microRNAs (miRNAs), long noncoding RNAs 
(lncRNAs), and circular RNAs (circRNAs), all of which are shielded from enzymatic degradation by the 
vesicles’ lipid bilayer[86].

In ICC, EVs promote the migration of mesenchymal stem cells and the secretion of various cytokines and 
chemokines that contribute to tumor progression[87]. For example, EVs derived from cholangiocarcinoma 
can induce the expression of markers like α-smooth muscle actin[88]. Additionally, EVs facilitate interactions 
between cholangiocarcinoma cells and are considered potential new therapeutic targets[89]. Studies have 
shown that the downregulation of miRNA-15a in CAFs leads to increased secretion of plasminogen 
activator inhibitor 2 (PAI-2), subsequently promoting tumor cell migration. In animal models, the infusion 
of miRNA-195-enriched EVs has been shown to reduce tumor size and improve survival, highlighting the 
therapeutic potential of miRNAs and the EVs that transport them. These findings underscore the potential 
of extracellular vesicles in ICC immunotherapy strategies and could lead to the development of novel 
therapies targeting these molecular messengers.

Platelet-derived growth factor

Platelet-derived growth factor (PDGF) plays a key role in promoting tumor growth, angiogenesis, and 
fibrosis. As a potent mitogen, it stimulates the proliferation of peripheral support cells, including fibroblasts 
and smooth muscle cells, enhancing the structural support and vascular density of tumors. Recent studies 
have demonstrated that PDGF promotes tumor cell survival and proliferation through direct actions on 
tumor cells and by activating signaling pathways like PI3K/Akt and MAPK[90]. Additionally, high levels of 
PDGF in the TIME are closely linked to the prognosis of ICC patients, with increased levels typically 
indicating disease progression and poorer survival[90]. Consequently, targeted therapeutic strategies against 
PDGF and its receptors are actively being pursued to inhibit this growth factor’s pathway, block tumor 
growth signals, and explore new treatment avenues for ICC. These strategies include the use of specific 
inhibitors like Imatinib, a small molecule drug effective in inhibiting the PDGF receptor, which has shown 
potential efficacy in clinical trials for various cancers[91].

Immune evasion in ICC
ICC utilizes a complex array of immune escape mechanisms that allow tumor cells to evade immune 
surveillance and clearance. Specifically, ICC cells counteract immune attacks by altering surface antigens 
and upregulating immunosuppressive molecules[92]. For instance, ICC cells often exhibit increased 
expression of PD-L1, which binds to PD-1 on T cells, inhibiting their activation and suppressing immune 
responses[93]. Additionally, there is elevated expression of cytotoxic T-lymphocyte-associated protein 4 
(CTLA-4) in tumor-infiltrating lymphocytes (TILs), associated with aggressive tumor behavior and poor 
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prognosis[94]. The expression of these checkpoint molecules not only disrupts cell signaling and metabolic 
processes but also contributes to peripheral T cell depletion and fosters a state of immune tolerance.

In the TIME, the interaction between tumor cells and immunosuppressive cells like TAMs and MDSCs 
strengthens the immune escape mechanisms. These cells hinder T cell metabolism and signaling by 
releasing inhibitory molecules, including arginase and inducible nitric oxide synthase (iNOS). Additionally, 
studies indicate that high expression of PD-L1 in ICC correlates with more severe clinical outcomes, 
including shortened survival times[92]. For instance, research by Nakamura et al. found that immune 
checkpoint molecules were upregulated in about 45% of ICC samples, signaling a poorer prognosis[95].

Additional research has demonstrated that the regulation of PD-1 and PD-L1 is a crucial mechanism for 
immune escape in ICC. For instance, a study by Gani et al. revealed that 72% of ICC samples with PD-L1 
expression experienced a 60% reduction in overall survival compared to those without PD-L1 expression[96]. 
Additionally, FOXP3 overexpression in ICC cells, often accompanied by increased CTLA-4 levels, was 
linked to lymph node metastasis and poorer survival, underscoring CTLA-4’s negative prognostic impact in 
cholangiocarcinoma. These findings highlight the pivotal role of immune checkpoint molecules in ICC’s 
immune escape and identify them as potential targets for developing immunotherapies.

Immunophenotyping in ICC
The TIME of ICC is complex and variable. Studies on its immunophenotype have increasingly 
demonstrated how different immune subtypes are linked to the tumor’s biological behavior and prognosis. 
Recent advances in gene expression profiling have classified ICC into four immune subtypes: immune-
indifferent (I1), with very low levels of immune cell infiltration; immune-activated (I2), marked by 
substantial infiltration of CD4+, CD8+, and CD45RO+ lymphocytes; myeloid-derived (I3), primarily 
composed of monocytes and macrophages; and mesenchymal (I4), noted for minimal immune infiltration 
but significant activation of CAFs[97]. Among these, the immune-activated subtype (I2) is associated with a 
relatively better prognosis and displays significant immunotherapeutic potential. This classification enables 
the possibility of personalized immunotherapy tailored to the specific immune profiles of ICC patients.

Moreover, comprehensive multi-omics-based analyses have further refined the molecular and 
immunophenotypes of ICC. For instance, a large-sample genome sequencing study categorized ICC into 
two types: inflammatory, which is linked to bold ductal ICC and characterized by enriched immune signals 
like interleukins and chemokines, suggesting a better prognosis; and proliferative, marked by heightened 
activity in tumor proliferation signaling pathways, indicating a poorer prognosis[98]. These findings lay a 
theoretical foundation for more targeted treatments tailored to the distinct molecular subtypes of ICC. 
Subsequent proteomic analyses have identified molecular types based on protein expression, including 
inflammatory (S1), mesenchymal (S2), metabolic (S3), and differentiated (S4). Identifying these subtypes 
aids in the precise diagnosis and treatment of tumors[99]. These studies indicate that integrating molecular 
biology and immunology data can enhance our understanding of ICC’s biology and facilitate the 
development of personalized treatment plans for patients.

The relationship between molecular subtypes, immune microenvironment subtypes, and 
immunotherapy of ICC
In recent years, high-throughput sequencing technology has significantly advanced the molecular typing of 
ICC. Molecular typing of ICC typically includes various classification methods based on gene mutations 
(e.g., IDH1/2, FGFR2, TP53), gene expression profiles, and epigenetic modifications[100]. For example, studies 
have shown that ICC with IDH1/2 mutations has unique metabolic features and a distinct tumor 
microenvironment[95]. ICC with FGFR2 fusion genes exhibit distinct growth patterns and drug 
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responsiveness[101]. The immune microenvironment can be broadly classified as “inflammatory” and “non-
inflammatory” based on the degree of immune cell infiltration, expression of immunosuppressive 
molecules, and cytokine secretion in the tumor tissue. An inflammatory immune microenvironment is 
usually characterized by high levels of T cell infiltration and immunoreactivity, whereas a non-
inflammatory immune microenvironment is marked by enhanced immune escape mechanisms, such as 
high PD-L1 expression and T cell depletion[101].

Different molecular subtypes of ICC are closely associated with specific immune microenvironmental 
phenotypes. For example, IDH1/2 mutant ICC is typically accompanied by lower T cell infiltration and 
higher expression of immunosuppressive molecules, suggesting that this subtype may respond poorly to 
conventional immune checkpoint inhibitors. In contrast, ICC with the FGFR2 fusion gene shows higher 
levels of immune cell infiltration and may be more sensitive to immunotherapy[102]. Clarifying the 
relationship between ICC molecular subtypes and immune microenvironment phenotypes can guide the 
development of individualized immunotherapy strategies. For patients with the IDH1/2 mutant phenotype, 
a combination of metabolic inhibitors and immunotherapy can be considered[103]. For patients with the 
FGFR2 fusion genotype, the use of immune checkpoint inhibitors can be prioritized[104]. The development of 
such precise treatment strategies is expected to significantly improve clinical outcomes for ICC patients.

ADVANCES IN ICC IMMUNOTHERAPY
Since 2010, immunotherapy has marked the advent of a new era in cancer treatment, emerging as a 
revolutionary anti-cancer strategy. In 2013, the journal Science named immunotherapy the scientific 
breakthrough of the year[105]. Since then, it has become the fifth pillar of tumor treatment, following surgery, 
radiotherapy, chemotherapy, and targeted therapy. In the realm of ICC therapy, where options are limited, 
treatments including ICIs like PD-1, PD-L1, and CTLA-4, as well as cancer vaccines (such as monopeptide, 
individualized peptide, and dendritic cell vaccines) and adoptive cell therapy (ACT) - either alone or 
combined with targeted therapies or chemotherapy - are advancing, as illustrated in Table 1. However, 
despite its potential to rapidly and durably eliminate large numbers of tumor cells, immunotherapy’s 
effectiveness varies among individuals due to differences in the TIME, with only about 10% to 35% of 
patients experiencing lasting benefits[106]. Numerous clinical trials exploring immunotherapy for ICC are 
currently underway. These studies promise to further optimize treatment regimens and enhance efficacy. 
For detailed data, refer to Tables 2 and 3.

Immune checkpoint inhibitors
Key immune checkpoints targeted
Immune checkpoint inhibitors (ICIs) have become a pivotal therapeutic strategy in the treatment of ICC. 
Currently, PD-1 and CTLA-4 are the most extensively researched T cell immune checkpoints[107]. PD-1, a 
member of the CD28 superfamily, regulates T cell activity through interactions with its ligands PD-L1 and 
PD-L2. Approximately 35% of cholangiocarcinoma patients in China express PD-L1, an expression closely 
linked to tumor stage and prognosis[108]. Patients positive for PD-L1 generally experience better OS and RFS 
compared to those who are negative. Similar to PD-1, CTLA-4 is a co-suppressive receptor on T cells that 
inhibits their activation by competitively binding to CD80 and CD86, making CTLA-4 a compelling target 
for therapeutic strategies. Studies have demonstrated that targeting cholangiocarcinomas with high CTLA-4 
expression using anti-CTLA-4 antibodies significantly enhances T cell maturation and activation, 
correlating with improved prognosis[109].

The research and application of ICIs are rapidly evolving. Beyond PD-1 and CTLA-4, other immune 
checkpoints like LAG-3, TIM-3, TIGIT, and B7-H3 are under investigation[110,111]. ICIs have shown 
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Table 1. Clinical outcomes of immunotherapy in BTC, including ICC

Outcomes
Regimen Mechanism Clinical trial 

identifier
No. of 
patients Phase Treatment 

line ORR 
(%)

mPFS 
(months)

mOS 
(months)

Report 
year

Pembrolizumab Anti-PD-1 NCT02628067 104 II 2nd 5.8 2.0 7.4 2020

Pembrolizumab Anti-PD-1 NCT02054806 24 Ib 2nd 13 1.8 5.6 2020

Pembrolizumab + GemCis Anti-PD-1 NCT04003636 533 III 1st N/A 6.5 12.7 2023

Pembrolizumab + 
ramucirumab

Anti-PD-1 + 
Anti-VEGFR2

NCT02443324 26 I 2nd 4 1.6 6.4 2018

Pembrolizumab/nivolumab 
+ lenvatinib

Anti-PD-1 + 
Anti-MTK

NCT03892577 56 I 2nd 30 5 6.4 2023

Nivolumab Anti-PD-1 JapicCTI-153098 30 I 2nd 3 1.4 5.2 2019

Nivolumab Anti-PD-1 NCT02829918 54 II 2nd 22 3.7 14.2 2020

Nivolumab + GemCis Anti-PD-1 JapicCTI-153098 30 II 1st 37 4.2 15.4 2019

Nivolumab + GemCis Anti-PD-1 NCT03311789 30 II 1st 55.6 6.1 8.5 2020

Nivolumab + ipilimumab Anti-PD-1 + 
Anti-CTLA-4

NCT02923934 39 II 1st/2nd 23 2.9 5.7 2020

Camrelizumab + GemOx Anti-PD-1 NCT03486678 37 II 1st 54 6.1 11.8 2020

Camrelizumab + 
GemOx/FOLFOX

Anti-PD-1 NCT03092895 92 II 1st 16.3 5.3 12.4 2021

Toripalimab + Gem/S-1 Anti-PD-1 NCT03796429 39 II 1st 27 7 16 2022

Toripalimab + lenvatinib + 
GemOx

Anti-PD-1 + 
Anti-MTK

NCT03951597 30 II 1st 80 10 N/A 2023

Lenvatinib + PD-1 inhibitors Anti-PD-1 + 
Anti-MTK

ChiCTR2100044476 38 II 1st 42.1 8 17.7 2021

Durvalumab Anti-PD-L1 NCT01938612 42 II 2nd N/A 1.5 8.1 2022

Durvalumab + GemCis Anti-PD-L1 NCT03875235 341 III 1st 26.7 7.2 12.8 2022

Durvalumab + 
tremelimumab + RT

Anti-PD-L1 + 
Anti-CTLA-4

NCT03482102 15 I 2nd 25 N/A N/A 2022

Durvalumab + 
tremelimumab + GemCis

Anti-PD-L1 + 
Anti-CTLA-4

NCT03046862 121 II 1st 50-
73

11-13 15-21 2022

Tremelimumab + RFA Anti-CTLA-4 NCT01853618 32 I 2nd N/A 7.4 12.3 2017

Bintrafusp alfa Anti-PD-L1 + 
Anti-TGFβ-RII

NCT02699514 30 I 2nd 20 2.5 12.5 2020

Bintrafusp alfa Anti-PD-L1 + 
Anti-TGFβ-RII

NCT02699515 30 I 2nd 20 N/A 12.7 2020

Bintrafusp alfa Anti-PD-L1 + 
Anti-TGFβ-RII

NCT03833661 159 II 2nd 10.7 1.8 7.6 2023

BTC: Biliary tract cancer; ICC: intrahepatic cholangiocarcinoma; ORR: objective response rate; mPFS: median progression-free survival; mOS: 
median overall survival; PD-1: programmed cell death protein 1; NCT: National Clinical Trial; GemCis: gemcitabine + cisplatin; N/A: not available; 
VEGFR2: vascular endothelial growth factor receptor 2; MTK: multi-tyrosine kinase; JapicCTI: Japan Pharmaceutical Information Center Clinical 
Trials Information; CTLA: cytotoxic T-lymphocyte-associated protein; GemOx: gemcitabine + oxaliplatin; FOLFOX: folinic acid + 5-fluorouracil + 
oxaliplatin; Gem: gemcitabine; S-1: oral 5-fluorouracil; ChiCTR: Chinese Clinical Trial Registry; PD-L1: programmed death-ligand 1; RT: 
radiotherapy; RFA: radiofrequency ablation; TGFβ-RII: transforming growth factor beta receptor 2.

significant efficacy in treating various solid tumors. Notably, Pembrolizumab and Nivolumab have received 
U.S. Food and Drug Administration (FDA) approval for treating advanced malignant tumors. The 
mechanism of action for ICIs involves restoring the immune system’s ability to destroy cancer cells by 
blocking the inhibitory signals from immune checkpoints. Ipilimumab, an anti-CTLA-4 monoclonal 
antibody, was the first ICI approved by the FDA in 2011 for malignant melanoma treatment. Since then, 
various ICIs have been approved, revolutionizing cancer therapy.
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Table 2. Ongoing clinical trials of ICIs in BTC

Clinical trial 
identifier Phase No. of 

patients Status Primary 
outcomes Target Regimen

NCT02628067 II 1,609 Recruiting ORR PD-1 Pembrolizumab

NCT02465060 II 6,452 Active, not 
recruiting

ORR PD-1 Nivolumab

NCT03101566 II 75 Active, not 
recruiting

PFS PD-1, CTLA-
1

Nivolumab + ipilimumab

NCT02834013 II 818 Active, not 
recruiting

ORR PD-1, CTLA-
1

Nivolumab + ipilimumab

NCT02821754 II 53 Active, not 
recruiting

PFS PD-1, CTLA-
4

Durvalumab + tremelimumab + 
TACE/RFA/cryoablation

NCT03898895 II 36 Recruiting PFS PD-1 Pembrolizumab + chemotherapy

NCT04003636 III 1,069 Active, not 
recruiting

OS PD-1 Pembrolizumab + chemotherapy

NCT03482102 II 70 Recruiting ORR PD-1, CTLA-
4

Durvalumab + tremelimumab + RT

NCT03046862 II 31 Active, not 
recruiting

ORR PD-1, CTLA-
4

Durvalumab + tremelimumab + 
chemotherapy

NCT03704480 II 106 Active, not 
recruiting

OS PD-1, CTLA-
4

Durvalumab + tremelimumab + 
chemotherapy

NCT03875235 III 810 Active, not 
recruiting

OS PD-1 Durvalumab + chemotherapy

NCT03257761 Ib 55 Active, not 
recruiting

TEAEs, ORR PD-1 Durvalumab + chemotherapy

NCT03785873 I/II 34 Active, not 
recruiting

DLTs, PFS PD-1 Nivolumab + chemotherapy

NCT03478488 III 480 Recruiting OS PD-L1 KN035 + chemotherapy

NCT03201458 II 86 Active, not 
recruiting

PFS PD-L1, MEK Atezolizumab + cobimetinib

NCT03639935 II 32 Active, not 
recruiting

PFS PD-1, PARP Nivolumab + rucaparib

NCT03991832 II 58 Recruiting ODCR, ORR PD-1, PARP Durvalumab + olaparib

NCT03797326 II 590 Active, not 
recruiting

ORR PD-1, 
VEGFR-2

Lenvatinib + pembrolizumab

ICIs: Immune checkpoint inhibitors; BTC: biliary tract cancer; NCT: national clinical trial; ORR: objective response rate; PD-1: programmed cell 
death protein 1; PFS: progression-free survival; CTLA: cytotoxic T-lymphocyte-associated protein; TACE: transarterial chemoembolization; RFA: 
radiofrequency ablation; OS: overall survival; RT: radiation therapy; TEAEs: treatment-emergent adverse events; DLTs: dose-limiting toxicities; 
PD-L1: programmed death-ligand 1; PARP: poly (ADP-ribose) polymerase; ODCR: overall disease control rate; VEGFR: vascular endothelial growth 
factor.

The successful application of ICIs, particularly in treating immunosuppressive tumors like ICC, offers new 
therapeutic directions and hope. Ongoing optimization and development of new therapeutic strategies, 
integrating genomic and immunophenotypic data, may yield more effective and personalized treatments for 
ICC patients. Additionally, an increasing number of studies are focused on overcoming resistance to 
existing ICIs and enhancing efficacy through the combination of various treatment modalities, such as 
radiotherapy, chemotherapy, and other targeted therapies. These are crucial areas in ongoing and future 
ICC treatment research.

Monotherapy with ICIs
In immunotherapy studies for ICC, PD-1 inhibitor monotherapies like Pembrolizumab and Nivolumab 
showed some efficacy, yet overall results were modest. For instance, in two key studies, Pembrolizumab 
yielded a median progression-free survival of just 1.8 months and a median overall survival of 5.7 months, 
despite a 13% objective remission rate in PD-L1-positive cholangiocarcinoma patients[112]. Additionally, 
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Table 3. Ongoing clinical trials of cancer vaccines and ACT in BTC

Clinical trial 
identifier Phase No. of 

patients Status Primary 
outcomes Regimen

NCT05986981 II 20 Active, not 
recruiting

TEAEs, DLTs, 
RP2D

MUC-1 therapeutic tumor vaccine

NCT05916248 I 60 Recruiting ORR, DCR, DLTs Personalized tumor vaccines mRNA-0217/S001 + 
pembrolizumab

NCT06195293 I 30 Active, not 
recruiting

DLTs Neoantigen polypeptide vaccine

NCT06195384 I 30 Active, not 
recruiting

DLTs Neoantigen mRNA vaccine

NCT03820310 II 20 Recruiting OS, PFS Autologous central memory T cell therapy + 
radiotherapy/chemotherapy 

NCT03633773 I/II 9 Recruiting DCR Autologous MUC-1 CAR-T cell therapy + 
fludarabine/cyclophosphamide

NCT03801083 II 59 Recruiting ORR Autologous TIL

NCT02482454 II/III 50 Active, not 
recruiting

PFS Autologous cytokine-induced NK cells + RFA

NCT03412877 II 270 Recruiting ORR TIL-based adoptive T cell therapy + pembrolizumab + 
chemotherapy

NCT01174121 II 332 Recruiting ORR Autologous TIL + pembrolizumab + chemotherapy

ACT: Adoptive cell therapy; BTC: biliary tract cancer; NCT: national clinical trial; TEAEs: treatment-emergent adverse events; DLTs: dose-limiting 
toxicities; RP2D: recommended phase 2 dose; MUC-1: mucin 1; ORR: objective response rate; DCR: disease control rate; OS: overall survival; PFS: 
progression-free survival; CAR-T cell: chimeric antigen receptor T cell; TIL: tumor-infiltrating lymphocytes; NK: natural killers; RFA: 
radiofrequency ablation.

Nivolumab demonstrated sustained antitumor responses exceeding one year in clinical trials conducted in 
the U.S. and Japan, though variations in PD-L1 expression were noted across different racial and 
environmental conditions[113,114]. Durvalumab monotherapy achieved a disease control rate of 16.7% in 
advanced cholangiocarcinoma patients, with a median time to effectiveness of 9.7 months and a median 
overall survival of 8.1 months[115]. Moreover, several investigational PD-L1 inhibitors, including the 
atezolizumab monoclonal antibody and Avelumab, are currently in clinical trials assessing their safety and 
efficacy in treating cholangiocarcinoma[116].

Although ICIs have demonstrated better efficacy in other solid tumors, their effects as monotherapies in 
cholangiocarcinoma have been relatively limited[117]. Future research should investigate combination 
therapies or tailored treatments for specific subgroups, such as Pembrolizumab for patients with mismatch 
repair (MMR) deficiency or high microsatellite instability, indicating that those with particular genetic 
profiles may derive greater benefits from ICI therapy. Additionally, the development of novel 
immunotherapeutic agents and combination treatment strategies could provide new avenues for enhancing 
survival rates in cholangiocarcinoma patients.

Combination therapy with ICIs
In the treatment of ICC, monotherapy with ICIs has shown some success, though its efficacy remains 
limited. Consequently, researchers are exploring the combination of ICIs with other immunotherapies or 
conventional treatments. The combination of CTLA-4 and PD-1/PD-L1 inhibitors leverages their 
complementary roles in the immunomodulatory process. CTLA-4 primarily modulates the early immune 
response, while PD-L1 regulates the immune response in late-stage peripheral tissues. Clinical studies have 
demonstrated that combining CTLA-4 and PD-1 inhibitors is more effective than using them alone, likely 
due to a synergistic effect that increases TILs and reduces regulatory T cells, thereby enhancing tumor 
growth inhibition[118]. For instance, in certain studies, cholangiocarcinoma patients treated with this 
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combination therapy achieved an overall efficacy rate of 10.8%, a disease control rate of 32.2%, and an 
overall survival of 10.1 months[119].

Ongoing research into ICIs has shown that combining these with chemotherapy or targeted therapies offers 
potential therapeutic benefits. For instance, the TOPAZ-1 trial, a first-of-its-kind Phase III study, 
investigated the efficacy of combining a PD-L1 inhibitor with chemotherapy (cisplatin and gemcitabine) for 
treating advanced cholangiocarcinoma[120]. Following this study, multiple regulatory agencies approved the 
combination therapy as a first-line treatment for patients with untreated unresectable or metastatic bile duct 
cancer. Additionally, the synergistic use of localized treatments, such as radiation therapy or local ablation, 
with immunotherapy provides new options for treating patients with advanced or surgically unresectable 
cholangiocarcinoma.

Considering current data and ongoing clinical trials, combination therapy with ICIs introduces new 
therapeutic opportunities in cholangiocarcinoma treatment. For instance, ongoing clinical trials are 
assessing M7824, a bifunctional fusion protein that targets PD-L1 and TGF-β, both as a monotherapy and in 
combination with chemotherapy[121]. Additionally, combining PARP inhibitors with ICIs for tumors with 
specific mutations, like DDR gene mutations, has demonstrated potential benefits[122]. This approach 
leverages the synthetic lethal properties of the tumors and their immunomodulatory effects to enhance 
therapeutic efficacy. As more research findings emerge, new combination therapeutic strategies are poised 
to significantly transform the treatment paradigm for cholangiocarcinoma.

Cancer vaccines
Single-peptide vaccines
Cancer vaccines show significant potential as emerging therapeutic tools that activate the immune response 
using tumor-specific antigens. TAAs like Wilms tumor gene 1 (WT1) and mucin 1 (MUC1) have been 
identified as potential targets in ICC therapy[123]. In a phase I trial, the MUC1 peptide vaccine demonstrated 
a favorable safety profile, though it did not significantly enhance survival[124]. However, the trial provided 
valuable data for future vaccine strategies. Despite challenges like tumor cell heterogeneity and the reduced 
expression of major histocompatibility complex class I molecules (MHC-I), which can facilitate T cell 
immunosurveillance escape, the single peptide vaccine remains promising for ICC treatment.

Personalized multi-peptide vaccines
Individualized peptide vaccines have shown significant potential in the field of personalized therapy for 
ICC. In 2020, Prof. Shu-Qing Chen’s team published results from the first clinical trial of a novel antigenic 
individualized peptide vaccine, iNeo-Vac-P01, for advanced solid tumors. The trial demonstrated high rates 
of disease control and significantly prolonged patient survival, underscoring the safety and efficacy of 
individualized vaccines[125]. Specifically, a female patient with advanced ICC, who underwent multiple 
surgeries and received an antigen-specific vaccine targeting her HLA-I expression, achieved a durable 
immune response[126]. Additionally, a phase II trial involving six ICC patients assessed the feasibility of 
HLA-matched vaccine peptides, revealing that low levels of IL-6 were linked to significantly improved 
overall survival. This finding offers further biomarker guidance for personalized vaccine therapy[127]. 
Building on these results, ongoing early-stage clinical trials are exploring if blocking the IL-6-mediated 
inflammatory response with tocilizumab can enhance the immune response to an individualized peptide 
vaccine. These studies hold new therapeutic promise for patients with advanced cholangiocarcinoma.
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Dendritic cell vaccines
Dendritic cell vaccines typically use tumor lysates to activate and harness the patient’s immune system to 
fight cancer. While in vitro studies have shown early efficacy, clinical applications of this strategy are still 
under investigation[128]. In an early clinical trial with 36 ICC patients, investigators used DCs derived from 
the patients’ own tumor lysates, pulsed them, and combined them with CD3-activated T cells. This 
combination therapy significantly improved RFS (18.3 months vs. 7.7 months, P = 0.005) and OS (31.9 
months vs. 17.4 months, P = 0.022) compared to a control group that underwent only surgery[129]. These 
results suggest that combining dendritic cell vaccines with T cell therapy could offer a more effective 
treatment option for ICC patients.

Combination therapy
The combined use of cancer vaccines with other therapies is gradually demonstrating potential efficacy in 
the treatment of ICC. For instance, a phase I/II trial by Lepisto et al. employed a MUC1-loaded dendritic 
cell vaccine as adjuvant therapy for patients with early pancreatic cancer and stage II ICC[130]. Notably, one 
ICC patient experienced no recurrence, highlighting the vaccine’s initial effectiveness in tumor 
immunotherapy. Additionally, a retrospective study involving 65 patients with recurrent or unresectable 
cholangiocarcinoma revealed that 77% of the patients who received WT-1 and MUC-1 dendritic cell 
vaccines combined with chemotherapy exhibited improved response rates and survival outcomes compared 
to those receiving only the vaccines[131]. Moreover, a Japanese study tested the combination of a WT1 
peptide vaccine with gemcitabine in patients with unresectable or recurrent BTC, achieving a median 
overall survival of 9.5 months and good tolerability[132]. These findings suggest that cancer vaccines, 
particularly when combined with chemotherapy or targeted therapies, could offer an effective treatment for 
ICC patients. Ongoing clinical trials are expected to further clarify the long-term effects and underlying 
mechanisms of these therapeutic combinations.

Adoptive cell therapy
Adoptive cell therapy (ACT), which uses genetically engineered and modified T cells, has shown notable 
potential in the treatment of ICC. Utilizing chimeric antigen receptor (CAR) technology, scientists can 
engineer T cells to express specific receptors that recognize and destroy cancer cells. While this technology 
has been highly effective in treating certain hematological malignancies, its application in solid tumors like 
ICC is challenging due to the lack of effective targets and significant tumor heterogeneity[133]. Recent studies, 
however, indicate that combining CAR-T cell therapy with PD-1 or PD-L1 inhibitors can significantly 
enhance the antitumor effects in solid tumors, including ICC[134]. For instance, Feng et al. observed clinical 
remission in some patients with advanced ICC treated with CAR-T cells targeting EGFR and CD133[135].

Additionally, autologous TILs, a form of ACT, have been successful in treating other cancers, such as 
melanoma[136]. In the treatment of ICC, both TILs and CAR-T cell therapies targeting specific tumor 
antigens like MUC1 have shown promise across multiple clinical trials. Patients in these trials received T 
cells targeting specific antigens, demonstrating good tolerability and notable efficacy. For instance, in a 
phase I trial, CAR-T cell therapy targeting HER-2 exhibited promising clinical activity in patients with 
advanced cholangiocarcinoma and pancreatic cancer[137]. Although still in the early stages and facing 
multiple challenges, ACT in ICC has shown promising initial results in enhancing immune response and 
potentially improving survival. As technology advances and more clinical trials are conducted, ACT could 
become a key therapeutic strategy for challenging cancers like ICC.
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CHALLENGES AND LIMITATIONS
Immunotherapy for ICC faces multiple challenges. First, the unique immune microenvironment of ICC, 
characterized by abundant immunosuppressive signals and a lack of effective biomarkers, significantly 
limits the efficacy of immunotherapeutic strategies[138]. Although some patients respond to immune 
checkpoint inhibitors like anti-PD-1 antibodies, the overall success rate of these therapies is low, with 
significant variation in response between individuals. These variations may be due to the “cold” and “hot” 
nature of tumors, which refers to the degree and type of immune cell infiltration within the patient’s tumor 
microenvironment[139]. Furthermore, the clinical use of ICIs has raised safety concerns, particularly 
treatment-related adverse effects like autoimmune symptoms, which require control through 
comprehensive management programs[138].

Economic burden and treatment accessibility pose significant barriers to the widespread adoption of 
immunotherapy for ICC. High treatment costs and unequal availability across different regions restrict 
broader use. Additionally, although initial clinical trials show promising results, the long-term efficacy and 
safety of these therapies require validation through larger randomized controlled trials (RCTs). Current 
therapeutic strategies, including cancer vaccines and ACT, require further development and standardization 
in technological maturity, immune activity maintenance, and production processes to enhance therapeutic 
efficacy and patient survival.

FUTURE DIRECTIONS IN RESEARCH
Immunotherapeutic research for ICC is rapidly advancing and shows great promise, but it continues to face 
significant challenges. Ongoing exploration of novel immunotherapeutic targets, particularly the discovery 
and application of new immune checkpoints, will lead to more diverse ICC treatment strategies. Precision 
medicine technologies, including genomics and immunomics analysis, are expected to advance 
individualized treatment plans, allowing immunotherapy to more accurately activate the patient’s immune 
response and convert “cold tumors” into “hot tumors” to enhance immune activity. Immunotherapy 
advancements have enabled more precise activation of the immune response and the conversion of “cold 
tumors” into “hot tumors,” thereby enhancing immune activity. However, the efficacy of ICC 
immunotherapy remains constrained by tumor heterogeneity and immune escape mechanisms. Optimizing 
treatment strategies for different patient groups remains a critical focus for future research.

Future ICC immunotherapy research will emphasize developing integrated treatment strategies, combining 
immunotherapy with chemotherapy, targeted therapy, and other approaches to overcome tumor resistance. 
For instance, combining immune checkpoint inhibitors with other antitumor agents may enhance efficacy 
and better manage treatment-related adverse effects. However, challenges related to the safety, economic 
burden, and global accessibility of immunotherapy cannot be overlooked. To benefit more patients, future 
research should focus on scaling up these advanced therapies across different regions. Additionally, the lack 
of effective predictive biomarkers is a major bottleneck. Future research should focus on developing and 
validating these markers to better guide therapeutic decisions and improve efficacy. With comprehensive 
efforts, immunotherapy is expected to become a key strategy for improving the prognosis of ICC patients 
and may also offer insights for other BTC subtypes. Nevertheless, achieving this goal requires further 
exploration, particularly in optimizing treatment regimens, overcoming drug resistance, and improving 
patients’ quality of life.
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