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Abstract
There is growing interest in novel MAX phase materials for various applications ranging from aircraft/spacecraft 
and defense to energy and electronics due to their unique combination of metallic and ceramic properties. 
Traditional materials discovery has mostly relied on human intuition coupled with rigorous experiments; however, 
this approach has been time-consuming and inefficient. Over the last few decades, advances in fundamental and 
data-driven approaches such as first-principles modeling, materials informatics, machine learning and 
optimization, coupled with an exponential rise in computational power, have enabled faster and more efficient 
materials discovery. Here, we present an exploration of high elastic modulus novel boride-based M2AX phase 
materials using a combination of the aforementioned methods. Specifically, an ensemble of gradient boosted 
machine learning models was developed to predict the elastic modulus from informatics-based structural features 
by leveraging a dataset of Density Functional Theory (DFT)-predicted elastic moduli for 223 M2AX phase materials 
(carbides and nitrides). Using Bayesian optimization, inverse modeling was carried out to maximize the model-
predicted elastic modulus by identifying the optimal features. Finally, model predictions for 1,035 candidate M2AX 
materials were generated to compare their features with the optimal features to identify potential novel promising 
materials. We found that Ta2PB, Nb2PB, and V2PB have similar high elastic moduli (371.7, 351.5, and 347.4 GPa) to 
their carbide counterparts (364.7, 357.7, and 373.5 GPa), and our results support the possibility that borides can 
be a viable tertiary element for M2AX phases.
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INTRODUCTION
MAX phases are a group of materials that have drawn increasing interest in recent years due to their unique 
combination of metallic and ceramic properties[1]. These materials tend to follow a composition of Mn+1AXn 
and are typically carbides and nitrides with a layered, ternary composition[2,3]. MAX phases exhibit ceramic 
properties through their high strength and resistance to oxidation up to 1,400 °C, and high elastic 
stiffness[4,5]. Additionally, they display metallic properties of thermal and electrical conductivity, 
machinability, and high damage tolerance[1,4,6]. Together, these properties make MAX phases highly 
promising nanolaminates for aerospace, defense, and energy applications. Specifically, MAX phases can act 
as structural materials or coatings for high-temperature applications such as gas turbine engines or gas 
burner nozzles due to their ability to withstand high temperatures for long periods of time[4,7]. Due to their 
superior oxidation and corrosion resistance and radiation tolerance, MAX phases have also shown potential 
as accident-tolerant fuel cladding in nuclear reactors[8]. Chirica et al. reported that when used as catalysts, 
MAX phases can activate C−H or C−O bonds in various chemical reactions such as methanol formation, dry 
reforming, CO oxidation or water-gas shift reactions[9]. Given the diverse applications of MAX phases, they 
are indeed worthy of further exploration for new materials discovery.

In the past, materials science has relied on making small structural or compositional adjustments to known 
materials in order to discover novel alternatives. While this method has produced results, it is costly, time-
consuming, and inefficient. In recent decades, the process of materials discovery has been accelerated due to 
the increase in computational processing power, formation and availability of materials databases, and 
development of new modeling/data science methodologies[10-20]. In terms of methodology development, 
Density Functional Theory (DFT) simulations have long-established the electronic structure of materials 
and their properties. Use of machine learning (ML) and optimization approaches to the design of novel 
materials has been a groundbreaking shift in the field[21]. ML has already been applied for the development 
of novel materials in numerous domains and has produced exceptional results. For example, Li et al. utilized 
it to find an aluminum-lithium alloy with a 12.6% higher specific modulus and a similar specific strength 
compared to the typically used 2195-T8 alloy[22]. Similarly, Mohanty et al. explored niobium-based alloys 
through ML and Bayesian optimization (BO) and found two new niobium alloys that maintain high 
strength from 550 to 2,500 °C based on calculation of phase diagrams[23].

In the present study, we utilized ML and optimization approaches to search for new M2AX phase materials 
with high elastic moduli which could be used for future materials development. Specifically, we utilized a 
Matminer dataset generated by Cover et al. which provided data on 223 M2AX phase materials including 
elastic, shear, and bulk moduli, elastic constants, distances between their atoms, lattice parameters, and 
chemical formulas[24]. We applied Matminer featurizers to the compositional formulas to generate various 
structural features. We developed an ensemble of gradient boosted ML models to predict the elastic 
modulus from those informatics-based structural features. We also carried out inverse modeling using BO 
to maximize the model-predicted elastic modulus by identifying the optimal features. Finally, we generated 
model predictions for 1,035 various M2AX materials to compare their features with the optimal features to 
identify potential novel materials. Our work indicates that Ta2PB, Nb2PB, and V2PB have similar high elastic 
moduli to their carbide counterparts, which supports the possibility that borides can be a viable tertiary 
element for M2AX phases.

MATERIALS AND METHODS
Preliminary data analysis and feature creation
The M2AX dataset used in this work included elastic modulus data from 223 DFT simulations conducted by 
Cover et al. A histogram and the statistics of the elastic modulus data are shown in Figure 1[24]. The data 
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Figure 1. Histogram and summary statistics for elastic modulus data from the DFT dataset for the 223 M2AX materials[24]. DFT: Density 
Functional Theory.

ranges from 46 to 376 GPa, with a mean of 217 GPa, a standard deviation of 61 GPa, a median of 217 GPa, 
and an interquartile range (IQR) of 90 GPa. The wide range and fairly high standard deviation provide an 
excellent opportunity to capture the diversity in this elastic modulus dataset through ML modeling. The 
Shapiro-Wilk normality test indicated that the data closely resembles the Gaussian distribution (P = 0.667). 
Other information in the dataset includes structural parameters (a: Lattice parameter a in angstroms, c: 
lattice parameter c in angstroms, 5 elastic constants of the M2AX material specific to hexagonal materials, 
d_ma: distance from M atom to A atom, d_mx: distance from M atom to X atom) and the formula.

Using the StrToComposition Matminer featurizer[10], formulas from the original dataset were converted to a 
usable format; e.g., Sc2AlC is converted to (Sc, Al, C). The developed ML model is specifically applicable to 
predicting the elastic modulus of the 211 MAX phase and does not account for other compositions/phase 
effects. Next, the ElementProperty Matminer featurizer[10] was used to generate 132 structural features for 
each compound. Examples of these features include range GSmagmom, minimum SpaceGroupNumber, 
and mean NUnfilled. The original parameters or features provided in the DFT dataset were not used as the 
goal was for the model to be able to predict the elastic modulus of novel materials beyond this dataset.

Feature selection and ensemble of models
Data was split into 80% training and 20% validation. Initially, an XGBoost (XGB) regressor model was 
developed with 5-fold cross validation using all 132 features. Hyperparameter optimization was conducted 
using the number of estimators, learning rate, maximum depth, and minimum loss reduction. The 
maximum depth was restricted to 8 to avoid overfitting. Performance of the XGB models is influenced by 
the random state used to split the data into training and validation; hence, four different random states (42, 
0, 14, and 28) were used to develop four separate XGB models. Permutation importance for each model was 
calculated and is shown in Figure 2 for the top 15 features. Starting from the highest importance values, 
models were developed with an increasing number of features until no significant improvement in 
validation root mean square error (RMSE) and R2 was observed [Figure 3]. While selecting the features for 
each model, any additional feature with high correlation (threshold = 0.8) with previously included features 
was not considered. Typically, performance of these XGB models reaches a plateau after including 6-8 
features. Finally, a list of eight features was selected based on their common appearance across the four 
models, and the models were re-developed using those eight features at the four different random states. 
The final list of selected features includes: (1) maximum GSvolume_pa, (2) mean MendeleevNumber, (3) 
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Figure 2. Permutation importance plots for the top 15 features for XGB models developed using all 132 features with four random states 
(RS = 42, 0, 14, 28) to predict the elastic modulus for M2AX materials. These importances were used to explore stepwise addition of 
features for each model. XGB: XGBoost; RS: random states.

Figure 3. Effect of stepwise feature addition on XGB model performance in terms of validation RMSE and R2. Four random states 
(RS = 42, 0, 14, and 28) are shown. Note that the final four models [Table 1] were re-developed using a list of eight features selected 
based on their common appearance across the four models shown here. XGB: XGBoost; RMSE: root mean square error; RS: random 
states.
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Figure 4. Histogram and summary statistics for the final eight selected features used in model development.

maximum NdValence, (4) minimum Electronegativity, (5) mean NUnfilled, (6) mean MeltingT, (7) mean 
Column, and (8) range SpaceGroupNumber. The distribution and statistics of these eight features are 
shown in Figure 4 and their cross-correlations are shown in Figure 5.

RESULTS AND DISCUSSION
Parity plots for the four models are shown in Figure 6 for the validation datasets. Parity plots for these 
models and their ensemble covering the entire dataset (training and validation) are provided in the 
Supplementary Figure 1. This unique approach of selecting features from a collection (ensemble) of models 
is expected to make the overall model robust, avoid overfitting, and capture variations in the overall dataset. 
A further advantage of developing four ML models (instead of a single model that is typically developed) is 
that the ensemble of these four models can now be used to improve overall prediction accuracy, while 
ensuring that the overall model has a wide grasp of the majority of the dataset. The ensemble approach 
averages predictions from these models to produce a final prediction for any given material, which is 
expected to improve the robustness of the predictions, dampen the effect of outlier predictions from any 
single model, and make the predictions less sensitive to any one specific way of data splitting. Details of the 
four XGB models (data splitting, hyperparameters, and metrics for validation) are presented in Table 1. We 
acknowledge that the development of multiple (ensemble) ML models, although desired, can be time-
consuming for large datasets.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202408/jmi4017-SupplementaryMaterials.pdf
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Table 1. Hyperparameters and metrics for the ensemble of XGB models developed at multiple random states to predict elastic 
modulus for M2AX materials

Category Description Model 1 Model 2 Model 3 Model 4

Data splitting Training: validation 
Random state

80:20 
42

80:20 
0

80:20 
14

80:20 
28

Hyperparameters Number of estimators 
Learning rate 
Maximum depth 
Minimum split loss

75 
0.1 
6 
5

100 
0.1 
6 
1

100 
0.1 
6 
5

100 
0.1 
6 
3

Metrics for validation R2 
MAE 
MSE 
RMSE

0.892 
16.9 
484 
22.0

0.790 
19.6 
690 
26.3

0.795 
20.2 
653 
25.5

0.721 
25.3 
1,090 
33.1

XGB: XGBoost; MAE: mean absolute error; MSE: mean squared error; RMSE: root mean squared error.

Figure 5. Cross-correlations among the final eight selected features used in the development of the XGB models. XGB: XGBoost.

Finally, Figure 7 shows the partial dependence plots generated using the ensemble of XGB models. Here, 
each of the eight features was varied from its minimum to maximum value in 30 steps while keeping the 
seven remaining features at their mean values. Although there might be restrictions on whether the features 
can be varied independently, this type of analysis can provide helpful directions toward identifying better 
materials. For example, low maximum GSvolume_pa, low maximum NdValence, moderate mean 
MendeleevNumber, low minimum Electronegativity, high mean NUnfilled, high mean MeltingT, high 
mean Column, and high range SpaceGroupNumber might result in M2AX materials with high elastic 
modulus.

Bayesian optimization to identify best feature values
To explore promising M2AX materials with high elastic moduli, we implemented BO using the 
gp_minimize function in scikit-opt[25]. Here, the objective was to identify feature values corresponding to 
the maximum predicted elastic modulus. An ensemble of the four XGB models was used in the objective 
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Figure 6. Parity plots for validation datasets using the ensemble of XGB models developed at RS of 42, 0, 14, and 28. XGB: XGBoost; RS: 
random states; RMSE: root mean square error.

Figure 7. Partial dependence plots showing the effect of each feature on predicted elastic modulus using the ensemble of XGB models. 
Dashed lines indicate the mean values for the dataset. XGB: XGBoost.
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Figure 8. Comparison of acquisition functions and number of initial function evaluations in Bayesian optimization with an ensemble of 
XGB models, with various ranges (or bounds) for the features (A) min to max, (B) ± 20% from V2PC, and (C) ± 10% from V2PC. 
Features corresponding to the maximum predicted elastic modulus are shown in the table. XGB: XGBoost; EI: expected improvement; PI: 
probability improvement; LCB: lower confidence bound.

function to get an average elastic modulus. As the gp_minimize function minimizes the objective function, 
the model prediction was subtracted from 0 inside the objective function. Note that at every iteration of BO, 
the values that the optimizer generated for maximum NdValence and range SpaceGroupNumber features 
were typecasted as integers since they are supposed to be represented as integers in the data. As shown in 
Figure 8, we explored various acquisition functions [expected improvement (EI), probability improvement 
(PI), lower confidence bound (LCB), gp_hedge] and a range of initial points prior to the Gaussian fitting. 
For each acquisition function, five runs were completed with the number of initial points ranging from 10 
to 50. The number of function evaluations after the initial calls was kept constant at 150; therefore, the total 
number of function evaluations is equal to 150 + the number of initial points. There was no clear pattern in 
terms of the acquisition function used, but typically the optimizer has a better chance of finding an 
optimum with more initial points. With the full range for each feature from its minimum to maximum 
value, the optimizer resulted in the best prediction of 371.7 GPa, which was slightly lower than the highest 
elastic modulus predicted from the dataset (373.5 GPa for V2PC). Therefore, narrower feature ranges 
around V2PC were also explored, which identified improved maximum values for elastic modulus (± 20% 
resulted in 373.4 GPa, whereas ± 10% resulted in 374.2 GPa). The corresponding best feature values are also 
shown in Figure 8.

Model-driven exploration of novel materials
To identify M2AX materials with high elastic moduli, we generated 1035 combinations of M, A, and X 
elements. Elements were selected for each category based on their proximity to commonly used elements in 
M2AX phases. We chose 15 early transition metals (M = V, W, Ta, Zr, Hf, Nb, Mo, Cr, Ti, Sc, Y, Mn, Re, Tc, 
La), 23 group A elements (A = Al, P, Te, Si, Ga, Ge, As, Cd, Sn, In, Tl, Pb, S, Sb, Bi, Zn, Se, Fe, Co, Ni, Cu, 
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Figure 9. Heatmap representation of the predicted elastic modulus values for screened 1,035 M2AX materials using the ensemble of 
XGB models. XGB: XGBoost.

Au, Ir), and three reactive nonmetals / metalloids (X = N, C, B). The same featurization process was used to 
create the 132 features for the 1,035 materials; however, only the eight selected features in the ML models 
are used in the analysis presented below.

As a first step, the best feature values from BO were compared against the feature values for all 1,035 
materials. A least square difference between the BO feature values and materials features values was 
calculated for each feature, and then summed over all features to indicate a normalized difference estimate 
for each material. A small difference is supposed to indicate a potentially promising material with a high 
elastic modulus. Top ten materials with smallest differences include (V2PC - 0.005, Ta2PB - 0.012, 
V2PB - 0.047, Ta2PC - 0.054, Ta2PN - 0.063, V2SC - 0.108, Ta2SB - 0.111, Nb2PB - 0.122, Nb2PC - 0.123, 
V2SB - 0.140, and Ti2PC - 0.145). This shows that features for V2PC are closest to the BO result, but other 
materials are also promising. Just for relative comparison, the difference was as high as 7.571. Furthermore, 
five out of the top ten materials are borides, which suggests that some of these borides may potentially have 
high elastic moduli.

The ensemble of XGB models were then used to generate predictions for the 1,035 materials. A heatmap of 
the predicted values is shown in Figure 9, where the information is separated into three different types of 
materials - Nitrides, Carbides, and Borides. Top ten materials with high elastic moduli include 
V2PC - 373.5 GPa, Ta2PB - 371.7 GPa, Ta2PC - 364.7 GPa, Nb2PC - 357.7 GPa, Nb2PB - 351.5 GPa, 
V2PB - 347.4 GPa, Ti2PN - 328.8 GPa, Cr2AlC - 326.4 GPa, Mo2AlB - 323.3 GPa, and Hf2PC - 318.1 GPa, 
where again four out of the top ten materials are borides. Table 2 shows the comparison of a handful of such 
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Table 2. Comparison of materials with high elastic modulus based on theory (DFT[24,26]), BO prediction, and machine learning models 

(ensemble of XGB models)

Features/Target

Best 
compound 
from DFT: 
V2PC

2nd best 
compound 
from DFT: 
Ta2PC

3rd best 
compound 
from DFT: 
Nb2PC

Optimal values 
from Bayesian 
optimization

Best new 
compound 
from ML 
exploration: 
Ta2PB

2nd best new 
compound 
from ML 
exploration:  
Nb2PB

3rd best new 
compound 
from ML 
exploration:  
V2PB

Maximum 
GsVolume_pa

22.570 22.570 22.570 22.04 22.570 22.570 22.570

Maximum 
NdValence

3 3 4 3 3 4 3

Mean Mendeleev 
number

63 64 63.5 62.82 62.75 62.25 61.75

Minimum 
electronegativity

1.63 1.5 1.6 1.631 1.5 1.6 1.63

Mean nunfilled 5.25 5.25 5.25 5.327 5.5 5.5 5.5

Mean MeltingT 2,126.6 2,680.1 2,410.1 2,214.8 2,311.3 2,041.3 1,757.8

Mean Column 9.75 9.75 9.75 9.557 9.5 9.5 9.5

Range space group 
number

227 227 227 217 227 227 227

Elastic modulus 
(GPa)

376 (DFT[24]) 
373.5 (ML)

375 (DFT[24]) 
364.7 (ML)

358 (DFT[24]) 
355 (DFT[26]) 
357.7 (ML)

374.2 (BO) 371.7 (ML) 351.5 (ML) 
355 (DFT[26])

347.4 (ML)

DFT: Density Functional Theory; BO: Bayesian optimization; XGB: XGBoost; ML: machine learning.

promising materials in terms of their features and elastic moduli - either estimated using DFT or predicted 
using the ensemble of ML models or from BO. Overall, this work indicates that Ta2PB might be an 
interesting M2AX material to explore, and given the uncertainty in ML predictions, Nb2PB and V2PB might 
be promising as well. Recent DFT work by Ali et al. also shows that both Nb2PB and Nb2PC have a high 
elastic modulus of 355 GPa, which is consistent with our ML predictions shown in Table 2[26]. It is also noted 
that although Ti2PB and Ti2PC as well as Hf2SB and Hf2SC were not found to be the top candidates for 
elastic modulus, our ML predictions (Ti2PB = 271.3 GPa, Ti2PC = 274.2 GPa, Hf2SB = 264.5 GPa, Hf2SC = 
302.2 GPa) are consistent with the DFT predictions of Ali et al. (Ti2PB = 267 GPa, Ti2PC = 282 GPa, Hf2SB = 
268 GPa, Hf2SC = 344 GPa)[26]. Similarly, our ML predictions (Nb2SB = 289.5 GPa, Zr2SB = 267.8 GPa, Hf2SB 
= 264.5 GPa) are consistent with the DFT predictions (Nb2SB = 300 GPa, Zr2SB = 238 GPa, Hf2SB = 250 
GPa) of Zhang et al.[27]. Researchers have recently reported synthesis of MAX phase borides[28,29] where the 
synthesized Nb2SB, Zr2SB, and Hf2SB materials showed the typical P63/mmc MAX phase crystal structure, 
same as that of carbides (e.g., Cr2AlC).

Finally, we also evaluated and confirmed the stability of these borides based on their predicted energy above 
convex hull[15,16] using CrabNet. CrabNet is a compositionally restricted attention-based network that 
predicts material properties, including the energy above the convex hull, using only compositional 
information[16]. Since we do not have the structural information for the suggested MAX phase borides (Ta2

PB, Nb2PB, and V2PB) with high predicted elastic modulus values, we relied on CrabNet for these 
predictions. Our findings indicate that these borides have relatively low energies above the convex hull (Ta2

PB = 0.087 meV/atom, Nb2PB = 0.024 meV/atom, and V2PB = 0.168 meV/atom), suggesting they are among 
the stable boride candidates. However, a more rigorous and accurate evaluation of these materials’ stability 
could be achieved by theoretically computing the formation enthalpy[3,30-32]. Dahlqvist et al. discuss the 
stability of these phases based on DFT calculations, showing that Ta2PB and Nb2PB have formation 
enthalpies (∆Hcp) of less than 50 meV/atom, indicating they are relatively stable[3]. These findings suggest 
that further investigation is needed, particularly for Ta2PB and Nb2PB.
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CONCLUSIONS
In this work, we present an approach for identifying novel boride-based M2AX phase materials with high
elastic modulus using a combination of materials informatics, machine learning and optimization. Starting 
from a dataset of DFT-predicted elastic moduli for 223 M2AX phase materials (carbides and nitrides)[24], 
structural features were generated from composition, and an ensemble of gradient boosted machine 
learning models were developed to predict the elastic modulus. Inverse modeling was carried out using 
Bayesian optimization to maximize the model-predicted elastic modulus by identifying the optimal 
features. Finally, model predictions for 1,035 M2 AX materials were generated to compare their features 
with the optimal features to identify potential novel materials. Based on our model predictions, Ta2PB, 
Nb2PB, and V2PB have similar high elastic moduli to their carbide counterparts, and these materials 
demonstrate stability based on their predicted energy above convex hull. These findings on borides as a 
viable tertiary element for M2AX phases should be further experimentally explored by materials 
researchers for various applications. The approach presented here, although specific to 211 MAX phase 
materials, is applicable and could be extended to other MAX phase materials as additional datasets 
become available.
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