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Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor with almost inevitable recurrence despite multimodal 
management with surgical resection and radio-chemotherapy. While several genetic, proteomic, cellular, and 
anatomic factors interplay to drive recurrence and promote treatment resistance, the epigenetic component 
remains among the most versatile and heterogeneous of these factors. Herein, the epigenetic landscape of GBM 
refers to a myriad of modifications and processes that can alter gene expression without altering the genetic code 
of cancer cells. These processes encompass DNA methylation, histone modification, chromatin remodeling, and 
non-coding RNA molecules, all of which have been found to be implicated in augmenting the tumor’s aggressive 
behavior and driving its resistance to therapeutics. This review aims to delve into the underlying interactions that 
mediate this role for each of these epigenetic components. Further, it discusses the two-way relationship between 
epigenetic modifications and tumor heterogeneity and plasticity, which are crucial to effectively treat GBM. Finally, 
we build on the previous characterization of epigenetic modifications and interactions to explore specific targets 
that have been investigated for the development of promising therapeutic agents.

Keywords: DNA methylation, epigenetics, glioblastoma, histone modification, miRNA, treatment resistance, 
tumoral heterogeneity

https://creativecommons.org/licenses/by/4.0/
https://www.oaepublish.com/cdr
https://orcid.org/0000-0001-9800-6969
https://dx.doi.org/10.20517/cdr.2024.157
http://crossmark.crossref.org/dialog/?doi=10.20517/cdr.2024.157&domain=pdf


Page 2 of Shahani et al. Cancer Drug Resist. 2025;8:12 https://dx.doi.org/10.20517/cdr.2024.15724

INTRODUCTION
The most common primary malignant brain tumor is glioblastoma (GBM). Approximately, around 13,000 
individuals are diagnosed with GBM every year in the United States[1]. GBM is characterized by its 
aggressive nature and ability to recur. In this context, the 5-year survival rate of patients remains below 7% 
despite multidisciplinary management with surgical resection, radiation therapy, and chemotherapy[1]. 
Hence, the tumor’s resistance to treatment remains a major concern and a topic of substantial research 
interest. This resistance is a multifaceted process with several underlying mechanisms. One of the major 
contributors to the development and maintenance of treatment resistance is the epigenetic profile of GBM 
cells, which is defined as the set of alterations and effectors that regulate the expression of genes and the 
resultant phenotype of cells without changing their DNA sequence[2,3]. These epigenetic processes include 
DNA methylation and demethylation, histone modifications, chromatin remodeling, and non-coding 
RNAs. Each of these modifications, along with the enzymes and molecular pathways that interact with 
them, have been shown to be implicated in driving treatment resistance in at least one mechanism. This 
review aims to highlight the significant implication of epigenetic alterations and processes in GBM’s 
resistance to therapeutic modalities. It also discusses the heterogeneity and plasticity present within GBM 
tumors, which include the diverse epigenetic profiles. Finally, the review builds on these aspects to explore 
targeted agents and therapeutic modalities that have been shown to interfere with the epigenetic profile of 
GBM tumors and recircuit it in a way that attenuates treatment resistance, augments the efficacy of existing 
therapeutics, and potentially could improve patient outcomes.

EPIGENETIC PROCESSES IMPACT GLIOBLASTOMA RESISTANCE TO TREATMENT
DNA methylation
DNA methylation, initially documented in 1948, stands as one of the most extensively researched epigenetic 
modifications. In humans, this process involves the attachment of a methyl group to cytosine residues, 
primarily at CpG sites, facilitated by a group of enzymes known as DNA methyltransferases (DNMTs). 
One-carbon metabolism provides the methyl groups necessary for the methylation of cytosine residues in 
DNA, particularly in CpG islands, influencing gene expression and chromatin structure. Analysis of 
glioblastoma surgical specimens from both initial presentation and recurrence shows that enzymes involved 
in one-carbon (1-C) purine synthesis are upregulated in recurrent glioblastoma. Furthermore, higher 
expression of these enzymes is associated with a shorter time to tumor recurrence[4]. DNA methylation 
serves several pivotal roles across various stages of human development and throughout life, including 
transcriptional regulation, genomic imprinting, preservation of X-chromosome inactivation, chromosomal 
maintenance, and upkeeping genomic stability[5-7]. Aberrant DNA methylation, observed in cancer cells, 
involves genome-wide hypomethylation and site-specific hypermethylation, primarily affecting CpG islands 
located within gene expression regulatory regions. These alterations play a significant role in tumor 
initiation, advancement, and resistance to treatment[8]. In addition to the more conventionally explored 
CpG island methylation, another form of non-CpG DNA methylation has been investigated. This form of 
methylation is known as CpH (where H refers to any base other than G). Herein, CpH methylation 
especially occurs in the brain[9] and has been associated with alpha-synuclein expression in Parkinson’s 
disease[10] and with risk loci in Schizophrenia[11]. However, to date, the impact of CpH methylation has not 
been explored in the context of brain tumors and its potential association with oncogenic gene expression 
and aggressive phenotypes in these tumors.

In the context of GBM, DNA methylation frequently targets the promoter regions of tumor suppressor 
genes, which are responsible for restraining cell growth, division, and promoting programmed cell death. 
When these genes undergo silencing via DNA methylation, their ability to suppress tumor growth is 
compromised, leading to uncontrolled proliferation of tumor cells. Examples of tumor suppressor genes 
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affected by DNA methylation in GBM include Phosphatase and tensin homolog (PTEN) and 
O6-methylguanine-DNA methyltransferase (MGMT)[12,13] [Figure 1A]. In GBM, this DNA methylation 
disrupts transcription factors binding to the promoter region, thus inhibiting the initiation of gene 
expression[14].

The MGMT gene encodes the DNA-repair protein O6-alkylguanine-DNA-alkyltransferase (AGT)[15]. AGT 
plays a crucial role in cellular physiology by removing alkylating lesions at the O6 position of guanine, 
thereby maintaining genomic stability and preventing DNA damage, including that induced by alkylating 
chemotherapeutic agents such as temozolomide (TMZ)[16]. MGMT expression varies widely among different 
types of tumors and normal tissues. Higher levels of MGMT expression contribute to increased DNA 
stability and protect cells from the deleterious effects of alkylating agents used in chemotherapy[15]. 
Conversely, decreased or absent MGMT expression increases the susceptibility to chemotherapeutic agents 
and enhances sensitivity to alkylating agents[15]. In tumors, MGMT promoter methylation effectively silences 
MGMT expression, leading to increased responsiveness to chemotherapy that includes alkylating agents[17]. 
In the clinical setting, in GBM, MGMT promoter methylation status helps predict the efficacy of TMZ 
therapy, since patients with MGMT promoter methylated tumors tend to have a better response to TMZ 
chemotherapy and longer overall survival compared to those without promoter methylation[18,19].

Moreover, DNA methylation can impact genes involved in the phosphatidylinositol-3-kinase (PI3K)/
protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway, which is frequently dysregulated 
in GBM, altering the sensitivity of tumor cells to targeted therapies [Figure 1B]. In general, the 
phosphoinositide-3-kinase-protein kinase B (PI3K-AKT) signaling pathway promotes cellular proliferation 
and growth while concurrently suppressing apoptosis[20]. Singh et al. demonstrated that depletion of TP53, 
PTEN, and NF1 in human brain organoids induces a glioma-like phenotype in vitro, underscoring the 
significance of PTEN suppression in gliomas[21]. Wiencke et al. showed that methylation of the PTEN 
promoter is associated with phosphorylation of protein kinase B (PKB/Akt), indicating functional activation 
of the PI3K pathway[22]. This activation contributes to the promotion of GBM growth and enhancement of 
cell survival.

Hes Related Family BHLH Transcription Factor with YRPW Motif 1 (HEY1) belongs to the Hairy/
Enhancer of split [H/E(spl)] family of basic helix-loop-helix transcription factors[23]. It plays a crucial role in 
sustaining neural precursor cells following Notch signaling. The Notch receptor undergoes cleavage by 
TNF-α-converting enzyme and γ-secretase, resulting in the generation of the active Notch intracellular 
domain (NICD)[24]. NICD translocates to the nucleus, where it facilitates the expression of Notch targets 
such as HEY1 and hairy and enhancer of split-1 (HES1)[25]. Notch signaling is essential in GBM. Notch 
receptors and their ligands are markedly upregulated in GBM, indicating abnormal activation of Notch 
signaling[26]. Elevated levels of Notch1 and NICD1 are frequently observed in GBM. Increased activation of 
Notch1-mediated signaling contributes to the development and resistance to chemotherapy in GBM[24,27-29]. 
Hence, targeting the Notch pathway has emerged as a promising approach for future GBM therapies[24]. 
HEY1 expression rises proportionally with the severity of astrocytoma tumor grades and is associated with 
both reduced overall survival and reduced disease-free survival rates[23]. Studies, such as that by Tsung et al., 
have shown that the methylation status of HEY1 plays a role in GBM pathogenesis and can serve as a 
predictive marker for GBM patients[30].

In GBM, aberrant promoter methylation contributes to the activation of the Wingless (WNT) pathway by 
silencing various negative regulators. These include genes encoding WNT inhibitory factor 1 (WIF1), 
members of the secreted frizzled-related protein (sFRP) family, Dickkopf (DKKF), and naked cuticle (NKD) 
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Figure 1. Illustration of the different epigenetic modifications that target chromatin and contribute to treatment resistance in GBM. (A) 
DNA methylation silences the promoters of tumor suppressor genes, hence contributing to the proliferative ability of GBM cells. This 
mechanism also has the ability to suppress the expression of inhibitors of the WNT pathway (WIF1, DKKF, NKD, sFRP) and RAS 
pathway (RASSF1A); (B) Histone acetylation, which is achieved by histone acetylases and reversed by histone deacetylases, can also 
contribute to the regulation of chromatin structure and gene expression. For example, histone acetylation by KAT6A can lead to 
increased expression of the genes involved in the overactivation of the PI3K/AKT oncogenic pathway. This is reversed by the histone 
deacetylase HDAC1; (C) Histone methylation is another alteration that can control the expression of genes. For instance, the interplay 
between the histone methylase MLL and the demethylase KDM1 can regulate the expression of HOX genes, which are implicated in 
cancer proliferation and treatment resistance; (D) The chromatin remodeling complex SWI/SNF can alter the architecture of chromatin 
through several of its domains. One such domain, ACTL6A, can promote the expression of the YAP/TAZ pathway, which, in turn, 
contributes to treatment resistance. GBM: Glioblastoma multiforme; MGMT: methylguanine methyltransferase; PTEN: phosphatase and 
tensin homolog; WNT: wingless; WIF: WNT inhibitory factor; DKKF: dickkopf; NKD: naked cuticle; sFRP: secreted frizzled-related protein 
family; RASSF1: ras association domain family; HDAC: histone deacetylase; KAT: lysine acyltransferase; MLL: mixed lineage leukemia; 
KDM: histone lysine demethylase; SWI/SNF: switch/sucrose non-fermentable; ACTL6A: actin-like protein 6A; PI3K/AKT: 
phosphoinositide-3-kinase-protein kinase B; HOX: homeobox; YAP/TAZ: yes-associated protein/transcriptional co-activator with 
PDZ-binding motif.

family members[31,32]. Likewise, promoter methylation also silences negative regulators of the Ras pathway, 
such as the Ras association (RalGDS/AF-6) domain family member RASSF1A[33] [Figure 1].

Histone modification
The role of histone post-translational modifications (PTMs) in regulating gene expression is well 
recognized[34]. This is primarily accomplished by altering the structure and/or function of chromatin, an 
octamer core consisting of paired copies of histone proteins H2A, H2B, H3, and H4 enveloped by double-
stranded DNA[35]. Attached to these histones are N-terminal tails, which extend beyond the nucleosome 
core and are thus susceptible to PTMs, including methylation, acetylation, phosphorylation, and 
ubiquitination. Abnormalities within these histone modifications have been demonstrated to contribute to 
gene transcription, resulting in increased GBM proliferation, invasion, and ultimately therapeutic 
resistance[36-39].
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Histone methylation and demethylation
Methylation of histone tails occurs because of the actions of histone methyltransferases (HMTs), which 
catalyze the transfer of methyl groups from S-adenosylmethionine onto the fundamental residues of a 
histone tail[40]. Methylation most commonly occurs on the side-chain nitrogen atoms of arginines and 
lysines[41] [Figure 1C]. Accordingly, HMTs are generally divided into lysine methylating proteins (KMTs), 
such as SET [Su(var), Enhancer of Zeste, and Trithorax] domain-containing and DOT1-like proteins, and 
arginine methylating proteins such as the arginine N-methyltransferases (PRMTs)[41]. Unlike acetylation, 
methylation alters the hydrophobicity and hydrogen binding radii of methyl-lysine, thereby modifying the 
binding properties of these sites without neutralizing the charge of the target residue[42]. Reversal of histone 
methylation is catalyzed by histone demethylases. Similar to their methylating counterparts, demethylases 
are segregated between lysine demethylation enzymes (KDMs), such as amine oxidase domain-containing 
(LSD) proteins and Jumonji C (JmjC) domain-containing proteins, while identifying arginine-selective 
demethylases has proven generally elusive[43,44].

In humans, histone H3 is arguably the most cited due to its highly conserved sequence in eukaryotic 
organisms, which enables the identification of numerous PTMs on the histone[45]. Particularly, methylation 
occurs on the lysine residue sites of H3, with H3K4, H3K36, and H3K79 methylations marking 
transcriptionally active genes and H3K9, H4K20, and H3K27 methylations signaling inactive genes[46-48]. For 
example, it is understood that H3K4 is methylated by the mixed lineage leukemia (MLL) family of proteins 
in GBM biology-leading to upregulation of genes implicated in differentiation and self-renewal 
[Figure 1C][46,49]. Furthermore, MLL has been shown to directly increase the GBM stem-like cell (GSC) 
proliferation rate in vitro and in vivo through activation of the HOXA10 transcription factor and subsequent 
upregulation of developmental Hox genes[50]. Another example is enhancer of Zeste homolog 2 (EZH2), the 
primary HMT enzyme for H3K27me methylation, which has been increasingly aligned with GBM 
tumorigenicity, stemness, and resistance to therapeutics such as TMZ through its upregulation of c-MYC 
expression and STAT3 phosphorylation[51-57]. Moreover, Su(var)3-9/enhancer-of-zeste/trithorax (SET) 
domain and mariner transposase fusion gene (SEMTAR), an additional HMT responsible for H3K36 
methylation, has been highlighted as a contributor to GBM radiation resistance through its recruitment of 
Ku80, a DNA damage repair protein[57]. Although mechanistic pathways for HMT influence are generally 
unclear, it is evident that they present unique targets for potential epigenetic treatment avenues. Similarly 
important to GBM tumorigenicity is the H3K9 family of methyltransferases. Euchromatic histone lysine 
methyltransferase 2 (EHMT2) expression has been linked to a pro-tumorigenic effect[58,59], with in vitro 
inhibition reducing overall H3K9 dimethylation and increasing c-MYC-dependent autophagy and 
autophagy-dependent differentiation. Additionally, EHMT2 methylation of hypoxia-inducible factor-1 
(HIF-1) inhibited hypoxia adaptation and cellular invasion in the U251MG cell line, ultimately revealing a 
hypoxia-induced mechanism of negative feedback for HIF-1 activity and human GBM cell mobility[60,61]. 
Similarly, methylation of H3K9 by Suv39H1 and SETDB1 has demonstrated decreased expression of the 
gene. Further studies in GBM have noted an increased expression of both Suv39H1 and SETDB1 as 
compared to normal brains, with short-hairpin-RNA-mediated (shRNA) knockdown of SETDB1or 
chaetocin-mediated inhibition of Suv39H1 being associated with increased apoptosis and reduced migration 
and colony formation in T98G and GOS-3 glioma cell lines[62-65].

Generally, however, histone lysine methylation serves to modify the regulation of transcription and 
chromatin structure dependent on the degree and site of methylation. Notably, this includes the association 
of H3K4 monomethylation with enhancer regions, di- and trimethylation of H3K4 with promoter regions 
and transcription start sites, and trimethylation of H3K36 in gene bodies of actively transcribed genes[66]. A 
more in-depth analysis of biological histone lysine methyltransferases has been published by Husmann and 
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Gozani[67]. Counteracting these methylating efforts are KDMs such as KDM1, which demethylates H3K4 
and H3K9, KDM2, which demethylates H3K36, and KDM4, which demethylates H3K9. In adult and 
pediatric GBM, the KDM4 subfamily of lysine demethylases retains a significant functional impact, with 
studies demonstrating in vitro elevation of KDM4A expression in the more TMZ-resistant T98G cell lines as 
compared to the U251MG[68]. Additionally, KDM2A plays an integral role in GBM immune resistance 
through a miR-302a/KDM2A/JAG1 axis, resulting in increased T-regulatory cell proliferation in mouse 
models[69,70]. Moreover, research by Liau et al. demonstrated that GSCs can enter a slow-cycling or quiescent 
state in response to receptor tyrosine kinase (RTK) inhibition. These slow-cycling cells depend on histone 
demethylase KDM6A/B, which leads to the redistribution of histone H3 lysine 27 trimethylation 
(H3K27me3) and contributes to tumor propagation and drug resistance[71]. To better contextualize clinical 
impact, KDMs will be further expanded upon in the analysis of therapeutic approaches.

Functionally, PRMTs serve to add methyl groups onto the arginine residues of certain target proteins, 
thereby disrupting their protein-protein interactions and corresponding downstream cellular processes[16]. 
Dichotomized, Type I PRMTs catalyze the mono- and asymmetric di-methylation of arginine, while Type II 
PRMTs catalyze mono- and symmetric di-methylation of arginine[41]. In GBM patients, PRMT5 and PRMT1 
have historically been overexpressed and negatively associated with overall survival[72-75]. For example, GBM 
cells utilize PRMT5 to avoid mTOR inhibition, with in vivo inhibition of PRMT5 generally resulting in 
increased survival in animal models[72,74,76]. Furthermore, depletion of either PRMT5[74,76,77] or PRMT1[75] in 
intracranial orthotopic mouse xenograft models has demonstrated significant inhibition of tumor 
growth[16]. PRMT3 has been linked to metabolic pathway regulation in GBM, specifically preventing 
ubiquitination of HIF-1 to promote glycolysis. Additionally, PRMT3 knockdown in GSCs has been 
demonstrated to induce cell cycle arrest and apoptosis, with its inhibition causing decreased tumor growth 
in xenograft mouse flank models[78].

Histone acetylation and deacetylation
Akin to their methylating counterparts, lysine acetyltransferases/histone acetyltransferases (KATs/HATs) 
catalyze the addition of acetyl groups to histone N-terminal lysine residues[40]. As mentioned previously, 
acetylation is believed to neutralize the charge of histone tails, thereby weakening histone-DNA and/or 
internucleosomal interactions[79]. The result is an increasingly destabilized nucleosome and chromatin 
structure, which allows nuclear factors such as RNA polymerase II to gain access to the DNA[40,80,81]. 
Comparatively, little work has been done in understanding the role of KATs/HATs in GBM; however, it has 
been identified that KAT6A is upregulated in the course of disease-promoting tumorigenesis through 
PIK3CA expression and the activation of the PI3K/AKT pathway[40,82,83]. Counteracting KATs/HATs are the 
histone deacetylases (HDACs), which are further subdivided into four classes based on yeast ortholog 
similarities. In GBM specifically, profiling experiments have highlighted significant increases in HDAC1, 
HDAC6, HDAC7, and HDAC10 expression and similar decreases in HDAC5 and HDAC11 expression as 
compared to normal brain tissue[40,84]. Research on individual HDACs has elucidated their contributory roles 
in GBM. Knockdown of HDAC1 in U87MG xenograft models correlated with a decrease in active 
extracellular signal-regulated kinase (ERK) and AKT, suggesting an interdependence between HDAC1 
activity and the mitogen-activated protein kinase kinase (MEK)/ERK and PI3K/AKT pathways in GBM[85]. 
Moreover, HDACs have been associated with chemoradiation and TMZ resistance in GBM through their 
inhibition of DNA double-strand break repair[46,86,87]. Particularly, HDAC3 and HDAC1 overexpression in 
GBM is strongly associated with decreased overall survival in human patients, and its in vitro inhibition 
with RGFP109, a selective HDAC1 and HDAC3 co-inhibitor, led to greater TMZ potency in typically TMZ-
resistant A172, U118, U251, and U87 cell lines[88].
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Additionally, acetylated lysines serve as binding sites for bromodomain-containing proteins (such as 
BRD4), which play crucial roles in regulating gene expression. For instance, BRD4 has been shown to enrich 
regions of the genome characterized by high acetylation levels, and is implicated in maintaining stem-like 
properties in glioblastoma cells[89]. Additionally, BRD4 regulates the self-renewal and tumorigenic potential 
of glioma-initiating cells by directly interacting with the promoter region of key genes like Notch1, further 
demonstrating its importance in glioma biology[90]. This interaction highlights how acetylation not only 
influences chromatin accessibility but also enables the recruitment of specific transcriptional regulators, 
contributing to tumor progression and resistance to therapy.

Chromatin remodeling
Chromatin can be modified through various mechanisms involving histone modifiers, histone chaperones, 
and adenosine triphosphate (ATP)-dependent chromatin remodelers [Figure 1D]. These modifications alter 
chromatin conformation, which can either enhance or reduce its accessibility to transcription factors and 
the DNA repair and replication machinery. ATP-dependent chromatin remodelers, which include the 
switch/sucrose nonfermenting (SWI/SNF), Imitation Switch (ISWI), nucleosome remodeling and 
deacetylase (NuRD)/Mi-2/Chromodomain Helicase DNA-binding (CHD), INO80, and SWR1 complexes, 
are particularly influential in this process[91-94]. They orchestrate the repositioning of nucleosomes, the 
exchange of histone variants, and play a significant role in GBM drug resistance.

Research has shown that approximately 20% of cancers exhibit alterations in the SWI/SNF gene subunits. 
The SWI/SNF complex typically functions to slide and remove nucleosomes, thereby regulating chromatin 
structure to control gene transcription and facilitate DNA replication[95]. In GBM, GSCs are believed to 
drive sustained tumor growth, treatment resistance, and recurrence. A recent study by Di Giuseppe et al. 
investigated extracellular vesicles, particularly exosomes and microvesicles, secreted by GSCs. Their findings 
revealed that stimulation of the ionotropic receptor P2X7 in human GSCs led to significant proteomic 
changes in the released extracellular vesicles. Specifically, P2X7R activation was associated with increased 
glioma progression, cell aggressiveness, and migration, and it promoted the secretion of proteins that 
enhance therapeutic resistance, which include the chromatin remodeling protein RuvB-like 2[96].

It is thought that chromatin remodelers, especially the SWI/SNF complex, are crucial in maintaining these 
GSC populations. Evidence suggests that the catalytic bromodomain of SWI/SNF[97], BRG, is key to 
maintaining GSCs, with its inhibition sensitizing GSCs to TMZ and carmustine[98]. Another study by Ji et al. 
identified that the SWI/SNF[99] subunit Actin-like 6A (ACTL6A) is highly expressed in stem and progenitor 
cells and supports the progenitor state. ACTL6A promotes the proliferation, invasiveness, and migration of 
glioma cells by regulating the YAP/TAZ pathway[99]. Furthermore, modifications to PFI-3, an inhibitor of 
the BRG1 and BRM catalytic subunits of SWI/SNF, have been shown to increase sensitization to TMZ and 
bleomycin[100]. These findings underscore the importance of understanding the chromatin remodeling 
mechanisms in relation to treatment resistance in GBM.

Non-coding RNA
Non-coding RNAs (ncRNAs) are RNA molecules that are not directly translated into proteins. Still, 
ncRNAs are a major element of epigenetic mechanisms because of their ability to regulate gene expression. 
Abnormal ncRNA activity has long been associated with the regulation of tumor onset and progression for 
various cancers, including GBM, by acting as tumor-suppressing genes or oncogenes[101]. Importantly, 
ncRNAs have also been shown to play a critical role in GBM’s tendency to become resistant to therapeutic 
agents, such as TMZ chemotherapy. Several ncRNAs relevant to GBM have been identified through 
previous research, the dysregulation of which has already been shown to be significantly different both 
between GBM patients and healthy controls as well as between individuals before and after undergoing 



Page 8 of Shahani et al. Cancer Drug Resist. 2025;8:12 https://dx.doi.org/10.20517/cdr.2024.15724

tumor resection[102,103]. These findings show that ncRNAs show promise both as biomarkers and as potential 
therapeutic targets.

There are strong associations between certain ncRNAs and different malignant characteristics of GBM, 
though GBM’s inherent heterogeneity means that there is some variability in whether particular ncRNAs 
are over- or underexpressed[102,103]. The ultimate impact of this dysregulation depends on the tumor 
microenvironment as a whole. In this context, ncRNAs have been shown to regulate angiogenesis, cell 
growth, cell cycle progression, apoptosis, tumor invasiveness, and immune evasion, as well as causing 
treatment resistance[104].

Regulatory ncRNAs are separated by size. Major categories include micro-RNA (miRNA, around 20 
nucleotides), short interfering RNA (siRNA, between 20 and 25 nucleotides), long non-coding RNA 
(lncRNA, over 200 nucleotides), and circular RNA (circRNA, over 200 nucleotides)[105]. The defining 
difference between miRNA and siRNA is that a particular miRNA may have multiple epigenetic targets 
while being highly specific to one RNA sequence, while siRNAs are only partially complementary to their 
targets and are preferred for drug discovery[106,107]. In both cases, the ncRNA causes gene silencing by 
binding to a complementary segment of an mRNA molecule, prohibiting translation. lncRNAs modulate 
gene transcription and the stability of mRNAs, having the potential to serve several roles as scaffolds, 
decoys, or transcription signal transmitters[108]. circRNA and lncRNAs can act as “sponges” for miRNA, 
binding to them and thus inhibiting the action of miRNA. circRNA molecules are similar to lncRNAs in 
length but take on a circular structure because their 3’ end is covalently bonded to the 5’ end[109].

micro-RNA in glioblastoma treatment resistance
Abnormal regulation of miRNAs associated with GBM leads to cascading epigenetic effects, contributing to 
treatment resistance (summarized in Table 1). For instance, miR-152-3p typically targets DNMT1 and the 
methylation of NF2, making it important for glioma apoptosis[110]. In GBM, miR-152-3p is downregulated, 
lessening glioma apoptosis. Similarly, miR-29c indirectly targets MGMT that supports a positive response to 
TMZ, and is downregulated in GBM, leading to TMZ resistance[111] [Figure 2]. MiR-129-5p also targets 
DNMT3a and is downregulated in GBM, causing TMZ resistance and providing a good prognosis 
marker[112]. In contrast, MiR-10b-5p targets a TET2 pathway that induces tumor progression and stemness 
features and is upregulated in GBM[113].

MiR-101-3p is downregulated in GBM, but this miRNA and its targets (EZH2 and H3K27me3) have already 
been associated with a therapeutic strategy that targets proliferation, migration, and angiogenesis[114-116]. 
MiR-22 targets SIRT1 and its downregulation allows for tumor cell proliferation, motility, and invasion[117].

Moreover, one major form of treatment resistance in GBM is resistance to TMZ. The most well-known 
predictor of TMZ resistance is MGMT. However, many miRNAs have been found to be directly involved in 
resistance to TMZ treatment, including miR-9 (targeting PTCH1)[118], miR-223 (targeting PAX6)[114,116], 
miR-155-3p (targeting Six1)[119], and miR-93/193 (targeting Cyclin D1)[120].

lncRNA in GBM treatment resistance
Similarly, lncRNA alterations have been widely implicated in the progression and treatment resistance of 
GBM (summarized in Table 1). For example, the downregulation of AC016405.3 undermines tumor 
suppression by disrupting DNA methylation and TET enzymes[121]. In this case, AC016405.3 works via 
miR-19a-5p to regulate TET2 and suppress tumors[121]. Conversely, HOTAIR is upregulated in GBM. 
HOTAIR targets chromatin-modifying complexes like PRC2 and regulates cell cycle progression through 
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Table 1. Summary of the non-coding RNAs, along with their molecular targets, that are involved in the treatment resistance of 
glioblastoma

RNA Expression pattern in GBM Target Result Reference
Micro RNA

miR-152-3p Downregulated DNMT1 Reduced apoptosis [110]

miR-29c Downregulated MGMT TMZ resistance [111]

miR-129-5p Downregulated DNMT3a TMZ resistance [112]

miR-10b-5p Upregulated TET2 Tumor progression and stemness [113]

miR-101-3p Downregulated EZH2 Proliferation, migration, and angiogenesis [115]

miR-22 Downregulated SIRT1 Proliferation, motility, and invasion [117]

miR-9 Upregulated PTCH1 TMZ resistance [118]

miR-223 Upregulated PAX6 TMZ resistance [114,116]

miR-155-3p Upregulated Six1 TMZ resistance [119]

miR-93/193 Upregulated Cyclin D1 TMZ resistance [120]

 
Long non-coding RNA 

AC016405.3 Downregulated miR-19a-5p//TET2 Tumor progression [121]

HOTAIR Upregulated PRC2 and EZH2 Cell cycle progression [122]

LINC00461 Upregulated miR-485-3p Cell cycle progression [123]

TALC Upregulated miR-20b-3p//MGMT TMZ resistance [124]

SNHG12 Upregulated miR-129-5p//MAP-ERK TMZ resistance [125]

DNMT: DNA methyltransferases; MGMT: O6-methylguanine-DNA methyltransferase; TET: ten-eleven translocation; EZH: enhancer of zeste 
homolog; SIRT: silent information regulator sirtuin 1; PTCH1: patched 1; Six1: sine oculis homeobox 1; PAX6: paired box 6; MAP-ERK: mitogen-
activated protein kinases- extracellular signal-regulated kinases; PRC: polycomb repressive complex.

EZH2. Moreover, HOTAIR-targeting histone demethylase and LSD1 are upregulated cell cycle regulators 
that work through EZH2 to induce apoptosis[122]. LINC00461, another upregulated lncRNA, plays a role in 
GBM progression by targeting miR-485-3p which is critical to cell cycle regulation[123].

There are several lncRNAs relevant to treatment resistance, such as lncRNA-TALC and SOX2OT, both of 
which promote TMZ resistance when upregulated. LncRNA-TALC does this by promoting MGMT 
expression and, thus, TMZ resistance[124] [Figure 2]. Moreover, the upregulation of SNHG12 causes TMZ 
resistance through the targeting of DNA methylation of MGMT and even serves as a prognostic marker[125].

EPIGENETIC-BASED HETEROGENEITY AND PLASTICITY
GBM tumors are known to be among the most heterogeneous tumors classified by the 2021 World Health 
Organization (WHO) classification of central nervous system (CNS) tumors[126,127]. Heterogeneity refers to 
the existence of distinct subpopulations of cells within a tumor, each exhibiting diverse genotypes and 
phenotypes[126,128]. This heterogeneity seen in GBM largely contributes to its resistance to treatment. This 
heterogeneity is driven by the presence of a variety of epigenetic profiles that exist on the intratumoral and 
intertumoral levels.

When triggered by epigenetic modifications and the tumor microenvironment (TME), normal neuronal 
stem cells, which are normally destined to become oligodendrocytes, ependymal cells, or astrocytes, can 
develop into cancer stem cells (CSCs) that are referred to as GSCs[126,129]. One of the main features that 
characterizes these GSCs is their plasticity, which is defined as “morphological and functional 
flexibility”[129]. This flexibility allows GSCs to adapt to different microenvironments and persist even under 
harsh conditions and in the presence of therapeutic agents. In this context, plasticity also refers to a cell’s 
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Figure 2. Non-coding RNAs involved in the development of temozolomide resistance in GBM. Under regular conditions, miR-29c binds 
to the mRNA of SP1 and induces its degradation. However, the downregulation of miR-29c in GBM leads to increased abundance in SP1 
mRNA and elevated SP1 protein expression, which in turn induces the expression of the MGMT gene. Additionally, the overexpression 
of the lncRNA TALC leads to a decreased abundance of miR-20b-3p. This attenuates the inhibition that miR-20b-3p exerts over the 
expression of c-MET, resulting in c-MET overexpression and subsequent downstream signaling to augment MGMT expression. The 
increased MGMT expression induced by these mechanisms ultimately augments the GBM cells’ ability to resist treatment with TMZ. 
c-MET: Cellular mesenchymal-epithelial transition factor; GBM: glioblastoma; lncRNA: long non-coding RNA; mRNA: messenger RNA; 
MGMT: O6-methylguanine-DNA methyltransferase; miRNA: microRNA; SP1: specificity protein 1; TMZ, temozolomide.

ability to interconvert from one cellular sub-state to another. This plasticity is mainly regulated by 
epigenetic modulations occurring in the genome, altering the expression of regulatory genes in GSCs, and 
driving the interchange between states in response to stimuli from the TME[126,127]. Herein, according to the 
plasticity model formulated to explain the heterogeneity within GBM and built upon the CSC model: “CSCs 
are the source of tumor initiation and heterogeneity…CSCs can interconvert between stem cell and 
differentiated states”[130].

Specifically, intratumoral heterogeneity (inside of a single tumor) is maintained by epigenetic modulations, 
which include the previously discussed methylation of the MGMT gene and decreased chromatin 
accessibility[130]. Additionally, intratumoral heterogeneity is seen within GBM at the level of cellular 
subtypes[131]. Specifically, of the four subtypes identified within GSCs, the proneural (PN-GSC) and 
mesenchymal (Mes-GSC) subtypes are the most studied[131]. The PN-GSC subtype is detected in secondary 
GBMs and young patients, while the mesenchymal (Mes-GSC) subtype is found more often in older 
patients and reveals a primary and secondary GBM origin[131]. Mes-GSCs are known to be more aggressive 
phenotypes which contribute to worse prognoses in comparison to PN-GSCs. Mes-GSCs exhibit a more 
proliferative phenotype due to their expression of CD44, YKL40, Lyn, WT1, and BCL2A1, which are 
associated with angiogenesis and enhanced cell survival by counteracting apoptosis, inflammation, and cell 
migration/invasion[129,130]. In contrast, PN-GSCs express CD133, EXH2, Olig2, Sox2, and Notch1. These 
genes are involved in homeostasis, the cell cycle, DNA repair, and the activation of Notch and PDGF 
receptor signaling pathways, which impart a better prognosis[132].



Page 11 of Shahani et al. Cancer Drug Resist. 2025;8:12 https://dx.doi.org/10.20517/cdr.2024.157 24

Compounded with genetic and epigenetic changes, the TME induces the dynamic transitions between 
GSCs[127]. In fact, heterogeneity also exists at the level of the TME and includes the hypoxic niche, the 
perivascular niche, and the invasive niche[133,134]. Herein, hypoxia is defined as a state in which oxygen is 
insufficient to maintain homeostasis[135]. Therefore, the hypoxic niche is characterized by low oxygen levels 
in brain tissues and the overexpression of HIFs. These factors increase the growth of HSCs and promote 
angiogenesis and chemoresistance[130]. Hypoxia offers phenotypic variability and functional characteristics to 
GSC subpopulations to promote adaptability to these hypoxic regions[133]. The invasive microenvironment, 
called the perivascular niche, is characterized by its collaborative network of cancer cells, endothelial cells, 
pericytes, astrocytes, and tumor-associated macrophages that regulate cell migration/invasion into 
surrounding healthy tissue[134].

Hence, GBM plasticity is attained through epigenetic modifications such as histone modification, DNA 
methylation, and chromatin remodeling in GBM cells[127]. The plasticity of GBM is characterized by 
transitions between the proneural (less active) and mesenchymal (more active) subtypes, as well as the 
ability to adapt to various microenvironments. For instance, after treatment with TMZ, GSCs have been 
observed to adapt toward drug-resistant states, forming populations of heterogeneous drug-resistant cells. 
Due to the epigenetic plasticity of these cells, they are more likely to continue alternating between stem cell 
progenitor states and more differentiated states, depending on the prevailing conditions and 
microenvironment.

THERAPEUTIC APPROACHES WITH EPIGENETIC TARGETS
This section explores the potential targeting strategies that can help attenuate the therapeutic resistance of 
GBM. Table 2 summarizes epigenetic modifiers that have progressed to clinical trials and describes the 
progress/results of these trials. [136,137]

Targeting DNA methylation
Therapeutic approaches targeting DNA methylation represent an encouraging avenue for the treatment of 
GBM. By reversing aberrant DNA methylation patterns associated with tumor suppressor gene silencing, 
these strategies aim to inhibit tumor growth, overcome therapeutic resistance, and improve outcomes for 
GBM patients.

DNMT inhibitors, such as azacytidine and decitabine, have been studied for their potential in treating 
GBM[138,139]. These compounds can counteract abnormal DNA hypermethylation commonly seen in GBM, 
resulting in the reactivation of tumor suppressor genes silenced by excessive promoter methylation[140]. 
Clinical trials are currently investigating the effectiveness of DNMT inhibitors, either alone or combined 
with other therapies, particularly TMZ, in managing GBM[141].

Moreover, innovative genome editing techniques like clustered regularly interspaced short palindromic 
repeats (CRISPR)-Cas9 hold great potential for precisely modifying DNA methylation patterns in GBM. 
The CRISPR/Cas9 system is a type II CRISPR system that consists of three key constituents: transactivating 
crRNA (tracrRNA), an endonuclease (Cas9), and CRISPR RNA (crRNA). When crRNA pairs with 
tracrRNA, they create a molecule known as single-guide RNA (sgRNA). This sgRNA guides Cas9 to bind to 
the target sequence and cleave foreign DNA[142]. Han et al. used the CRISPR /Cas9 system to knock out the 
MGMT gene, thus reducing resistance to TMZ[143]. Similarly, to achieve the same effect of reduced TMZ 
resistance, Tong et al. used CRISPR /Cas9 to knock out the MUC1 gene[144]. This targeted modification 
could potentially reverse tumor suppressor gene silencing at specific genomic sites, paving the way for more 
tailored therapies for GBM patients[142]. Nevertheless, further investigation is necessary to refine the delivery 



Page 12 of Shahani et al. Cancer Drug Resist. 2025;8:12 https://dx.doi.org/10.20517/cdr.2024.15724

Table 2. Summary of the clinical trials using epigenetic modifiers, either in isolation or in combination. Based on data from 
clinicaltrials.gov

Agent Trials Type/Design Intervention Status

Valproic Acid NCT00302159 Phase II VPA +/- TMZ Completed, published[137]

Abexinostat 
(PCI-24781)

NCT05698524 Phase I Abexinostat +/- TMZ Recruiting

NCT01266031 Phase I/II Vorinostat +/- bevacizumab Completed, results posted on 
clinicaltrials.gov

NCT02420613 Phase I Vorinostat and temsirolimus +/- radiation therapy Active, not recruiting

NCT00555399 Phase I/II Vorinostat, isotretinoin and temozolomide Terminated, no sponsor 
funding for continuation of trial

NCT01189266 Phase I/II Vorinostat and radiation therapy Completed, results posted on 
clinicaltrials.gov

NCT00268385 Phase I Vorinostat and temozolomide Active, not recruiting

NCT01738646 Phase II Vorinostat +/- bevacizumab Completed, results posted on 
clinicaltrials.gov

NCT01378481 Phase I Vorinostat and fractionated stereotactic body radiation 
therapy

Terminated

NCT00939991 Phase I/II Vorinostat, bevacizumab and temozolomide Completed, results posted on 
clinicaltrials.gov

NCT01236560 Phase II/III Vorinostat, temozolomide, or bevacizumab in combination 
with radiation therapy followed by bevacizumab and 
temozolomide

Completed, results posted on 
clinicaltrials.gov

NCT01110876 Phase I/II Vorinostat, erlotinib and temozolomide Terminated, unanticipated 
toxicities

NCT00641706 Phase II Vorinostat and bortezomib Completed, results posted on 
clinicaltrials.gov

NCT00731731 Phase I/II Vorinostat, temozolomide, and radiation therapy Completed, results posted on 
clinicaltrials.gov

NCT00238303 Phase II Vorinostat Completed, results posted on 
clinicaltrials.gov

NCT03426891 Phase I Pembrolizumab and vorinostat Completed, no results posted

NCT00762255 Phase I Vorinostat, bevacizumab & irinotecan Completed, results posted[136]

NCT00994500 Phase I Vorinostat and bortezomib Completed, no results posted

NCT00217412 Phase I Vorinostat +/- isotretinoin Completed, no results posted

Vorinostat

NCT01076530 Phase I Vorinostat and temozolomide Completed, no results posted

VPA: Valproic acid; TMZ: temozolomide.

methods and enhance the specificity of DNA methylation editing tools for their clinical implementation in 
GBM.

Yao et al. introduced a groundbreaking approach termed Methylated Oligonucleotide-Directed DNA 
Methylation, demonstrating its efficacy in hepatocellular carcinomas. They synthesized a methylated 
oligonucleotide (MON) complementary to the IGF2 promoter, inducing hypermethylation and suppressing 
IGF2 mRNA expression. This technique involves phosphonothioate modification to replace cytosine 
residues with methyl groups, resulting in 5mC formation. The MON comprises an inactivating element (IE) 
and a guiding element (GE). The GE directs the IE to specific loci, where a modified hemimethylated CpG 
hairpin structure recruits DNMT1, initiating methylation. This process mimics a replication fork, 
facilitating continuous DNMT1-mediated methylation. Upon dissociation, the methylated strand pairs with 
the unmethylated strand, creating a second hemimethylated substrate for DNMT1 to methylate, ultimately 
inducing site-specific gene methylation[145]. In a similar fashion, small non-coding RNAs can also be used to 
direct methylation where desired. They can guide DNA methylation by forming RNA-DNA hybrids with 
complementary genomic sequences through microRNA (miRNA), small interfering RNA (siRNA), or piwi-
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interacting RNA (piRNA) mediated pathways resulting in recruitment of DNMTs[146].

Hence, identifying predictive biomarkers linked to DNA methylation patterns in GBM can help tailor 
treatment strategies to individual patients. Currently, the MGMT methylation status serves as a biomarker 
preceding standard chemoradiation. It is hypothesized that MGMT methylation status could also inform 
immunotherapy approaches. Evidence suggests that patients with MGMT-methylated tumors exhibit 
significantly enhanced survival rates compared to those with unmethylated MGMT in GBM vaccine therapy 
trials. Additionally, other potential biomarkers such as PTEN and IDH have been explored[147-149]. Utilizing 
biomarker-guided approaches enables the selection of patients who are likely to derive benefits from 
epigenetic therapies, thereby enhancing treatment outcomes while minimizing adverse effects. The 
integration of biomarker information into the clinical decision-making processes has the potential to refine 
the precision and efficacy of epigenetic therapies for GBM.

Another promising avenue involves targeting bromodomain and extraterminal (BET) proteins, which play a 
key role in regulating gene expression through their interaction with acetylated histones. Specifically, 
inhibition of BET proteins, such as BRD4, has been shown to sensitize glioblastoma cells to TMZ by 
downregulating the expression of MGMT, a DNA repair enzyme responsible for repairing TMZ-induced 
DNA damage. MGMT is often overexpressed in GBM and its high levels contribute to the resistance of 
tumor cells to TMZ therapy[150].

Targeting histone modification
Histone methylation and demethylation
Research into the therapeutic possibilities of histone lysine demethylase (KDM) has primarily developed 
over the last 15 years. In 2011, Singh et al.[151] established the in vitro efficacy of KDM1 inhibition in 
sensitizing GBM to HDAC inhibitors and subsequent interest has led to an increase in experimental and 
clinical trials of KDM1 inhibitors. Inhibiting KDM1A (LSD1) with either NCL-1 or NCD-38 has been 
shown to decrease neurosphere formation and cell viability in GSCs, while also promoting differentiation, 
increasing endoplasmic reticulum stress, inducing apoptosis, and enhancing the efficacy of TMZ[152,153]. 
Additionally, another KDM1 inhibitor, tranylcypromine (TCP), combined with vorinostat, has resulted in 
increased apoptosis in the U87 glioma cell line in vivo[151]. Clinically, many irreversible LSD1 inhibitors have 
undergone cancer therapy assessment, including TCP, Iadademstat (ORY-1001), Vafidemstat (ORY-2001), 
GSK-2879552, Bomedemstat (IMG-7289), and INCB059872[154]. Due to the enduring effects of irreversible 
inhibitors, many reversible LSD1 inhibitors have also been researched and documented, although only two 
of them (Seclidemstat (SP-2577) and Pulrodemstat (CC-90011)) have progressed to clinical trials. To date, 
only BEA-17, a degrader of LSD1 and its cofactor, coREST, has been granted the orphan drug designation 
by the United States. Food and Drug Administration (FDA) for use in GBM.

Due to the previously described effects of KDM2A, it is theorized that its inhibition could augment the 
immunotherapeutic response against GBM, although further research is required[46]. This is primarily due to 
a lack of mechanistic understanding of KDM2A function and uncertainty regarding the in vivo efficacy of 
its inhibition. In contrast, the prevalence of the KDM4 lysine demethylase family in clinical GBM has 
allowed efforts to yield great strides in mechanistic understanding. In 2018, Voon et al. described the 
inhibition of KDM4 caused by pediatric GBM H3.3 G34R mutants, and the resultant epigenetic 
dysregulation[155]. Subsequent studies conducted in 2021 by Lee et al.[156] revealed the particular significance 
of KDM4C in GBM tumorigenesis and p53 and c-MYC regulation. Specifically, KDM4C knockdown in 
U87 and U251 GBM cell lines has led to reduced colony formation, decreased c-MYC expression, and 
increased p53 levels. Furthermore, the inactivation of KDM5A through JIB 04, a pan-KDM inhibitor, or 
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CP1445, a KDM5A-selective inhibitor, was found to efficiently restore TMZ sensitivity in adaptively 
resistant GBM cells[46,157,158]. When supplemented with the KDM6B inhibitor GSK-J4, JIB 04 was found to 
further increase potency against TMZ-resistant GBM cells[46,158].

Histone acetylation and deacetylation
Most clinical attempts at GBM treatment through epigenetic modification have been directed toward the 
interplay between acetylation and deacetylation, particularly with regard to HDAC inhibitors and their 
ability to sensitize GBM to chemotherapeutic and radiotherapeutic treatments. Notably, almost all patients 
with GBM are susceptible to recurrence–a quality attributed to poor blood-brain barrier (BBB) drug 
permeability, intratumor heterogeneity, intrinsic GBM treatment resistance, and non-specific agent 
toxicities[159,160]. However, there are several HDAC inhibitors capable of penetrating the BBB and serving in 
an anti-GBM role through the upregulation of p21Waf1/Cip1, a cell-cycle inhibitor[159]. For example, in vitro 
treatment with the pan-HDAC inhibitor, phenylbutyrate, suppressed the proliferation of the LN-229 GBM 
cell line[161]. Accordingly, the application of romidepsin produced synergistic results in the U251MG cell line 
by reducing the respective anti-apoptotic protein Bcl-2[159,162]. Additionally, HDAC inhibitors have proven 
capable of regulating GBM angiogenesis through inhibition of growth factors such as VEGF and EGFR or 
impeding upon vascular mimicry[159].

BET bromodomain inhibition (using HMBA) combined with MEK inhibition as a potential therapeutic 
strategy for GBM is also being explored. By targeting the BET proteins, which regulate key genes involved in 
tumor growth, and inhibiting the MEK-ERK signaling pathway, HMBA (BET bromodomain inhibitor) 
demonstrated enhanced antitumor effects compared to either approach alone. The synergistic combination 
led to reduced tumor cell proliferation, increased cell death, and suppression of survival pathways in 
preclinical models, suggesting that this dual inhibition could overcome some of the limitations of current 
therapies[163].

Preclinically, vorinostat, suberoylanilide hydroxamic acid (SAHA), Trichostatin A (TSA), and valproic acid 
(VPA) have significantly precipitated GSC autophagy, reduced proliferation, and stimulated 
differentiation[159,164,165]. In vitro studies conducted by Urdiciain et al. solidified the abilities of 
HDAC6-selective inhibitors such as ACY-1215, tubastatin A, and CAY10603 to overturn TMZ resistance in 
patient-derived T98G and LN405 GBM cell lines[166]. In clinical trials, there have been several studies 
analyzing the synergistic effects of HDAC inhibitors such as vorinostat, panobinostat, and VPA with TMZ, 
bevacizumab, and radiation; however, none have progressed past trial phase II[159]. Currently ongoing are 
studies attempting to analyze the efficacy of various HDAC inhibitors, such as Abexinostat (PCI-24781), in 
the treatment of recurrent GBM. While promising, the extensive use of HDAC inhibitors within the clinical 
setting is limited due to a generally poor understanding of the relationship between the toxicity and 
pharmacokinetic properties of these inhibitors. Furthermore, identification of patients likely to respond to 
HDAC inhibitor treatment is difficult due to GBM heterogeneity and epigenetic profiling, compounded by 
the challenges of converting the promising preclinical experiments into potential therapeutic regimens for 
clinical trials[159].

Targeting chromatin remodeling
The dysregulation of chromatin remodeling complexes contributes to the aberrant gene expression patterns 
and cellular behaviors that are observed in GBM. In a recent study by Sun et al., a GBM-specific epigenetic 
mechanism was discovered where the chromatin regulator bromodomain-contain protein 8 (BRD8) helped 
to maintain histone variant H2AZ at p53 targets, thereby enhancing chromatin accessibility and generating 
repressive chromatin state, preventing the tumor suppressor activity of p53. They found that targeting the 
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BRD8 displaces H2AZ, allowing for the activation of p53 and leading to subsequent tumor suppression and 
cell cycle arrest in the TP53WT GBM cell line[167]. These findings suggest that targeting BRD8-mediated 
chromatin remolding in GBM presents a promising therapeutic strategy for overcoming the epigenetic 
barriers of p53 activation and potentially improving patient outcomes.

Further studies have also implicated the role of poly (ADP-ribose) polymerase (PARP) inhibitors as a 
potential therapeutic target in GBM. Previously, PARP1 has been implicated in the stabilization of DNA 
replication forks, single-stranded and double-stranded DNA breaks, as well as the modulation of chromatin 
structure[168,169]. Since PARP1 is a target of DNA damage machinery, it has been an attractive target to help 
generate synthetic lethality and potentiate the effects of chemotherapy and radiotherapy[170,171]. PARP 
inhibitors (PARPi), in particular Olaparib, Niraparib, and Rucaparib, have already gained approval from the 
FDA and have been shown to improve survival rates in patients with ovarian cancer, breast cancer, and 
prostate cancer, especially those with BRCA deficiencies[172-174]. PARPi have also been shown to play an 
important role in the modulation of chromatin structures that facilitate DNA repair as they will act to 
PARylate histone tails, resulting in a relaxed chromatin state and the removal of nucleosomes from the 
DNA[168,175]. As such, the usage of PARPi has recently garnered interest in the treatment of GBM. In the 
OPARTIC trial, a phase I dose escalation study of Olaparib in combination with TMZ in patients with 
relapsed GBM, the pharmacokinetics of Olaparib were investigated. The results showed that of the patients 
who received the drug, penetration was detected in 71/71 of the tumor core specimens, demonstrating its 
consistent ability to cross the BBB[176]. Therefore, the use of PARPi presents an exciting therapeutic approach 
with numerous other clinical trials currently evaluating their effects in the treatment of GBM.

Targeting non-coding RNAs
ncRNAs as biomarkers
Some ncRNAs could be used as biomarkers to predict the progression or presence of the disease; these 
include miRNa-21, miRNA-26a, miR-128, and miR-342, among others. These prognosis markers could be 
extremely helpful in the detection and diagnosis of GBM. Early detection could reduce patient mortality and 
prolong survival. Additionally, other ncRNAs predict the likelihood of GBM resistance to certain 
treatments. In the future, this could be helpful in the clinical setting when devising treatment plans. Studies 
by ParvizHamidi et al. on miRNA-21 and miRNA-26a and by Wang et al. on miR-128 and miR-342 
identified those miRNAs as important biomarkers[102,103]. Specifically, expression was quantified in people 
without GBM and in GBM patients before and after surgery. Before surgery, there was a large difference in 
the expression of these RNAs between patients with GBM and healthy subjects; however, this difference 
between groups was ameliorated after surgical resection. This implies that the tumor was driving the 
overexpression of these miRNAs, and their presence returned to normal once the tumor burden was 
reduced. For patients with GBM, high expression of miR-1258, miR-935, and miR-128-3p was associated 
with better overall survival, and the same association was found for low expression of miR-542-3p and miR-
221/222[102,103]. These patterns could have great clinical benefits-surveying ncRNA expression in a patient 
could provide insights into their prognosis and possible risk of treatment resistance. This could help inform 
treatment plans to maximize treatment efficacy based on the individual patient’s expression patterns.

ncRNA therapies and delivery systems

The sheer number of ncRNAs means that there are many possible epigenetic targets to be explored in the 
therapeutic context[177]. Herein, miR-124-2, miR-135a-2, and let-7i were found to be the most useful 
miRNAs with clinical relevance in a study screening around 600 different miRNAs. Alternatively, 
miR-17-3p, miR-340, and miR-222 are critical miRNAs that modulate GBM cell viability in vitro and 
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in vivo[177]. These two lists of relevant miRNAs do not cover the full scope of possibilities for targets of 
therapeutic treatment. Some other targets include several miRNAs that have been found to promote GBM 
sensitivity to TMZ, such as miR-198 (MGMT), miR-101 (GSK-3beta), miR-1268a (ABCC1), miR-381
(ABCG2, ABCC3, ABCC5), miR-137 (LRP6), miR-126-3p (SOX2), and miR-128-3p (c-Met, EMT)[178].

Other therapies utilize small-interfering RNA (siRNA) to target genes (such as VEGF, EGFR, STAT3, and 
ETDL1) that promote GBM progression and downregulate them, suppressing their oncogenic effect[104,106]. 
Other siRNAs include Livin-siRNA, which enhances TMZ sensitivity through the inhibition of MRP1, and 
Hsp27-siRNA, which induces apoptosis. To improve delivery efficacy, nanoparticles (NPs) are being 
utilized for delivery formulations. Such nanoparticles include iron oxide nanoparticles, liposomes, and other 
compounds specifically developed to deliver a particular siRNA[179].

ncRNAs work cooperatively, and this property can be leveraged through specific combinations to enhance 
their overall effect. For example, the miR-Combo formulated by Bassot et al. used a combination of 
miR-17-3p, miR-222, and miR-340, which significantly decreased cell viability compared to non-targeting 
scrambled miRNA[180].

Delivery systems

The overarching challenge in designing these therapies lies in delivering these treatments to the targets in 
the brain. Some obstacles to delivery include the breakdown of therapeutic agents in the blood, poor 
molecular stability, clearance by the kidneys, and the inability to penetrate relevant membranes. The most 
striking challenge in the context of GBM is the existence of the BBB[181]. Even if a drug can get through the 
BBB, it must also pass through the cell membrane to elicit any effect.

Several drug-delivery systems are being studied to improve the efficacy of GBM treatment. Some of these 
methods include the use of nanoparticles (NPs), which include inorganic NPs, polymeric NPs (PNPs), and 
lipid-based NPs (LNPs)[104]. NP delivery systems can provide both controlled drug release and tissue 
specificity while protecting miRNAs from systemic degradation, ensuring the payload remains intact. The 
use of synthetic RNA can increase bioavailability[106], and using siRNA rather than miRNA can counteract 
cytotoxicity due to target specificity. Other possible delivery systems include stem cell-derived exosomes, 
bacterial toxins, and viral vectors to improve cell membrane penetration and successful delivery[104].

CONCLUSIONS AND FUTURE DIRECTIONS
The alterations in DNA methylation status, histone methylation and acetylation status, chromatin 
architecture, and expression of non-coding RNAs all play critical roles in modifying gene expression in 
GBM and promoting a resistant phenotype. It is imperative to study the intricate interactions between the 
epigenetic profiles of GBM cells and their ability to adapt to different therapeutics, along with the significant 
intratumoral and intertumoral heterogeneity that governs these interactions. Achieving a better 
understanding of these mechanisms and processes can inspire novel avenues to overcome treatment 
resistance and augment the efficacy of existing and emerging therapeutics. Despite a long history of 
investigation into epigenetic control and rewiring, further research is still required to safely and effectively 
navigate the transformation of these mechanisms into translatable therapies and tractable targets that can be 
integrated into the clinical management of GBM and offer superior outcomes to patients diagnosed with 
this disease. Nevertheless, it is important to note that tumorigenesis is the result of the combination of many 
epigenetic events. Additionally, the vast heterogeneity that is present at the intratumoral and intertumoral 
levels further complicates the issue. Small molecule targeting of one subset of epigenetic regulation may not 
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lead to complete tumor eradication. The development of effective therapeutic modalities will require 
consideration of this complex interplay between various epigenetic events and signaling pathways that drive 
GBM progression.
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