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Abstract
Autonomous robot multi-waypoint navigation and mapping have been demanded in many real-world applications
found in search and rescue (SAR), environmental exploration, and disaster response. Many solutions to this issue
have been discovered via graph-based methods in need of switching the robot’s trajectory between the nodes and
edgeswithin the graph to create a trajectory forwaypoint-to-waypoint navigation. However, studies of howwaypoints
are locally bridged to nodes or edges on the graphs have not been adequately undertaken. In this paper, an adjacent
node selection (ANS) algorithm is developed to implement such a protocol to build up regional path from waypoints
to nearest nodes or edges on the graph. We propose this node selection algorithm along with the generalized Voronoi
diagram (GVD) and Improved Particle Swarm Optimization (IPSO) algorithm as well as a local navigator to solve the
safety-aware concurrent graph-based multi-waypoint navigation and mapping problem. Firstly, GVD is used to form
a Voronoi diagram in an obstacle populated environment to construct safety-aware routes. Secondly, the sequence
of multiple waypoints is created by the IPSO algorithm to minimize the total travelling cost. Thirdly, while the robot
attempts to visit multiple waypoints, it traverses along the edges of the GVD to plan a collision-free trajectory. The
regional path fromwaypoints to the nearest nodes or edges needs to be created to join the trajectory by the proposed
ANS algorithm. Finally, a sensor-based histogram local reactive navigator is adopted for moving obstacle avoidance
while local maps are constructed as the robot moves. An improved B-spline curve-based smooth scheme is adopted
that further refines the trajectory and enables the robot to be navigated smoothly. Simulation and comparison studies
validate the effectiveness and robustness of the proposed model.
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1. INTRODUCTION
Robotics system has been applied to numerous fields, such as transportation [1], healthcare service [2,3], agri-
culture [4], manufacturing [5], etc., in recent years. Robot navigation is one of the fundamental components in
robotic systems, which includes multi-waypoint navigation system [6–8]. As an increasing demand and limited
onboard resources for autonomous robots, it requires the ability to visit several targets in one mission to op-
timize multiple objectives, including time, robot travel distance minimization, and spatial optimization [9–15].
For example, due to a global pandemic, the world struggled to sanitize heavily populated areas, such as air-
ports, hospitals, and educational buildings. Autonomous robots with multi-waypoint navigation systems can
effectively sanitize all targeted areas without endangering the workers [14,16]. As well as in agriculture man-
agement, multi-waypoint strategies allow the robotic system to navigate and survey multiple areas to assist in
production and collection.

In order to employ robotic systems in real-world scenarios, one critical factor is to develop autonomous
robot multi-waypoint navigation and mapping system [17]. In order to solve the autonomous robot naviga-
tion problem, countless algorithms have been developed, such as graph-based [18,19], ant colony optimization
(ACO) [20–22], bat-pigeon algorithm (BPA) [23], neural networks [24–26], fuzzy logic [27], artificial potential field
(APF) [28], sampling-based strategy [14,29], hybrid algorithms [30], task planning algorithm [31], etc. Chen et al.
produced a hybrid graph-based reinforcement learning architecture to develop a method for robot navigation
in crowds [18]. Luo et al. proposed an improved vehicle navigation method, which utilizes a heading-enabled
ACO algorithm to improve trajectory towards the target [20]. Lei et al. developed a Bat-Pigeon algorithm
with the ability to adjust the speed navigation of autonomous vehicles [23]. Luo et al. developed the model
for multiple robots complete coverage navigation while using a bio-inspired neural network to dynamically
avoid obstacles [32]. Na and Oh established a hybrid control system for autonomous mobile robot navigation
that utilizes a neural network for environment classification and behavior-based control method to mimic the
human steering commands [25]. Lazreg and Benamrane [27] developed a neuro-fuzzy inference system associ-
ated with a Particle Swarm Optimization (PSO) method for robot path planning using a variety of sensors to
control the speed and position of a robot. Jensen-Nau et al. [28] integrated a Voronoi-based path generation
algorithm and an artificial potential field path planning method, in which the latter is capable of establishing
a path in an unknown environment in real-time for robot path planning and obstacle avoidance. Penicka and
Scaramuzza [14] developed a sampling-based multi-waypoint minimum-time path planning model that allows
obstacle avoidance in cluttered environments. Ortiz and Yu [30] proposed a sliding control method in combi-
nation with simultaneous localization and mapping (SLAM) method to overcome the bounded uncertainties
problem, which utilizes a genetic algorithm to improve path planning capabilities. Bernardo et al. proposed a
task planning method for home environment ontology to translate tasks given by other robots or humans into
feasible tasks for another robot agent [31].

In robotic path planning, one of the special topics is autonomous robot multi-waypoint navigation which has
been studied formany years. For instance, Shair et al. proposed amodel for real-world waypoint navigation us-
ing a variety of sensors for accurate environmental analysis [33]. The system is designed utilizing the wide area
augmentation system (WAAS) and the European geostationary navigation overlay service (EGNOS) for GPS
in combination with aerial images to provide valuable positioning data to the system. Yang [34] brought about
a multi-waypoint navigation system based on terrestrial signals of opportunity (SOPs) transmitters, which has
the ability to operate in environments that are not available to global navigation satellite systems (GNSS) for
unmanned aerial vehicles (UAV). Janoš et al. proposed a sampling-based multi-waypoint path planner, space-
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Figure 1. Illustration of the proposed model framework.

filling forest method to solve the problem of finding collision-free trajectories while the sequence of waypoints
is formed by multiple trees [29]. However, the aforementioned approaches have not taken into account the
safety of the robot during navigation. In real-world applications, an autonomous vehicle has odometry er-
rors during operation. The safety-aware road model is developed utilizing the Generalized Voronoi diagram
(GVD) approach. Once the safety-aware roads are defined, a particle swarm optimization (PSO) algorithm-
based multi-waypoint path planning algorithm is proposed to visit each waypoint in an explicated sequence
while simultaneously avoiding obstacles. In this paper, the Adjacent Node Selection (ANS) algorithm is devel-
oped to select the closest nodes on the safety-aware roads to generate the final collision-free trajectories with
minimal distance. Furthermore, in our hybrid algorithm, we utilize a histogram-based reactive local navigator
to avoid dynamic and unknown obstacles within the workspace. Through all of these methods, an effective
and efficient safety-aware multiple waypoint navigation model was established, which has been validated by
both simulations and comparison studies.

This paper proposes an Adjacent Node Selection (ANS) algorithm for obtaining an optimal access node into
graph-based maps. To the best of our knowledge, there are no known similar algorithms that improve the
paths created from the waypoint to the graph. The ANS algorithm can be applied to any graph-based mapping
environment, which improves the various graph-based models used for autonomous robotic path planning
systems. In finding an access point into the graph utilizing one of the nodes in the system, the ANS algorithm
conducts point-to-point selection in dense obstacle field of environments to obtain a node to gain access to the
graph that forms a resumable path from a waypoint to the graph. The algorithm’s overall goal is to find a node
in a graph-based map and shorten the overall path length from each waypoint to waypoint, and the waypoint
to the graph.

One can see in Figure 1 the overall framework of our proposed model. Initially, the model is provided with
a global map of its environment and the location of each target waypoint. The GVD utilizes the global map
to construct the safety-aware roads, which are used to guide the robot throughout the environment. The tar-
geted waypoint locations are used as input to the improved PSO (IPSO) algorithm that act as our waypoint
sequencing module, which is utilized to find a near-optimal sequence to visit each waypoint. The ANS algo-
rithm utilizes the output from the previous stages. The ANS algorithm finds the best node for each waypoint
to use as an access point to the graph. If there is no direct path from one waypoint to a node in the graph, the
algorithm conduces point-to-point navigation with nodes within a specified range, which will be explained in
later sections of the paper. Once each waypoint has found its access point, the safety-aware path is constructed,
which is then applied to our path smoothing algorithm. Finally, we utilize a reactive local navigation system to
detect obstacles autonomously and simultaneously build a map of the environment along the generated path.

The main contributions of this paper with this framework of concurrent multi-waypoint navigation and map-
ping with collision avoidance as are summarized as follows: (1) An adjacent node selection (ANS) algorithm is
proposed to build up regional bridges from waypoints to nodes or edges on the graph in multi-waypoint navi-
gation and mapping; (2) a concurrent multi-waypoint navigation and mapping framework of an autonomous
robot is developed by the generalized Voronoi diagram (GVD) and IPSO algorithm as well as a local navigator;

http://dx.doi.org/10.20517/ir.2022.21


Page 336 Sellers et al. Intell Robot 2022;2(4):33354 I http://dx.doi.org/10.20517/ir.2022.21

Figure 2. Illustration of the ANS algorithm and the safety-aware model by creation of the GVD. (A) Depicts the equidistance property of
the nodes and edges in the GVDmodel. (B) illustrates how we remove extraneous edge distances, which are small edges within the graph
that reduce the search space or range in the ANS algorithm. (C) illustrates how the removal of those extraneous edges improves the range
and how an access node to the graph can be found.

(3) a GVD method is employed to plan safety-aware trajectories in an obstacle populated environment, while
the sequence of multiple waypoints is created by the IPSO algorithm to minimize the total distance cost; (4)
a sensor-based histogram robot reactive navigator coupled with map building is adopted for moving obstacle
avoidance and local mapping. An improved B-spline curve-based speed modulation module is adopted for
smoother navigation.

The structure of this paper is as follows. Section II presents the safety-aware model that constructs the safety-
conscious roads for robot traversal. Section III describes the proposed adjacent node selection algorithm to
find an access node into the graph-based map. Section IV, the improved PSO-based (IPSO) multi-waypoint
navigation model for waypoint sequencing is explained. Section V illustrates the reactive local navigator for
real-time workspace building and obstacle avoidance. Section VI depicts simulation results and comparative
analyses. Several important properties of the proposed framework are summarized in Section VII.

2. SAFETY-AWARE MODEL
Computational geometry has exceedingly studied the Voronoi diagrams (VD) model, which is an elemental
data structure used as a minimizing diagram of a finite set of continuous functions [28,35]. The minimized
function defines the distantance to an object within the workspace. The VDmodel decomposes the workspace
into several regions, each consisting of the points near a given object than the others. Let G = {𝑔1 · · · , 𝑔𝑛} be
a set of points of R𝑑 to each 𝑔𝑖 associated with a specific Voronoi region 𝑉 (𝑔𝑖). This can be expressed by the
following equation [36,37]:

𝑉 (𝑔𝑖) = {𝑥 ∈ R𝑑 : ‖𝑥 − 𝑔𝑖 ‖ ≤ ‖𝑥 − 𝑔 𝑗 ‖,∀ 𝑗 ≤ 𝑛} (1)
The intersection of 𝑛−1 half spaces can be denoted by the region𝑉 (𝑔𝑖). Each half space holds a point 𝑔𝑖 along
with another point of G. The regions 𝑉 (𝑔𝑖) are convex polyhedrons due to the bisectors acting as hyperplanes
between each region. The generalized Voronoi diagram (GVD) is a modified version of the VDmodel defined
as the set of points Euclidean distance from two obstacles [37]. The workspace is represented as a graph by the
GVD model consisting of nodes, edges, and vertices [28].

The proposed ANS algorithm utilizes nodes and edges obtained from the GVD illustrated in Figure 2A. The
nodes in the GVD act as junctions to connect waypoints, whereas the edges are used to determine the search
range in view of waypoints. Solely the nodes in the search range are calculated, other than the entire workspace,
thus reducing the computational expense. Figure 2B reveals that the range of some edges fails to evaluate
how spare of the workspace is configurated. These edges with short lengths are distractors for evaluating and
computing the search range, thus need to be eliminated shown in Figure 2B. In our ANS algorithm, those
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edges with the shortest 10% are eliminated, while the rest of the edges are averaged to compute the radius of
the search range. One circumstance is exhibited in Figure 2C, in which some nodes fail to fall into the search
range once the excessively short edges are excluded. The original search space in solid circles and modified
search space in dashed circles based on the ANS algorithm are shown in Figure 2C. As may be seen, after
excessively short edges are effectively eliminated, an appropriate search range is achieved.

GVD nodes form the Euclidean distance between two or more obstacles, while the edges are the junction of
two nodes that depict the distance between each neighboring node to another. Vertices are the connection
points between three or more nodes. Using these features from the GVD model, an obstacle-free path with
our safety-aware model is effectively created. The safety-aware model is constructed by inputting an image and
extracting all significant features from the image, thus allowing the model to construct a map from the input
image. The safety-aware roads are the clearest path between obstacles that occupy the available space in the
map , which can be seen in Figure 2.

In this paper, in order to explain our proposed ANS algorithm, how the nodes are determined and constructed
with the GVD will be presented in some detail. We will introduce some definitions and notations. Lee and
Drysdale [36] derive four basic definitions for determining the optimal placement of edges and nodes within
the GVD graph.

DEFINITION 1. A closed line segment 𝑀 consists of two endpoints 𝛼 and 𝛾. A straight line is denoted by
(𝛼, 𝛾), which is also known as an open segment. Elements within the derivation are referred to as points or
segments. The straight line containing 𝑀 is denoted by←→𝑀 . The same line directed from 𝛼 to 𝛾 is denoted by
®𝑀 .

DEFINITION 2. The projection 𝜎(𝜖, 𝑀) of a point 𝑞 onto a closed segment 𝑀 , is the intersection of←→𝑀 and
is perpendicular to 𝑀 and passing through 𝜖 .

DEFINITION 3. The distance between 𝜔(𝜖, 𝑀) is a point 𝜖 and a closed segment 𝑀 in the Euclidean metric
is defined as the distance 𝜔(𝜖, 𝜎(𝜖, 𝑀)) between the point 𝜖 and its projection onto 𝑀 if 𝜎(𝜖, 𝑀)) belongs to
𝑀 and is min (𝜔(𝜖, 𝛼), 𝜔(𝜖, 𝛾)) otherwise. In other words, 𝜔(𝜖, 𝑀) = min𝑢∈𝑀 (𝜖, 𝑢). The point of 𝑀 , which
is closest to 𝜖 , is called the image 𝐼 (𝜖, 𝑀) of 𝜖 on 𝑀 .

DEFINITION 4. The bisector 𝛽(𝑐𝑖 , 𝑐 𝑗 ) of two elements 𝑐𝑖 and 𝑐 𝑗 is the locus of points equidistant from 𝑐𝑖 and
𝑐 𝑗 . The bisector 𝛽(𝑍,𝑄) of two sets of elements 𝑍 and 𝑄 is defined to be the locus of points equidistant from
𝑍 and𝑄, where the distance 𝜔(𝜖, 𝑍) between a point 𝜖 and a set of elements 𝑍 is defined to be min𝑐∈𝑍 𝜔(𝜖, 𝑐).
The bisector 𝛽(𝑐𝑖 , 𝑐 𝑗 ) is said to be oriented if a direction is imposed upon it so that elements 𝑐𝑖 and 𝑐 𝑗 lie to
the left and the right of it, respectively. An oriented bisector 𝛽(𝑍,𝑄) is defined similarly.

Utilizing these four definitions, we can easily establish edges among spaces or obstacles, which uses the equidis-
tant to create an optimal edge that lies directly between the two spaces. As seen in the above definitions, we
can also create edges between irregular-shaped spaces and obstacles.

To characterize the GVD, we expect the robot to be operated at a point within the workspace, a 𝑊 , which is
populated by convex obstacles 𝐶1, ..., 𝐶𝑛. Non-convex obstacles are displayed as the union of convex shapes.
The distance between a point and an obstacle is the minimal distance between the point and all points of the
obstacle. The distance function, and its “gradient” are represented as:

𝑑𝑖 (𝑥) = 𝑚𝑖𝑛𝑐0∈𝐶𝑖 ‖𝑥 − 𝑐0‖ (2)
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Figure 3. Details of the Adjacent Node Selection (ANS) algorithm. (A) The IPSO-based connection path planning in the search range. (B)
The search range determination and node selection inside. (C) The final generated path with the minimum path length.

∇𝑑𝑖 (𝑥) =
𝑥 − 𝑐0

‖𝑥 − 𝑐0‖
(3)

where in Equation (2) 𝑑𝑖 is the distance to obstacle 𝐶𝑖 from a point 𝑥, and in Equation (3) ∇𝑑𝑖 (𝑥) is the unit
vector in the direction from 𝑥 to 𝑐0, where 𝑐0 is the closest point to 𝑥 in 𝐶𝑖 . The essential structure block of the
GVD is the arrangement of points equidistant to two sets 𝐶𝑖 and 𝐶 𝑗 , with the end goal that each set in this set
is the minimal distance to the obstacles 𝐶𝑖 and 𝐶 𝑗 than other obstacles. This type of structure is known as the
two-equidistant face,

𝑓 (𝑖, 𝑗) =

𝑥 ∈ R𝑚 : 0 ≤ 𝑑𝑖 (𝑥) = 𝑑ℎ (𝑥)

∀𝑑𝑖 ≠ 𝑖, 𝑗
∇𝑑𝑖 (𝑥) ≠ ∇𝑑 𝑗 (𝑥)

(4)

Each face has a co-dimension in the ambient space, which causes the two-equidistant faces to be seen as one-
dimensional. The intersection of both faces forms the GVD and is denoted by the following equation:

𝐺𝑉𝐷 =
𝑛−1∪
𝑖=1

𝑛∪
𝑗=𝑖+1

𝑓 (𝑖, 𝑗) (5)

3. ADJACENT NODE SELECTION ALGORITHM
The details of the adjacent node selection algorithm are shown in Figure 3. Within the search range obtained,
we applyIPSO-based path planning algorithm to generate the connection path from the waypoint to all the
potential nodes in the range. The connection path is planned in the grid-based map as shown in Figure 3A.
The search range in the larger map is shown in Figure 3B, which is also a part of Figure 6. Finally, with the
formation of a collision-free path to the adjacent nodes from the two waypoints, we obtain the optimal path
selection by calculating the overall path lengthL𝑐 +L𝑒 .

To show the necessity of IPSO-based path planning fromwaypoints to adjacent nodes, a more specific scenario
is shown in Figure 4. In Figure 4A, all straight lines connecting nodes and waypoints are separated by obstacles.
Among them, points 𝑖 and point 𝑗 are located in our search range. If we only rely on the Euclidean distance
between node and waypoint, it can be found that the point 𝑖 is closer to the waypoint. However, after consid-
ering the path with obstacle avoidance, the path for point 𝑖 to the waypoint is longer. To sum up, the obtained
search range with ANS algorithm and the IPSO-based path planning algorithm can reduce the computational
cost while ensuring a short and safe trajectory. The details of the procedure are described in Algorithm 2.
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Figure 4. Illustration of ANS method within a more specific sense, where an obstacle obstructing the connection path. (A) The multiple
connection paths have been obstructed by the obstacles. (B) It selects the nodes in the defined range. (C) It conducts IPSO point-to-point
algorithm to achieve the optimal path to the selected node.

Figure 5. Illustration of the ANS algorithm analysis. (A) From Figure 11 it is enclosed by a pink dashed box. (B) From Figure 13 it is enclosed
by a pink dashed box.

We carry out further discussions on our proposed ANS algorithm. Figure 5A and Figure 5B are parts of
Figure 11 and Figure 13 (enclosed in pink dashed boxes), respectively. As shown in Figure 5A, the solid circles
represent the search radius of the waypoints in the simulation and the red solid dots depict the nodes in the
workspace. In Figure 11, we end up with the trajectory that follows the generated safe-aware road. However, if
the space in the map is more sparse, our search radiusRmay increase toR′, whichmay achieve the waypoints
in their respective search spaces. Thus, instead of following the safe-awareness road, a new connection path is
obtained through the improved PSO algorithm directly, as shown in dashed lines in Figure 5A. Moreover, the
sparseness of the overall workspace may not represent the complexity of local obstacles. Therefore, the choice
of the radius of the search space may require more mathematical proof and analysis.

With the increasing radius of the potential search range, more nodes are applicable for selection, such as the
nodes connected with dashed lines in Figure 5B. Enlarging the search space may avoid some unnecessary
detours and give a shorter path. Therefore, the trade-off between path length and safety of the autonomous
robot still requires more consideration.
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4. IMPROVED PSO-BASED MULTI-WAYPOINT NAVIGATION
The particle swarm optimization (PSO) algorithm is a swarm-based bio-inspired algorithm based on the be-
havioral observation of birds. It uses an iterative methodology to optimize randomly initialized particles to
define a path from the initial position to the goal [27]. In this section an improved PSO (IPSO) algorithm by
introduction of a weighted particles is addressed to resolve the multi-waypoint sequence issue.

4.1. Multiwaypoint visiting sequence
In real-world scenarios, one important factor is that the GPS coordinates provide portions for themultiple way-
points. Traveling from one waypoint to another, the distance between them determines their associated cost.
The primary purpose of traveling fromonewaypoint to another is to simultaneously find theminimal cost of all
generated trajectories. Using the coordinates of each waypoint and the PSO algorithm, the minimal-distance
path can be found within the environment. The PSO algorithm finds the best waypoint visiting sequence by
initializing randomized particles. The algorithm denotes the local best position as 𝑥𝑏 and the global best posi-
tion as 𝑥𝑔 . Then by taking advantage of a fitness function, the algorithm guides each particle towards the local
and global best positions. The particle velocities are updated as follows:

𝑣𝑝 (𝑡 + 1) = 𝑣𝑝 (𝑡) + 𝛼1𝜔1 [𝑥𝑏𝑝 (𝑡) − 𝑥𝑝 (𝑡)] + 𝛼2𝜔2 [𝑥𝑔𝑝 (𝑡) − 𝑥𝑝 (𝑡)] (6)

𝑥 (𝑡+1)𝑝 = 𝑥 (𝑡)𝑝 + 𝑣 (𝑡+1)𝑝 (7)

where, 𝑣𝑝 (𝑡) represents the velocity of particle 𝑝 at instant 𝑡, 𝑥𝑝 (𝑡) is the position of particle 𝑝 at instant 𝑡, 𝛼1 and
𝛼2 are the positive acceleration constants used to scale the contribution of cognitive and social components. 𝜔1
and 𝜔2 are the uniform random number between 0 and 1. 𝑥𝑏𝑝 (𝑡) is the best position the particle 𝑝 achieved up
to instant 𝑡 at current iteration, 𝑥𝑔𝑝 (𝑡) is the global position that any of 𝑝’s neighbors has reached up to instant
𝑡. However, if a particle 𝑝𝑖 lies close to the 𝑥𝑏𝑝 (𝑡) and 𝑥

𝑔
𝑝 (𝑡), only one term guides the 𝑝𝑖 to search the potential

solution.The optimization process in our navigation issue is more likely trapped in local minima. Thus, an
improved PSO algorithm is utilized to provide a more promising search direction for all particles during the
optimization process.

𝑥𝑤 =
𝑃∑
𝑖=1

�̄�𝑤𝑖 𝑥
𝑏
𝑖 (𝑡) (8)

�̄�𝑊𝑖 =
�̂�𝑊𝑖∑𝑃
𝑗=1 �̂�

𝑊
𝑖

(9)

�̂�𝑊𝑖 =
max1≤𝑘≤𝑀

(
F

(
𝑥𝑏𝑘 (𝑡)

))
−F

(
𝑥𝑏𝑖 (𝑡)

)
+ 𝜀

max1≤𝑘≤𝑀
(
F

(
𝑥𝑏𝑘 (𝑡)

))
−min1≤𝑘≤𝑀

(
F

(
𝑥𝑏𝑘 (𝑡)

))
+ 𝜀

, 𝑖 = 1, 2, . . . , 𝑀, (10)

where 𝜀 is a positive constant, �̂� is the weighted constant of each particle. F(·) is the fitness function. The
worst and the best fitness values of all personal best particles are represented by max1≤𝑘≤𝑀 (F

(
𝑥𝑃𝑘

)
) and

min1≤𝑘≤𝑀 (F
(
𝑥𝑃𝑘

)
), respectively. The order is optimized through this method, in which each waypoint is

visited. A sequence of particles are initialized to compose a population in the original PSO algorithm. A possi-
ble optimal solution to an optimization issue in our multi-waypoint sequence is discovered by one particle in
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the PSO. This particle indicates a possible optimal solution to the multi-waypoint navigation issue and moves
to explore an optimal solution in a certain search space. In this paper, a weighted particle is introduced into
a swarm to suggest a more reasonable search direction for all the particles. As a result, the best position of
particle and neighbor guides the particle to move along the corrected direction for better covergence.

The multi-waypoint visiting sequence problem can be used to solve the transportation planning problem and
Covid-19 disinfection robot path planning in hospitals, in which agents (vehicles) need to be delivered as well
as the overall cost and time need to be minimized [14]. The algorithm of the improved PSO to finding multi-
waypoint visiting sequence is explained in Algorithm 1. The objective of the algorithm is to minimize the total
trajectory length of Cartesian coordinates (𝑋𝑛, 𝑌𝑛) of waypoints given.

In the IPSO model the P𝐴 represents the particle agent, which is denoted by the P𝐴 : {P𝑏 , P𝑔 , N}. N holds
a group of particle agents which are predetermined as neighbors of P𝐴. The P𝐴 are defined by the following
parameters.

(1) Each P𝐴 requests each neighbor’s current personal best location.
(2) Each P𝐴 returns its current personal best to neighbors.
(3) Obtains the center location of each surrounding cluster.
(4) Determines if the current position has been visited.
(5) Determines if current position is optimal if not record current position.

EveryP𝐴 obtains a set of neighbors of positions during the initial setup. Utilizing a variety of topologies one can
create numerous properties of neighboring particle agents to obtain better performance. Within the proposed
model, we assume that each P𝐴 has a static set of neighbors. Each P𝐴 keeps track of its local best solution,
P𝑏 , which is where a solution closest to the optimal solution is found in the problem space, while the global
best solution is recorded in the parameter P𝑔 . During each iteration the P𝐴 evaluates its current position and
determines if it needs to perform a fitness evaluation, while simultaneous checking if the termination criteria
has been met. If the termination criteria have not been met then it updates its P𝑏 , obtains the neighbor’s P𝑏
and calculates the P𝑔 , and marks the current position as visited.

4.2. Safetyaware IPSO multiwaypoint path planning
To ensure the robot safely reaches the waypoints via the planned visiting sequence, the safety-aware road is
selected to guide the autonomous robot. Nevertheless, there is a problem with the connection path from the
location of the waypoints to safety-aware roads. When we integrate the position information of a waypoint
in the workspace, it may be necessary to obtain the collision-free connection path length from the waypoint
to all nodes, which is computationally expensive. As shown in Figure 6A, with N nodes obtained in the
workspace, there are N possible connection paths from the waypoints to the nodes in the workspace. With
the initialN ×N adjacent distance matrix obtained from GVD graph and the increasingM waypoints in the
workspace, the size of new distance matrix is expanded to (N +M) × (N +M). Since most of the connection
path computations are unnecessary, a new adjacent node selection (ANS) algorithm is proposed to reduce the
computational effort by restricting the search space in local regions rather than the entire working region.

The local regions are shown in Figure 6B, and the dark blue nodes, such as 𝛼 and 𝛽 nodes in the regions,
are potential adjacent nodes to connect. The radius R of the local area shall be determined by the potential
workspace, which determines the number of nodes in the search range. For instance, in an area with clustered
obstacles, there are many nodes in the environment; thus, the search radius may be small. However, In an area
with sparse obstacles, there are fewer nodes in the environment; thus, the search radius needs to be larger to
include all potential nodes.

Since the entire workspace is projected through the GVD graph, we can interpret the sparseness of the entire
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Algorithm 1: Improved PSO (IPSO) algorithm for waypoint sequencing
Initialize a population of particles
Set the size of the swarm to 𝑆𝑝 , the maximum number of iteration 𝑇𝑚𝑎𝑥 .
for i=1 to 𝑆𝑝 do

Initialize 𝑋𝑖 within the search range of (𝑋𝑚𝑖𝑛,𝑋𝑚𝑎𝑥) frandomly;
Initialize 𝑉𝑖 within the velocity range of (𝑉𝑚𝑖𝑛,𝑉𝑚𝑎𝑥) randomly;
𝑃𝑖 = 𝑋𝑖 ;

end
Evaluate each 𝑥𝑝 ;
Identify the best position 𝑃𝑔 ;
while (a stop criterion is not satisfied & t < 𝑇𝑚𝑎𝑥) do

for p=1 to 𝑆𝑝 do
Update 𝛼1 and 𝛼2 by Equation (8), Equation (9), and Equation (10);
𝑥𝑤=

∑𝑃
𝑖=1 �̄�

𝑤
𝑖 𝑥

𝑏
𝑖 (𝑡)

end
; // The sum of particle weights

�̄�𝑊𝑖 =
(
�̂�𝑊𝑖 /

∑𝑃
𝑗=1 �̂�

𝑊
𝑖

)
; // Average the weights together

�̂�𝑊𝑖 =
max1≤𝑘≤𝑀 (F(𝑥𝑏𝑘 (𝑡)))−F(𝑥𝑏𝑖 (𝑡))+𝜀

max1≤𝑘≤𝑀 (F(𝑥𝑏𝑘 (𝑡)))−min1≤𝑘≤𝑀 (F(𝑥𝑏𝑘 (𝑡)))+𝜀
; // Calculate the weights of each

particle
𝑣𝑝(t+1)=𝑣𝑝(t)+ 𝛼1 𝜔1 [ 𝑥𝑏𝑝(t)-𝑥𝑝(t)]+ 𝛼2 𝜔2 [ 𝑥𝑔𝑝(t)-𝑥𝑝(t)]; // Update the fitness

value for each particle
𝑥𝑡+1𝑝 = 𝑥𝑡+1𝑝 + 𝑉 𝑡+1𝑝 ; // Add the fitness value to the particle position
𝑥𝑏,𝑡+1𝑝 = 𝑥𝑏,𝑡𝑝 ; // Store the initial local best position
𝑥
𝑔,𝑡+1
𝑝 = 𝑥𝑔,𝑡𝑝

end
; // Store the initial global best position
EvaluateF(𝑥𝑡+1𝑝 );
if F(𝑥𝑏,𝑡+1𝑝 ) < F(𝑥𝑡+1𝑝 ) then

Update 𝑥𝑔,𝑡+1𝑝 ; // Update the new local best position
end
if F(𝑥𝑔,𝑡+1𝑝 ) < F(𝑥𝑏,𝑡+1𝑝 ) then

Update 𝑥𝑔,𝑡+1𝑝 ; // Update the new global best position
end

workspace through the distance of the edge list E. Nevertheless, some edge distances cannot represent the
sparseness of the entire workspace, such as the edges enclosed by the red dotted line in Figure 6B.
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Figure 6. Illustration of the Adjacent Node Selection (ANS) algorithm. (A) The workspace with nodes, edges and waypoints. (B) The node
selection in the search range. (C) The final generated path.

Therefore, to exclude these extraneous edges of distance, we sort the entire edge list before removing the lowest
10%. The radiusR of the search range is defined as the average of the remaining edge distance. After obtaining
the nodes in the search environment, we plan a collision-free trajectory from the current waypoint to reach
each node through the IPSO algorithm.

The IPSO navigation algorithm is initiated in the search range to obtain the optimal path. The local search
region is interpreted into grid-based map, where the obstacle areas are inaccessible grids in the workspace.
Dijkstra’s algorithm is utilized as a local search algorithm and the cost function within the model. For graph-
based maps, they must be a method for traveling from one node to another utilizing the edges within the
graph. One method of this is Dijkstra’s algorithm, which utilizes a weighted graph to determine the shortest
path from a source node to a target node. The algorithm also keeps track of the known shortest distances from
each node while simultaneously updating their weights to improve the overall shortest path from each node.
By recursively establishing a path with random solutions generated in the workspace, the IPSO algorithm can
construct the collision-free path with the least fitness value, which also represents the path with minimum
length. Therefore, the length of the connecting pathL𝑐 can be obtained, and by combining the length of the
GVD pathL𝑒 , the optimal safety-aware trajectory is obtained as shown in Figure 6C.

To effectively reduce and smooth the overall path from each waypoint to the waypoint, various methods have
been developed to achieve this goal, for example, the B-spline curve, which works by taking a set of points
that are used to curve sharp close turns around obstacles and is very effective and thus widely used in smooth
polylines, due to its closed-form expression of the position coordinates. The original methodology of the B-
spline curve method, in some cases, changes the trajectory of the original path created by the global navigation
system. The problem can be mediated by implementing the piecewise B-spline method, which only smooths
the path around each obstacle. Lei et al. evaluated the effectiveness of the improved B-spline method, and
ultimately found that the hybridmethod was able to reduce the overall all path in point-to-point navigation [38].
The B-spline curve can be defined by a cardinal functions 𝐿 𝑗 ,𝑟 (𝑞), control points 𝐵 𝑗 and degree (𝑟 −1), which
is given by the following equations.

𝐾 (𝑞) = ∑
𝐿 𝑗 ,𝑟 (𝑞)𝐵 𝑗 (11)

where 𝐵 𝑗 = [𝐵 𝑗𝑥 , 𝐵 𝑗 𝑦] are the (𝑛+1) control points and a knot vector 𝑢. 𝑁𝑖,𝑘 (𝑢) are the basic functions, which
are defined recursively as follows:

𝐿 𝑗 ,𝑟 (𝑞) = (𝑞−𝑥 𝑗 )
𝑥 𝑗+𝑟−1−𝑥 𝑗 𝑁 𝑗 ,𝑟−1(𝑞) + (𝑥 𝑗+𝑟−𝑞)𝑥 𝑗+𝑟−𝑥 𝑗+1 𝑁 𝑗+1,𝑟−1(𝑞) (12)
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Figure 7. Illustration of the B-spline function. (A) The improved segmented B-spline curve. (B) The same path smoothed by the fundamen-
tal B-spline and the improved B-spline function.

𝐿 𝑗 ,𝑟 (𝑞) =
{

1, 𝑞 𝑗𝑞 𝑗 ≤ 𝑞 ≤ 𝑞 𝑗+1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

; 𝑞 ∈ [0, 1] (13)

Geometric continuity 𝐺2 is the metric used to evaluate smoothing methods, which is defined by the tangent
unit and curvature vector at the intersection of two continuous segments [38] [Figure 7A]. To achieve 𝐺2 con-
tinuity, the control points 𝐵 𝑗 of B-spline curve to the path point, 𝑌 𝑗 , is defined as

𝐵1 = 𝑌 𝑗 − (1 + 𝑣)𝑠2𝑞 𝑗−1
𝐵2 = −𝑠2𝑞 𝑗−1
𝐵3 = 𝑌 𝑗
𝐵4 = 𝑌 𝑗 + 𝑠2𝑞 𝑗
𝐵5 = 𝑌 𝑗 + (1 + 𝑣)𝑠2𝑞 𝑗−1

(14)

where 𝑐 is smoothing length ratio 𝑣 = 𝑠1/𝑠2, and 𝑞 𝑗−1 defines the unit vector of 𝑌 𝑗−1𝑌 𝑗 . 𝑞 𝑗 represents the unit
vector of the line 𝑌 𝑗𝑌 𝑗+1. The combined sum of 𝑠1 and 𝑠2 is the smoothed length. The half of the corner angle
is denoted as: Γ = 𝛽/2. Using a knot vector of [0, 0, 0, 0, 0.5, 1, 1, 1, 1], the smoothing error distance 𝜖 and
maximum curvature 𝐾𝑚𝑎𝑥 within the smooth path can be expressed as:

𝜖 = 𝑠2 sinΓ
2 (15)

𝑅𝑚𝑎𝑥 = 4 sinΓ
3𝑠2 cos2 Γ (16)

Using the previous equations the smoothing error distance 𝜖 can be defined by the existingmaximumcurvature
𝑅𝑚𝑎𝑥 given by the robot:

𝜖 = 2 tan2 Γ
3𝑅𝑚𝑎𝑥

(17)

The improved B-spline model has specific advantages over the basic B-spline model, one of which is its ability
to smooth many different trajectories with various angles, as seen in Figure 7B.The curve produced by the im-
proved B-spline model is significantly closer to the original path than the original model. When considering
the constraints of the robot, the improved B-spline mode performs better in various degrees of angles. The
overall advantages of the improved B-spline model are as follows:

(1) The path generated is tangent and curvature continuity, so that the robot can have a smooth steering com-
mand, which can correct any discontinuity of normal acceleration and establish a safer path for the robot to
follow.
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(2)The improved model generates a better curve by solely affecting the two lines within the corner of the orig-
inal trajectory. Each curve generated affects others within the lines.

(3)The improvedmodel easily adjusts to the smoothed path based on the environment constraints or the robot.

Algorithm 2: Pseudocode for the adjacent node selection (ANS) algorithm
Input: Edge list E,N nodes coordinates (N𝑥 ,N𝑦),N ×N distance matrixD and the location of the

waypoint 𝛼, (𝛼𝑥 , 𝛼𝑦) and the waypoint 𝛽, (𝛽𝑥 , 𝛽𝑦).
Output: The path length of the trajectoryL𝑡

𝑁𝑒 = 𝑠𝑖𝑧𝑒(E); // Number of the edges in the workspace
[E𝑠, 𝑠𝑜𝑟𝑡𝐼𝑛𝑑] = 𝑠𝑜𝑟𝑡 (E); // Sort the edge list from low to high
𝑁𝑠 = d𝑁𝑒

10 e; // Exclude 10% of extraneous edge distance
E𝑡 = 0;
for i = 𝑁𝑠 : 𝑁𝑒 do

E𝑡 = E𝑡 +E𝑠 (𝑖);
end
R = E𝑡

𝑁𝑒−𝑁𝑠
; // The radius of the search range

for j = 1 : N do
if (N 𝑗 ,𝑥 ,N 𝑗 ,𝑦 in range ofR from 𝛼𝑥 , 𝛼𝑦) then

A𝛼 = [A𝛼;N 𝑗 ,𝑥 ,N 𝑗 ,𝑦]; // Add the potential adjacent nodes of
waypoint 𝛼 in the list

end
if (N 𝑗 ,𝑥 ,N 𝑗 ,𝑦 in range ofR from 𝛽𝑥 , 𝛽𝑦) then

A𝛽 = [A𝛽;N 𝑗 ,𝑥 ,N 𝑗 ,𝑦]; // Add the potential adjacent nodes of
waypoint 𝛽 in the list

end
end
𝑁𝛼 = 𝑠𝑖𝑧𝑒(A𝛼); 𝑁𝛽 = 𝑠𝑖𝑧𝑒(A𝛽); // Number of the points in the search range
Apply IPSO-based path planning algorithm;
Obtain the length of the connection pathL𝛼 andL𝛽 in the search range;
L𝑡 = ∞;
for 𝑎 = 1 : 𝑁𝛼 do

for 𝑏 = 1 : 𝑁𝛽 do
L𝑡𝑒𝑚𝑝 = L𝛼 (𝑎) +D(N𝛼,𝑎 ,N𝛽,𝑏) +L𝛽 (𝑏); // Calculate the total path

end
if L𝑡 > L𝑡𝑒𝑚𝑝 then

L𝑡 = L𝑡𝑒𝑚𝑝 ; // Achieve the minimum path length
end

end

5. REACTIVE LOCAL NAVIGATION
A crucial aspect in developing a multi-waypoint model is accounting for moving and unknown obstacles [39,40].
In a real-world setting, not all objects are static and known. To develop a more efficient model, we propose the
use of a local navigator to remedy this issue.

In order to avoid dynamic and unknown obstacles, the proposed model employs the Vector Field Histogram
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Figure 8. Illustration of how the VHF uses a probability along with histogram-based grid to detect and build a map simultaneously.

Figure 9. Robot sensor configuration for multi-waypoint navigation and mapping.

(VFH) model as a reactive local navigator. An autonomous robot uses a velocity command to and from each
waypoint, provided by the local navigator [41]. By applying the VFH to the overall global trajectory with a
sequence of markers, the path can be broken down into various segments to improve the efficiency in obstacle-
populated workspaces. The local navigator builds a map depicting the free space and obstacles in the map by
utilizing a 2D histogram grid with equally sized cells [42]. As the robot follows the generated trajectory within
the workspace, the map is simultaneously built, shown in Figure 8. In developing an autonomous obstacle
avoidance model, concurrent map building and navigation are crucial. The robot pose (𝑋,𝑌,𝑌𝑎𝑤) is used
to determine the map building. Thus, the precise registration of the built local map as a part of the global
map can be carried out. This map building aims to construct an occupancy-cell-based map. The values for
each cell in the map vary over the range [-127, 128] [42]. The initial value is zero, which indicates that the cell
is neither occupied nor unoccupied. The value is 128 if one cell is occupied with certainty and -127 if one
cell is unoccupied with certainty. The values falling into (-127, 128) express contain a level of certainty in
the range. When the VFH model is employed in conjunction with the GVD and IPSO algorithm, the robot
can be successfully navigated through our built map with obstacle avoidance. In combination with our local
navigator, a sensor configuration can be developed for the local navigator to perform it. In Figure 9 one can
see the overview of our sensor configuration. The proposed configuration utilizes a 270-degree SICK LMS
LiDAR sensor to detect obstacles within a range of 20 m @ 0.25-degree resolution. The LiDAR sensor scans at
a rate of 25Hz. Then, it needs a method of finding our current position and the waypoints within the map. A
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Table 1. Comparison of minimum path length, average path length, STD of path length, minimum time, average time and STD of time
with other models. The parameter for the test of each model was: 100 initialized particles, 10 runs per data set, and a maximum of 10
minutes per run

Datasets Model Min length (𝑚) Average length (𝑚) Length STD (𝑚) Min time (𝑠) Average time (𝑠) Time STD (𝑠)

Ch150

Proposed model 1.67E+04 1.77E+04 5.99E+02 1.75E+04 1.31E+01 6.09E-02
ACO 1.84E+04 2.23E+04 4.40E+03 1.67E+04 1.76E+02 1.32E+00
GA 4.22E+04 5.04E+04 5.38E+03 1.79E+04 1.39E-02 1.25E-03
SA 2.47E+04 3.05E+04 4.11E+03 1.75E+04 6.51E+00 7.25E-01

GWO 3.23E+04 3.66E+04 2.64E+03 5.78E-01 9.39E-01 1.73E-01
SOM 4.26E+04 4.70E+04 2.932E+03 1.84E+03 2.26E+03 1.77E+02
ICA 3.29E+04 3.50E+04 9.34E+02 1.55E+03 2.04E+03 1.79E+02

KroA200

Proposed model 1.09E+05 1.17E+05 5.50E+03 2.15E+01 2.15E+01 9.73E-02
ACO 1.30E+05 2.81E+05 4.09E+05 2.44E+02 5.17E+02 8.36E+02
GA 2.39E+05 2.57E+05 1.15E+04 1.21E-02 1.54E-02 4.45E-03
SA 1.96E+05 2.13E+05 1.18E+04 6.27E+00 6.62E+00 8.70E-01

GWO 2.17E+05 2.40E+05 1.24E+04 1.12E+00 1.45E+00 3.68E-01
SOM 2.13E+05 2.60E+05 2.192E+04 5.49E+03 2.60E+05 2.31E+04
ICA 2.12E+05 2.60E+05 6.671E+03 3.22E+02 6.81E+02 1.38E+02

PR299

Proposed model 2.77E+05 2.89E+05 5.92E+03 4.28E+01 4.29E+01 6.06E-02
ACO 3.37E+05 4.33E+05 4.82E+04 2.09E+02 2.37E+02 1.41E+01
GA 3.19E+05 3.44E+05 1.17E+04 3.24E-02 3.38E-02 8.43E-04
SA 5.26E+05 5.59E+05 1.94E+04 6.27E+00 6.52E+00 6.68E-01

GWO 2.90E+05 3.90E+05 8.15E+04 6.71E+01 8.00E+01 7.51E+00
SOM 2.72E+05 3.15E+05 6.34E+04 4.25E+03 4.75E+03 3.45E+02
ICA 4.81E+05 4.96E+05 1.34E+04 2.70E+03 2.81E+03 7.60E+01

PA561

Proposed model 1.11E+05 1.14E+05 1.60E+03 1.41E+02 1.42E+02 3.65E-01
ACO — — — — — —
GA 1.37E+05 1.93E+05 6.30E+04 9.36E-02 9.57E-02 2.19E-03
SA 1.88E+05 1.92E+05 2.07E+03 6.27E+00 6.42E+00 4.29E-01

GWO 3.02E+05 4.21E+05 5.94E+04 7.64E+01 8.26E+01 2.21E+00
SOM 1.01E+05 1.21E+05 1.84E+04 1.1E+01 8.19E+02 3.94E+02
ICA 1.48E+05 1.51E+05 2.43E+03 1.22E+03 2.04E+03 1.79E+02

Novatel’s ProPak-LB Plus DGPS sensor is utilized to obtain our current position and how it correlates to the
coordinates of each waypoint. Next, a PNI TCM6 digital compass is employed to establish our heading with an
accuracy of 0.5 degrees. The sensor updates at 20Hz, which allows the robot to operate efficiently. Lastly, the
configuration utilizes an AVT Stingray F-080C 1/3” CCD camera, which enables our robot to sense obstacles of
various heights, shapes and sizes. The stingray camera is perfect for robot vision because it uses the IIDC IEEE
1394B protocol to transfer images. The system needs a computer system to house our operating system, sensor
data, and programs for the robot. In this portion of the sensor configuration, a MackBook Pro i s equipped to
suit our needs. The last step in the process is to establish a method of communication from the sensors to the
computer systems. A sort of UART to USB hub is utilized for this purpose and fuses the sensor data together
without losing any sensor information. The type of sensor confusion can be used on most ground-based robot
systems for indoor and outdoor use.

6. SIMULATION AND COMPARISON STUDIES
In this section, simulation and comparison studies are performed to illustrate the value and vitality of the
proposed model. In the first experiment, simulations are conducted using a well-known Traveling Salesman
Problem (TSP) based data set, and results are compared with other heuristic-based algorithms. The proposed
model is thoroughly evaluated in the second experiment through a comparison study using a similar model
proven to work effectively for multi-waypoint navigation.

6.1. Comparison studies with benchmark datasets
To show the effectiveness of our IPSO waypoint sequencing model, a comparison study was conducted with
well-known TSP data sets and various heuristic-based algorithms. The employed datasets and algorithms are
as follows: (a) 561-city problem by Kleinschmidt (pa561); (b) 299-city problem by Patberg/Rinaldi (pr299);
(c) 200-city problem A, by Krolik/Felts/Nelson (kroA200); and (d) 150-city problem by Chur Ritz (ch150).
The selected datasets have been verified and widely used to prove the validity of multi-waypoint sequencing
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Table 2. An illustration of the number of nodes, distance, and time spent traversing with the map to each waypoint

Model Nodes Distance Time spent (𝑠)
Zhang’s model before node reduction 242 271.1 2.25
Zhang’s model after node reduction 24 253.4 0.66
Proposed model 38 277.7 0.40

Figure 10. Illustration of the path created from the othermodels [43]. (A) It depicts the path created byZhang et al.’smodel by the green lines
(redrawn by Zhang et al., 2021 [43]). (B) It represents the proposed method point order and traversed path. The point order is illustrated by
the violet arrows, while the orange path represents the robot path. Safety-aware roads are depicted by the blue dashed lines. Thewaypoints
are illustrated by the violet circles.

models. The Simulated Annealing (SA) algorithm, Grey Wolf Optimization (GWO) algorithm, Ant Colony
Optimization (ACO) algorithm, Genetic Algorithms (GA), Imperialist Competitive Algorithm (ICA), and Self-
Organizing Maps (SOM) were chosen as the heuristic-based algorithms used in the comparison studies. The
ICA algorithm is a biologically inspired algorithm by the human, which simulates the social-political process of
imperialism and imperialistic competition. The SOM algorithm is similar to a typical artificial neural network
algorithm, except it utilizes a competitive learning process instead of backpropagation that utilizes gradient
descent.

Heuristic-based algorithms have similar attributes; due to this feature, the same parameters can be used to
construct a stable comparison study for our proposed IPSO algorithm. The conducted comparison studies
focus on six key attributes such as: min length (𝑚), average length (𝑚), length standard deviation (𝑚), min
time (𝑠), average time (𝑠), and time standard deviation (𝑠). The variance between each algorithm can be seen by
assessing each parameter. The above analyses show how effective the IPSO model can generate the minimum
overall global trajectory in Table 1. The global trajectory generated by the compared algorithms is notably
larger than the IPSO model. However, regarding the time aspect, the IPSO model was unable to achieve the
shortest time. The significance of the proposedmodel can be seen in the STD evaluation parameter. The results
of the comparison studies more than show the validity and performance of the proposed model to discover
the optimal waypoint visiting sequence.

6.2. Model comparison studies
The compared models were developed to address the issues of multi-waypoint navigation and mapping in
various applications. Each model uses some variation of a global navigation system in combination with an
obstacle avoidance technique. The models were selected based on their map configuration and overall effi-
ciency in solving the multi-waypoint navigation problem. Our comparison studies analyze the number of
nodes, the trajectories produced, and the total time to fulfill the fastest route.
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Figure 11. Illustration of the path created from the other models [44]. (A) It depicts the path created by Asl and Taghirad model by the green
lines (redrawn by Asl and Taghirad, 2019 [44]). (B) It represents the proposed method point order and traversed path. The point order is
illustrated by the violet arrows, while the orange path represents the robot path. Safety-aware roads are depicted by the blue dashed lines.
The waypoints are illustrated by the violet circles.

Figure 12. Illustration of the path created from the compared models [45]. (A) It depicts the path created by Zhuang et al.’s model by the
green lines (redrawn from Zhuang et al., 2021 [45]). (B) It represents the proposed method point order and traversed path. The point order
is illustrated by the violet arrows, while the orange path represents the robot path. Safety-aware roads are depicted by the blue dashed
lines. The waypoints are illustrated by the violet circles.

It is clear that thewaypoint order and paths obtained by eachmodel are created in an obstacle-free environment,
as illustrated in Figure 10A.The length created by the Zhang’s model was 240.84m, while the proposed model
produced a shorter trajectory of 219.99m. This is due to the founded waypoint orders in the environment. In
Zhang’s comparison study, the proposed model establishes more nodes, and the overall path is expanded by
1.09%, but the proposed model generates a solution 6.1% faster than the compared model. Zhang’s proposed
model has to utilize a node selection algorithm to establish its shortest path, while the proposed model does
not. Due to this feature, the compared model was evaluated before this crucial step and discovered that the
nodes established were vastly greater than the proposed model, as seen in Table 2. Considering this factor, the
proposed model can surpass and outperform Zhang’s model. Asl and Taghirad aimed to solve the multi-goal
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Figure 13. Illustration of the path created from the compared models [46]. (A) It depicts the path created by Vonásek’s model shown by
the green lines (redrawn from Vonásek and Pe�nic�ka, 2019 [46]). (B) It represents the proposed method point order and traversed path. The
point order is illustrated by the violet arrows, while the orange path represents the robot path. Safety-aware roads are depicted by the blue
dashed lines. The waypoints are illustrated by the violet circles. (C) It depicts how the B-spline curve is applied to the known path, which
smooths and reduces the path for a local navigator to traverse.

Figure 14. Illustration of the scenario in Figure 13 navigation and mapping simulation. (A) It depicts the robot traversing a majority of the
map, while avoiding obstacles in the environment. (B) It illustrates a polar histogram and how the obstacles are viewed while the robot is
in motion, as well as points of high impact. The obstacles are viewed as lines since the LiDAR sensor can only see the part of the object
that faces the LiDAR sensor. The picked direction portion of part (B) depicts the probability of colliding with obstacles while also selecting
the best direction to move the robot. (C) It demonstrates the map being simultaneously built as the the robot traverses the established
trajectory.

navigation problem by developing a traveling salesman problem in the belief space [44].

From Figure 11, one can see the established path using both Asl’s method as well as the method proposed
in this paper. The method proposed by Asl and Taghirad has the advantage of creating a shorter path but
requires a greater number of nodes than the proposed method. Figure 12 depicts the model comparison
between Zhuang et al.’s model and the proposed method [45]. The simulation studies reveal that the proposed
model had an increased length of approximately 0.05% over Zhuang et al.’s model. Once the compared model
requires a greater number of nodes to complete its multi-waypoint navigation, another key point from this
comparison is the path created from Zhuang et al.’s model and the proximity to the obstacles in the map. In
a real-world environment, the robot could obtain server damage or cause an accident if it is too close to the
surrounding obstacles [45]. The proposed method established an effective path without risking the robots well
being. Vonásek and Penicka [46] models had similar results to the previous models, with an increased length
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Figure 15. Illustration of the navigation and mapping ability of the proposed model. (A) The robot follows the generated trajectory and
detects obstacle boundaries by the LiDAR sensor. (B) The simultaneous map building and navigation capabilities of the proposed model.
(C) The fully generated trajectory and established map.

of approximately 0.05%, as seen in Figure 13. The two compared models have the same problem as Zhuang et
al.’ model [45]. The paths are excessively close to obstacles in the map and thus are not efficient for real-world
implementation.

In such an environment, it is very important to consider the robot safety because of the narrow paths created
being tightly packed with triangular shaped obstacles. Althoughmost of ourmodel comparison results showed
that the path constructed with the proposedmodel increased from the comparedmodels, we achieved our goal
of constructing safety-aware roads for robot safety and establishing an obstacle-free path.

From Figure 14, it is observed how the local navigator establishes a map through vision sensors such as LiDAR.
In Figure 14, it is obvious that the map in various stages is shown as the robot traverses along the generated
trajectory found in the Vonásek’s simulation [Figure 13] [46].

The robot is able to reconstruct the outer boundary of the obstacles through the LiDAR scan. These are depicted
as the poly-shaped figures with a rough background and a white center.

In Figure 15A, it is clear to see the original starting position as well as the planned trajectory, which was found
utilizing our proposed IPSO model. From the figures, one could observe fully and partly detected obstacles
as well as the outer boundary being detected. The map depicted in Figure 15 has a height and width of 60
𝑚. The dimensions of the robot are approximately 0.82 𝑚 long and 0.68 𝑚 wide. In Figure 15A, the robot
has successfully traversed one third of the map, while simultaneously avoiding the obstacles. In Figure 15B, it
illustrates the robot’s planned trajectory and the map being simultaneously constructed along the path. The
portions of the figure depicted in a yellow field are the built map sensed by the onboard sensors. Finally, in
Figure 15C, the robot has successfully visited each waypoint and reached its final destination, and it shows the
complete depiction of the map along the projected path.

7. CONCLUSION
We proposed an adjacent node selection (ANS) algorithm to find a node in the graph to connect waypoints.
This algorithm is utilized in the safety-awaremulti-waypoint navigation andmapping by an improved PSO and
GVD model.An IPSO-based multi-waypoint algorithm has been developed to define an order for waypoint
navigation. Through our proposed ANS algorithm, connections among the waypoints and the safety-aware
routes to reach multi-objective optimization can be created. The feasibility and effectiveness of our model by
conducting a benchmark test and model comparison studies and analyses have been demonstrated.
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