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Abstract
Effectivemanagement andmonitoring of radioactive sources are crucial to ensuring nuclear safety, human health, and
the ecological environment. Amulti-robot collaborative radioactive source search algorithm based on particle swarm
optimization particle filters is proposed. In this algorithm, each robot operates as amobile observation platform using
the latest observations to fuse into particle sampling. At the same time, the particle swarm optimization algorithm
moves the particle set to a high-likelihood area to overcome particle degradation. In addition, each particle can learn
from the search history of other particles to speed up the convergence of the algorithm. Lastly, the DynamicWindow
Approach (DWA) for dynamicwindowobstacle avoidance is used to avoid obstacles in complexmountainous terrains
to achieve efficient source search. Experimental results show that the search success rate of the proposed algorithm
is as high as 95%, and its average search time is only 3.43 s.

Keywords: Particle swarm optimization, particle filter, multi-robot, radioactive source search, DWA

1. INTRODUCTION
In modern industrialized societies, nuclear technology is widely used in energy, medical treatment, scientific
research, and other fields and has greatly contributed to human society. However, the International Atomic
Energy Agency (IAEA) annual data report for 2022 revealed 146 incidents of illegal or unauthorized activities
involving nuclear and radioactive materials [1]. Moreover, In March of 2023, a theft occurred in Salamanca,

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.intellrobot.com

https://creativecommons.org/licenses/by/4.0/
www.intellrobot.com
OAE
图章

https://orcid.org/0009-0001-4538-1455
https://orcid.org/0000-0002-4414-1484
http://crossmark.crossref.org/dialog/?doi=10.20517/ir.2023.38&domain=pdf


Page 2 of 13 Luo et al. Intell Robot 2023;3(4):485-97 I http://dx.doi.org/10.20517/ir.2023.38

Guanajuato, Mexico, involving four sources of iridium-192, each with varying radioactivity levels of 35.64, 7.61,
1.14, and 0.11 Ci, along with the truck used for their transportation. As a result, an alert that covered seven
central states was issued [2]. These activities pose serious consequences such as nuclear terrorism, radioactive
contamination, and harm to individuals, presenting significant challenges to the global development of nuclear
technology and nuclear safety.

Traditional source searchmethods for radioactive sources typically require significant human resources, which
could bemore efficient and pose considerable risks. In the early stages, robotic source detection involved using
nuclear radiation detectors in a specific area, utilizing least-squares [3] and geometric methods [4] to estimate
the location and intensity of the radiation source. For example, Howse et al. used recursive nonlinear least
squares to estimate the location of the source, taking into account the variation in the source position and
the deviation between the measurements and the model prediction [3]. Rao et al. used geometric differential
triangulation to estimate the position and intensity of the source based on themeasurements of three sensors [5].
In addition, the maximum likelihood estimationmethod is also widely used in source parameter estimation [6].
However, in the process of source parameter estimation, there is often the presence of noise and errors, which
may affect the accuracy of the results. To address this issue, researchers have turned their attention to the
application of Bayesian methods. This approach is based on Bayes’ formula and combines prior knowledge
and measurement data to calculate the posterior probability distribution of the radiation source, resulting in
more accurate and reliable results [7–10]. In addition, the Bayesian approach can utilize Markov chain Monte
Carlo (MCMC)methods and particle filters (PF) to sample and compute the posterior probability distribution.
Huo et al. employed a partially observableMarkov decision process (POMDP) approach to enable autonomous
robots to search for unknown radioactive sources [11]. Ling et al. introduced a collaborative search technique
for unknown radioactive sources using multi-robot information fusion and an adaptive step-size free energy
strategy [12]. In many practical scenarios, multi-robot systems face challenges in search tasks due to complex
and limited feasible solutions. These challenges include effective resource utilization, maintenance of search
capabilities, and avoidance of locally optimal solutions [13,14]. Song et al. discussed the impact of different
collaboration strategies and the number of robots on the required communication bandwidth and proposed
a method to reduce communication bandwidth consumption by sharing the Gaussian mean and covariance
matrix [15]. Effective multi-robot communication and data sharing are critical in these techniques since they
allow the robots to exchange information on search tasks and achieve collaborative decision optimization.

Although many methods have been proposed to solve the problem of radioactive source localization in un-
known areas, it remains a challenging task. The main difficulties come from: (1) The traditional single-robot
algorithm has low resource utilization and small search coverage; (2) Due to the performance limitations of the
detector and the influence of environmental factors, noise and errors may occur in the source parameter esti-
mation process. Therefore, this paper proposes a multi-robot collaborative search algorithm based on particle
swarm optimization (PSO)-PF [Figure 1]. The main contributions of this paper are reflected in the following
points: (1) An improved PSO-PF algorithm based on multi-robots is proposed. This algorithm effectively
finds the minimum difference between the latest observation and prediction results of each robot in the parti-
cle collection by minimizing the fitness function, thereby improving the accuracy of the PF; (2)The algorithm
is able to find lost radioactive sources while avoiding obstacles in complex mountainous terrains, extending
its applicability and practicality. The remainder of this paper is organized as follows. Section 2 outlines the
radioactive source positioning task and provides a comprehensive explanation of the PF algorithm, including
its principles and mathematical derivations. Section 3 delves into the specifics of the PSO-PF algorithm and
the multi-robot path planning strategy proposed in this study. Section 4 presents simulation experiments and
conducts an in-depth parameter analysis. Finally, Section 5 summarizes the key findings of this research and
explores potential avenues for future research.
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Figure 1. The outline of the proposed algorithm architecture.

2. BACKGROUND
2.1 Problem description
Assume that the missing radioactive source 𝜃 = [𝑥𝑠, 𝑦𝑠, 𝐼𝑠]𝑇 is located on the ground level in a mountainous
area, where (𝑥𝑠, 𝑦𝑠) is the position coordinate of the radioactive source, and 𝐼𝑠 represents the activity of the
source. In this study, a team of mobile robots was deployed to search for a lost radioactive source 𝜃 in a
complex mountainous environment. Each robot has the ability to move autonomously and perform local
search operations while seamlessly cooperating with other robots to achieve a comprehensive and systematic
global search.

Nuclear radiation decay is a random process that occurs in radionuclides. This randomness makes the de-
caying particles uncertain. According to previous studies, radiation counts from nuclear decay obey Poisson
statistics [16]. Therefore, the probability that a radiation detector registers 𝑧 ∈ 𝑍+counts per second (CPS) from
the source that emits on average 𝑚 CPS is:

P(𝑧;𝜆(𝜃)) = 𝜆𝑧

𝑧!
𝑒−𝜆 (1)

where 𝜆 = 𝑚𝜀 denotes the actual average count of particles detected by the detector per second and the
parameter of the Poisson distribution; 𝜀 is the intrinsic detection efficiency of the detector, which is the ratio
of the number of particles detected by the detector to the total number of particles incident on the detector
at the same time. 𝜆 = 𝑚𝜀 represents the true average count measured by the detector per second; 𝜀 is the
inherent detection efficiency of the detector, which is the ratio of the number of particles detected by the
detector to the total number of particles incident on the detector at the same time. Given the source parameter
vector 𝜃𝑘 , the likelihood function of the radiation countmeasurement 𝑧𝑘 at the recordedmeasurement location
(𝑥𝑘 , 𝑦𝑘 ) , 𝑘 = 1, 2, . . . is given by:

𝑝 (𝑧𝑘 | 𝜃𝑘 ) = P (𝑧𝑘 ;𝜆(𝜃𝑘 )) (2)

where P is the Poisson distribution defined in Equation (1), and 𝜆(𝜃𝑘 ) is the mean radiation count recorded by
the detector. When the distance between the radiation detector and the radiation source is 𝑟 , the calculation
of 𝜆(𝜃𝑘 ) is performed as follows:

𝜆(𝜃𝑘 ) =
𝐼𝑠 × 𝑒

∑
𝑖 −𝑢𝑖𝑅𝑖

4𝜋𝑟2 + 𝐼𝑏 (3)

where 𝑅𝑖 and 𝑢𝑖 are the distance and radiation attenuation coefficient of the gamma rays through the ith
medium, respectively; 𝐼𝑏 is the background radiation count, which is the average count per second when 𝐼𝑠 = 0
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Figure 2. Heatmap of the radiation distribution in the simulated environment, where the color bars indicate the signal strength in CPS. In
the map, the source is at the upper right with an activity of about 2.8 × 105 CPS. CPS: Counts per second.

or when 𝑟 is infinite. The radiation detector measures the intensity of the radiation source in CPS and calcu-
lates the count value. Simultaneously, the energy response constant 𝜌

(
𝐶𝑃𝑆 · 𝜇𝑆𝑣−1 · ℎ

)
is considered [17]. The

count value 𝑧 is expressed as the product of the mean radiation count 𝜆(𝜃𝑘 ) and the energy response constant
𝑧 = 𝜆(𝜃𝑘 ) × 𝜌.

The activity of a radioactive source can be greatly affected by factors such as detector performance limitations,
environmental absorption, multipath attenuation, and reflections. These factors often bring errors to detection
data, thus affecting the accuracy of radioactive source positioning and parameter estimation. Figure 2 depicts
the radiation profile attenuated by simulated radiation data according to Equation (3). It can be clearly observed
from Figure 2 that due to the influence of the object’s radiation attenuation coefficient, the radiation of the
radioactive source model presents a complex distribution.

2.2 Particle filter
Within the framework of the PF algorithm, we use an ensemble of particles and their associated particle weights
to estimate the posterior probability density of the system state. Each particle represents a potential system
state, and the accuracy of state estimation increases with the number of particles. At the same time, each par-
ticle weight represents the likelihood probability associated with the system state of each particle. Compared
with traditional Kalman filtering methods, particle filtering has proven to be more suitable for dealing with
nonlinear and non-Gaussian systems [18].

Suppose we have 𝑁 mobile robots deployed in a radiation field, each maintaining 𝑀 random particles. The
estimated source parameter vector of the 𝑚 th particle after obtaining the 𝑘 th observation is expressed as
𝜃𝑚𝑘 =

[
𝑥𝑚𝑘 , 𝑦

𝑚
𝑘 , 𝐼

𝑚
𝑘

]𝑇
, 𝑚 ∈ 𝑀 . At the 𝑘 th moment, the 𝑖 th robot is located at the location

(
𝑥𝑖𝑘 , 𝑦

𝑖
𝑘

)
, and the

obtained observation vector is expressed as 𝑔𝑖𝑘 =
⌈
𝑥𝑖𝑘 , 𝑦

𝑖
𝑘 , 𝑧

𝑖
𝑘

⌉𝑇
, 𝑖 ∈ 𝑁 . If the initial confidence is given as

𝑝 (𝜃0 | 𝑔0) = 𝑝 (𝜃0), then according to the Markov hypothesis, the prior probability density can be expressed
as:

𝑝 (𝜃𝑘 | 𝑔1:𝑘−1) =
∫

𝑝 (𝜃𝑘 | 𝜃𝑘−1) 𝑝 (𝜃𝑘−1 | 𝑔1:𝑘−1) 𝑑𝜃𝑘−1 (4)

where 𝑃 (𝜃𝑘 | 𝜃𝑘−1) represents the state transition probability, 𝑝 (𝜃𝑘−1 | 𝑔1:𝑘−1) is the posterior probability den-
sity corresponding to the previous step. After obtaining the observation vector 𝑔𝑘 , the prior value is updated
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through Bayesian theory, and the posterior probability density is obtained as:

𝑝 (𝜃𝑘 | 𝑔1:𝑘 ) =
𝑝 (𝑔𝑘 | 𝜃𝑘 ) 𝑝 (𝜃𝑘 | 𝑔1:𝑘−1)

𝑝 (𝑔𝑘 | 𝑔1:𝑘−1)
(5)

where 𝑝 (𝑔𝑘 | 𝑔1:𝑘−1) =
∫
𝑃 (𝑔𝑘 | 𝜃𝑘 ) 𝑃 (𝜃𝑘 | 𝑔1:𝑘−1) 𝑑𝜃𝑘 is a normalization constant, which depends on the

likelihood function 𝑝 (𝑔𝑘 | 𝜃𝑘 ) and the statistical properties of the measurement noise. In the PF algorithm,
we use the Monte Carlo (MC) method to approximate the posterior probability density of the target system
state by the weighted sum of a set of particles [9].

𝑝 (𝜃𝑘 | 𝑔1:𝑘 ) ≈
𝑀∑
𝑚=1

𝑤𝑚
𝑘 𝛿

(
𝜃𝑘 − 𝜃𝑚𝑘

)
(6)

where 𝑀 is the number of particles, 𝑤𝑚
𝑘 is the weight of the 𝑚 th particle, and 𝛿(·) is the Dirac function.

Furthermore, the importance sampling (IS) technique [19] and sequential IS (SIS) [18] technique can be used to
approximate the weights of these random particles.

𝑤𝑚
𝑘 = 𝑤𝑚

𝑘−1 · 𝑝
(
𝑔𝑘 | 𝜃𝑚𝑘

)
(7)

where 𝑝(·) is the target distribution, representing the posterior probability density we hope to obtain. In the
context of radiation source localization, the fusion of measurements frommultiple sensors is crucial for achiev-
ing accurate estimations of source parameters. Consider a scenario where an array of sensors is deployed to
monitor radiation levels using a total number of sensors. To effectively use these measurements, we formulate
the estimation of the radiation source parameters as a probabilistic exhibit minimal cross-correlation in their
measurement errors. The unnormalized weight for the 𝑖 th potential parameter value at time 𝑘 . is expressed
as:

𝑤′(𝑖)(𝑘) =
𝑁∏
𝑗=1

𝑝
(
𝑔(𝑘, 𝑗) | 𝜃 (𝑖)(𝑘−1)

)
· 𝑤 (𝑖)(𝑘−1) (8)

where 𝑤′(𝑖)(𝑘) denotes the unnormalized weight associated with the approximated posterior probability density
function. Consequently, the normalized weight for the 𝑖 th potential parameter value is given by:

𝑤 (𝑖)(𝑘) =
𝑤′(𝑖)(𝑘)∑𝑁
𝑗=1 𝑤

( 𝑗)
(𝑘)

(9)

The PF is a non-parametric filtering algorithm extensively employed for state estimation tasks. Nevertheless, a
major drawback of the PF is the issue of particle degeneracy (a few particles end up having non-zero weights).
This degeneracy occurs when the likelihood function becomes highly localized, indicating precise observation
information. Consequently, the overlap between the likelihood probability distribution and the prior prob-
ability distribution diminishes significantly, resulting in an inadequate number of particles to represent the
posterior distribution effectively. Under such circumstances, the estimation outcome of the PF may exhibit
considerable errors or even yield incorrect estimations. To address the issue of particle poverty, it becomes
imperative to employ a larger number of particles to approximate the posterior distribution more accurately.
However, this approach comes at the cost of increased computational complexity for the algorithm. Moreover,
the effectiveness of the PF is contingent upon the accuracy and adaptability of the proposed distribution. When
a substantial disparity exists between the proposed distribution and the target distribution, the performance
of the PF is adversely affected. For instance, if the target distribution exhibits multiple peaks and the proposed
distribution fails to accurately capture these peaks, the PF performance will be compromised. Furthermore,
the PF also has the problem of high computational complexity. In practical applications, a large number of
particles are often required to approximate the posterior distribution adequately. However, as the number of
particles increases, so does the computational burden of the algorithm. This limitation restricts the real-time
applicability of PFs in certain scenarios.
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3. AUTONOMOUS MULTI-ROBOT SEARCH STRATEGY
This section introduces a novel method that employs an improved PSO algorithm based on multi-robots to
address the limitations of traditional PF algorithms, such as particle poverty and reliance on proposal distribu-
tions. This algorithmmakes full use of the global search capability of PSO and the state estimation capability of
PF algorithms to achieve highly accurate state estimation results within a relatively short period of time. Fur-
thermore, the algorithm demonstrates remarkable robustness and adaptability, making it suitable for various
system state estimation problems.

3.1 Improved particle swarm optimization algorithm based on multi-robot
PSO is an advanced global optimization algorithm that draws inspiration from the collective behavior of organ-
isms such as birds or fish. It was originally introduced by Kennedy and Eberhart in 1995 [20]. This algorithm
efficiently explores multi-dimensional search spaces by simulating the movement and interaction of a swarm
of particles. In PSO, every potential solution within the search space assumes the form of a particle, possess-
ing both a position and a velocity. As the particles diffuse, each particle adjusts its position and velocity based
on its current state while retaining knowledge of its own historical best position and the overall best position
found so far. Through continuous iterative refinement, the ultimate global optimal solution gradually reveals
itself. Where the velocity and position of each particle are updated using the following formula:{

𝑣𝑖𝑡+1 = 𝑤𝑣𝑖𝑡 + 𝑐1𝑟1

(
pbest 𝑖 − 𝑥𝑖𝑡

)
+ 𝑐2𝑟2

(
gbest − 𝑥𝑖𝑡

)
𝑥𝑖𝑡+1 = 𝑥𝑖𝑡 + 𝑣𝑖𝑡+1

(10)

where 𝑥𝑖𝑡 signifies the position of the ith particle at time t; 𝑣𝑖𝑡 symbolizes the velocity of the ith particle at time
t; pbest𝑖 reflects the best historical position reached by the ith particle, and gbest represents the best global
position discovered so far. 𝑤 is the inertia weight, 𝑐1 and 𝑐2 are learning factors, and 𝑟1 and 𝑟2 are random
numbers between 0 and 1 .

The algorithm presented in this paper integrates the PSO algorithm into the PF algorithm, leveraging it as
the generator of the proposed distribution. The algorithm uses an adaptive weighted PSO algorithm, which
dynamically adjusts inertia weights and acceleration coefficients to strike a balance between global and local
search capabilities. The adaptive weight of the algorithm can be calculated as follows:

𝑤(𝑡) = 𝑤min −
(𝑤max − 𝑤min) 𝑡

𝑇
(11)

where 𝑤max is the maximum value of the inertia weight, 𝑤min is the minimum value, and 𝑇 denotes the maxi-
mum number of iterations. Furthermore, an adaptive fitness function is introduced to fuse the latest observa-
tions and recommendation distributions from multiple robots, defined as follows:

𝛤 =
𝑛∑
𝑖=1

𝑎𝑏𝑠
(
𝑦𝑖new − 𝑦𝑖pre

)
(12)

where 𝑦𝑖new and 𝑦𝑖pre denote the most recent observed and predicted values of the j-th robot, respectively; 𝛤
represents the absolute deviation value between the observed value of the robot and the predicted value of
the particle set at time 𝑘 . This characteristic is evident in the likelihood function 𝑝 (𝑧𝑘 | 𝜃𝑘 ) for the radiation
measurement value 𝑦𝑖new , wherein the weight increases as the measurement value approaches the peak and
decreases as it deviates away from the peak. This paper presents an improved PSO algorithm based on multi-
robot systems as a comparison to the conventional PSO method [21–23]. The proposed algorithm incorporates
the most recent observation and prediction outcomes from every robot, allowing the particles of all robots
to relocate towards regions with higher posterior probability density distributions. This adjustment aims to
overcome the issue of particle degradation, which occurs when the weight distribution of particles becomes
highly imbalanced. Algorithm 1 outlines the process of particle optimization using the multi-robot improved
PSO algorithm.

http://dx.doi.org/10.20517/ir.2023.38
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Algorithm 1 Improved Particle Swarm Optimization (IPSO)

Input: Fitness function obj_fun, Lower bound lb, Upper bound ub, Population size pop_size, Current de-
tector xk, Current particles cur_particles, Velocities vel, Personal best positions pbest, Global best position
gbest, Velocity limit v_limit
Output: Global best position gbest, Personal best positions pbest, Particle positions pos, Velocities vel,
Iteration data iter_data

1: 𝑊max, 𝑐1, 𝑐2,max_iter,𝑊min ← Initialize variables
2: pos← Extract positions from cur_particles
3: for 𝑖 ← 1 to 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
4: 𝑊pso ← Update inertia weight using Equation (11)
5: for 𝑛← 1 to 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 do
6: v_id← Update velocity using Equation (10)
7: Clip v_id to the range [−v_limit, v_limit]
8: x_id← x_id + v_id
9: if (x_id(1) > ub and v_id(1) > lb) or (x_id(1) < lb and v_id(1) < 0) then
10: Reflect on the boundary for the 𝑥-direction
11: end if
12: if (x_id(2) > ub and v_id(2) > lb) or (x_id(2) < lb and v_id(2) < 0) then
13: Reflect on the boundary for the 𝑦-direction
14: end if
15: Update pos and vel for particle 𝑛
16: Compute fitness values 𝑤particles, 𝑤pbest, and 𝑤gbest
17: if 𝑤particles < 𝑤pbest then
18: Update personal best for particle 𝑛
19: end if
20: if 𝑤particles < 𝑤gbest then
21: Update global best
22: end if
23: end for
24: if 𝑤pbest × 0.9 ≤ 𝑤gbest then
25: Break the loop if convergence criteria are met
26: end if
27: end for
28: iter_data← Array containing iteration and global best fitness
29: return gbest, pbest, pos, vel, iter_data

http://dx.doi.org/10.20517/ir.2023.38
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Figure 3. Mountainmulti-robot trajectory predictionmodel. Themobile robot’s historical search trajectories are depicted in different colors:
blue, orange, yellow, and purple dots. The solid green line represents the predicted trajectory, while the green triangles along the trajectory
represent the expected robot position.

3.2 Dynamic Window Approach dynamic window avoidance strategy
The Dynamic Window Approach (DWA) algorithm is a widely used method for obstacle avoidance [24]. As-
suming the current state of the robot is denoted as 𝑥𝑡 = [𝑥, 𝑦, 𝜃, 𝑣, 𝜔]𝑇 , where x and y represent the coordinates
of the robot, 𝜃 represents the orientation, and v and 𝜔 represent the linear and angular velocities, respectively.
The DWA algorithm generates a set of speed commands, which can be expressed as follows:

𝑣𝑚 = {(𝑣, 𝑤) | 𝑣 ∈ [𝑣min , 𝑣max ] ∩ 𝑤 ∈ [𝑤min , 𝑤max ]}
𝑣𝑑 = {(𝑣, 𝑤) | 𝑣 ∈ [𝑣𝑎 − ¤𝑣 ∗ Δ𝑡, 𝑣𝑎 + ¤𝑣 ∗ Δ𝑡] ∩ 𝑤 ∈ [𝑤𝑎 − ¤𝑤 ∗ Δ𝑡, 𝑤𝑎 + ¤𝑤 ∗ Δ𝑡]}
𝑣𝑎 =

{
(𝑣, 𝑤) | 𝑣 ∈

[
𝑣min ,

√
2 ∗ dist(𝑣, 𝑤) ∗ ¤𝑣

]
∩ 𝑤 ∈

[
𝑤min,

√
2 ∗ dist(𝑣, 𝑤) ∗ ¤𝑤

]} (13)

where 𝑣min and 𝑣max represent the lower limit and upper limit of the robot’s linear speed, respectively; 𝑤min and
𝑤max present the lower limit and upper limit of the robot’s angular speed, respectively; 𝑣𝑎 and 𝑤𝑎 represent the
current linear speed and angular velocity of the robot, respectively; dist(𝑣, 𝑤) represents the shortest distance
between the simulated trajectory and the obstacle at the current speed; Δ𝑡 represents the time interval required
for the robot to execute the speed command.

The DWA algorithm generates multiple sets of feasible speed command combinations, represented as 𝑢 =
[𝑣, 𝑤]𝑇 . These combinations are determined by the intersection of velocity boundary limits 𝑣𝑚 , acceleration
limits 𝑣𝑑 , and environmental obstacle limits 𝑣𝑎 . Figure 3 visually illustrates the predicted trajectories derived
from these combinations of velocity commands using the kinematic model of the mobile robot. In addition,
weights are assigned to these trajectories through the evaluation function 𝑔(𝑢) to select the driving speed
corresponding to the optimal trajectory.

𝑔(𝑢) = 𝑤1 · dist(𝑢) + 𝑤2 · heading(𝑢) + 𝑤3 · speed(𝑢) (14)

where dist(𝑢), heading (𝑢), and speed (𝑢) represent the distance, angle, and speed, respectively, between the
robot’s next position 𝑥𝑘+1 and the target position under decision 𝑢. The weight coefficients, 𝑤1, 𝑤2, and 𝑤3,
determine each factor’s relative importance in the speed command evaluation function. When a trajectory
intersects with an obstacle at any point in the future, that trajectory is disregarded. Finally, the optimal decision
𝑢∗ is decided to minimize 𝑔(𝑢) as:

𝑢∗ = arg min
𝑢∈𝑈

𝑔(𝑢) (15)
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where the feasible decision set𝑈 refers to the set of permissible speed instructions, as defined by Equation (13).
Algorithm 2 outlines the process of computing the reward function for the nth robot at time 𝑘 .

Algorithm 2 Calculating the reward function for the nth robot at time 𝑘 .

Input: Robot state matrix x, Estimated location matrix 𝑔𝑜𝑎𝑙
Output: Robot decision matrix 𝑢𝑘 ,Reward value matrix 𝐺 (𝑢𝑘 )

1: 𝑚𝑜𝑑𝑒← set kinematic limit parameter matrix
2: 𝛼, 𝛾 ←− set the percentage constants for the evaluation
3: {𝑚𝑜𝑑𝑒, 𝑥𝑘 } → {𝑣𝑚 , 𝑣𝑑} feasible decision sets using Equation (13)
4: for all 𝑢𝑘 ∈ {𝑣𝑚 , 𝑣𝑑} do
5: {𝑢𝑘 , 𝑥𝑘 } → {𝑥𝑘+1, 𝑡𝑟𝑎 𝑗} Generate Trajectory
6: {𝑑𝑖𝑠𝑡 (𝑢), ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑢), 𝑠𝑝𝑒𝑒𝑑 (𝑢)} ←− {𝑥𝑘+1, 𝑡𝑟𝑎 𝑗 , 𝑔𝑜𝑎𝑙} using Equation (15)
7: for i = 1,...,length(traj) do← Iterate through all traj
8: if 𝑡𝑟𝑎 𝑗 (𝑖) intersects with an obstacle then
9: 𝑖𝑠𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒

10: end if
11: end for
12: if 𝑖𝑠𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒 then
13: continue;
14: end if
15: end for
16: {𝑤1, 𝑤2, 𝑤3} → 𝐺 (𝑢𝑘 ) using Eq.(18)
17: return {𝑢, 𝐺} returns all decision Matrix u and its values G

4. SIMULATION EXPERIMENTS AND ANALYSIS
4.1 An illustrative run
The simulation results of multi-robot collaborative radioactive source search using PSO-PF algorithms are
shown in Figure 4. The illustrative run uses the following parameters for the simulation:

• Multiple robots search for lost radioactive sources in a 150 m × 150 m mountainous environment.
• The radioactive source is located at coordinates (𝑥𝑠 = 135 m, 𝑦𝑠 = 90 m), and its activity is set to 𝐼𝑠 =

2.94 × 106 CPS.
• The intrinsic detection efficiency of the radiation detector 𝜀 = 60%, the mountain radiation attenuation
coefficient 𝑢 = 0.05, the energy response constant 𝜌 = 200 CPS/𝜇Sv/h, and the background radiation
count is 𝐼𝑏 = 20 s−1.

• The robot’s movement is constrained by various physical parameters, including maximum linear velocity
𝑣max = 3 m/s, maximum angular velocity𝑤max = 90◦/s, linear acceleration ¤𝑣 = 1 m/s2, angular acceleration
¤𝑤 = 30◦/s2, linear velocity resolution 0.5 m/s, and angular velocity resolution 15◦/s.

Figure 4A-C visually shows the source search area, the search trajectories of the robot at times 𝑘 = 1, 5 and 18
using this algorithm, and the contour plots of the radiation distribution from the source. It is worth noting
that the robot’s trajectory, position, observation values, and particles are represented by different colors. Fur-
thermore, the observations are described in the form of a staircase plot, and the global fitness and number of
iterations are represented as a stacked plot of two variables with a common x-axis. During the search process,
the fitness function of the PSO algorithm is calculated based on the latest observation values obtained by each
robot, which makes the particle set move to a high-likelihood area and overcomes particle degradation. At
step 𝑘 = 1, the measurements obtained by the detector are small, and the positions of the particles are evenly
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Figure 4. An illustrative run of the source searching process using a multi-robot system. (A-C) Trajectories of the four robots and the
estimated source locations at steps 𝑘 = 1, 𝑘 = 5, and 𝑘 = 18, respectively; (D) the PSO iteration and global fitness; (E) the observables of
agents during the search. PSO: Particle swarm optimization.

distributed on the map. As the particle swarm algorithm iterates to find the optimal particle set, the particles
gather around the estimated source location at step 𝑘 = 5, indicating that the distance between the estimated
source location and the true source location is decreasing. Finally, all robots complete the source search at
step 𝑘 = 18.

Figure 4D and E shows that as the number of search steps increases, the robot’s observations become increas-
ingly larger, and the number of iterations of the PSO algorithm gradually decreases. It should be emphasized
that when the robots are far away from the source location, the observations obtained by the robots from each
other tend to be relatively small. Therefore, as the difference between the observations obtained by the robot
and its predicted observations becomes smaller, the global optimal particle fitness value also becomes smaller.
On the contrary, when the robot approaches the source position and obtains relatively large observed values,
the global optimal particle obtains higher fitness values that increase as the gap between the observed and
predicted values increases.

4.2 Parametric analysis
In this experiment, we aim to evaluate the performance comparison of the proposed PSO-PF algorithm and
the Extended KalmanParticle Filter algorithm (EPF) in themulti-robot radioactive source search problem. The
termination conditions for the source search process are defined as follows: The process concludes when the
Euclidean distance between all robots and the estimated source position is less than 5 m and the variance of
the samples in the PF is less than 1. Once the search process ends, it is deemed successful if the estimated
source locations have converged to the true source location and the distances between all robots and the true
source location are less than 5m. Otherwise, it is considered a failure. Additionally, if the search steps reach 30
and the source has not been found, the source search process is terminated as well, indicating an unsuccessful
search task. Figure 5 shows the results of single-step search time (SSST) and relative estimation errors (REE)
for both algorithms performing a search task using the same simulation parameters as in the example run. It
is worth noting that SSST represents the time required to estimate the source position and perform a move at
each step, while a REE represents the ratio of the absolute error to actual value.
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Figure 5. PSO-PF vs. PF for multi-robot radiation source search: (A) Relative Estimation Error of PSO-PF; (B) Relative Estimation Error of
PF; (C) Single-step search time comparison. EPF: Extended Kalman Particle Filter; PSO-PF: Particle Swarm Optimization-Particle Filter.

Figure 6. Performance comparison of the PSO-PF algorithm as the number of particles changes (A) The mean search time; (B) The search
success rate. PSO-PF: Particle Swarm Optimization-Particle Filter.

Figure 5 presents a clear demonstration of the superior performance of the PSO-PF algorithm in comparison
to the EPF algorithm, specifically in terms of the REE and SSST performance indicators. It is important to
highlight that the PSO-PF algorithm exhibits a REE below 0.1 for the x-axis coordinate, y-axis coordinate,
and activity degree (I) of the source term. Conversely, while the EPF algorithm achieves a REE for the source
location coordinates below 0.1 at 𝑘 = 18, the REE for the source activity remains consistently around 0.2. While
the PSO-PF algorithm excels in source parameter estimation, it initially incurs additional overhead in terms
of single-step search time.

In order to understand the impact of particle numbers on the PSO-PF algorithm, 100 search tasks were also
performed using the same parameters as in the example run. Figure 6 shows the search success rate and average
search time when varying the number of particles. As the number of particles increases, the search success rate
of the free energy strategy increases significantly, climbing from 56% to 98%. At the same time, the average
search time increased from 2.75 to 7.04 s. In contrast, the DWA dynamic window obstacle avoidance strategy
always maintains a high search success rate as the number of particles increases without significantly affecting
the search time. The comparison between the DWA dynamic window obstacle avoidance strategy and the free
energy strategy in Figure 6 shows that using the DWA dynamic window obstacle avoidance strategy in the
proposed algorithm improves the efficiency and accuracy of multi-robot collaborative search work.
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5. CONCLUSIONS
In this study, a multi-robot cooperative radioactive source search algorithm based on particle swarm opti-
mization particle filtering is proposed. The algorithm uses the latest observations of each robot to calculate
the fitness of the particle swarm, guiding the particle set toward high-likelihood areas. At the same time, the
optimized particle set is used in the PF algorithm to achieve accurate source parameter estimation and effec-
tively alleviate the particle degradation problem. In addition, the algorithm combines DWAobstacle avoidance
for path planning, allowing the robot to efficiently search for sources in complex mountainous terrains while
avoiding obstacles. Experimental results show that the increase in the number of particles increases the search
success rate of the algorithm proposed in this study from 90% to 98%, and the average search time increases
from 0.97 to 5.38 s. It is worth noting that the radioactive source diffusion and detector model used in this
paper is one of the simplified theoretical models. Future research can improve performance by utilizing more
realistic models, such as dynamic radiation attenuation coefficients for obstacles, and taking into account fac-
tors that affect the intrinsic detection efficiency of the detector model. Lastly, practical experiments using
mobile robots equipped with radiation detector modules and incorporating reinforcement learning will be
conducted after addressing these issues to bolster system robustness.
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