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Abstract
The quick developments of artificial intelligence have brought tremendous attractive opportunities and changes to 
smart welding technology. In the present work, a novel model, ConvNeXt, which incorporates the advantages of 
convolutional neural networks (CNNs) and vision transformers (ViTs), has been designed to identify welding 
defects. The classification accuracy of the pre-trained ConvNeXt based on transfer learning method reaches as 
high as 99.52% after 500 iterations of training, while traditional CNNs of MobileNetV2 and ResNet34 achieve 
85.94% and 93.41%, respectively. Moreover, the classification performance can be further improved through 
dataset optimization based on t-distributed stochastic neighbor embedding (t-SNE). In addition, arc geometrical 
features are added as input parameters for building a back propagation neural network to predict the formation of 
the weld seam, which has led to a reduction in the maximum prediction error for weld seam thickness from 0.8 to 
0.6 mm. Furthermore, out of 28 sets of experimental parameters, only four sets result in errors exceeding 0.2 mm. 
It is worth noting that large language models (LLMs) are utilized to facilitate the automated programming for 
welding defect recognition, including ChatGPT 3.5, Bing Copilot, Claude3, and ERNIE Bot. LLM-aided automated 
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programming technology is applied to develop image stitching programs, achieving unsupervised automatic 
stitching of multiple welding tissue images and obtaining clear and wide-field weld ones. These case studies of 
deep learning technologies and automated programming based on LLMs set up a solidified building block for smart 
welding defect recognition during non-equilibrium solidification.

Keywords: Welding defect recognition, convolutional neural networks, back propagation neural network, large 
language models, automated programming

INTRODUCTION
Non-equilibrium solidification, characterized by exceptionally rapid cooling rates that obstruct 
thermodynamic equilibrium, assumes a pivotal role in contemporary manufacturing processes[1,2]. 
Depending on the principles of non-equilibrium solidification, welding has become indispensable in 
producing materials with specific properties, especially in industries such as shipbuilding, navigation, and 
aerospace[3-5]. However, manual welding is fraught with inefficiencies, high expenditure and inconsistent 
performance, which can compromise weld quality[6]. Consequently, the advancement of intelligent welding 
monitoring systems has become imperative for enhancing performance and ensuring reliability in 
production[7-9]. The systems encompass welding defect recognition, welding parameter-geometry 
relationship establishment, and automatic programming with the aid of large language models (LLMs)[10,11].

On the one hand, deep learning algorithms have been considered as one kind of key component of 
intelligent welding monitoring systems, which are instrumental in recognizing welding defects[12,13]. Defects 
including porosity, cracks, and insufficient fusion can significantly endanger weld quality without timely 
identification throughout the welding process[14,15]. Continuous manual oversight of defects in the welding 
process is neither practical nor cost-effective[16]. Fortunately, recent advancements in machine vision 
technology have endowed welding robots with the capability to autonomously identify defects[17,18]. At the 
nucleus of machine vision resides the deep learning model, with convolutional neural networks (CNNs) 
excelling in image processing tasks[19-21]. With multiple layers and deep architecture, CNNs can extract 
features from welding images to classify defects[20,22]. Since the vision transformer (ViT) emerged in 2020, the 
potential of Transformer-based architectures in computer vision has gained widespread 
acknowledgment[23,24]. However, ViT has notable drawbacks compared to CNNs including a large number of 
model parameters and high computational demands which pose challenges for achieving lightweight 
deployment[25]. Meta AI attributes ViT’s superior performance over CNNs to significant advancements in 
architectural design and optimization techniques, which inspired the creation of ConvNeXt[26,27]. The 
innovation strikes a balance between recognition accuracy, storage requirements and computational 
efficiency, making ConvNeXt highly suitable for deployment in real-time welding monitoring systems 
without compromising production efficiency or imposing significant storage burdens[28]. Meanwhile, the 
ConvNeXt architecture incorporates the exceptional ability of the Transformer framework to capture spatial 
and structural relationships in images, enabling it to deliver outstanding performance in welding defect 
image recognition tasks.

On the other hand, the intricate and nonlinear interactions among welding heat input, weld joint 
microstructures and the subsequent weldment performance present a formidable challenge[29,30]. Precisely 
delineating the relationships, achieving accurate predictions of weld geometry and optimizing process 
parameters continue to pose substantial hurdles in the field[31]. Despite the extensive accumulation of 
experimental data, the inherent complexity and scale of the information present significant barriers to 
uncovering the underlying principles through conventional analysis[32,33]. This is where deep learning 
technology provides a transformative solution, leveraging the unparalleled capacity to model nonlinear 
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relationships[34]. Integrating simulation techniques with deep learning models facilitates the automatic 
identification of correlations between welding parameters and weld seam microstructures, enabling accurate 
predictions of weldment performance[35]. The approach not only optimizes process parameters and weld 
quality but also significantly reduces the reliance on costly and time-intensive experimental trials, pushing 
the boundaries of welding technology[36].

Moreover, the development of the monitoring systems involves sophisticated image processing and neural 
network models, demanding considerable human effort and advanced programming expertise[37-40]. In order 
to tackle the complexity of programming, the LLMs have emerged as powerful tools for automating 
programming tasks[40-43]. Based on transformer architecture, LLMs utilize self-attention mechanisms to 
capture contextual dependencies in programming, thereby enabling the generation of coherent and efficient 
outputs[44-46]. The models including GPT-3.5, BERT, and Copilot have demonstrated remarkable potential in 
automating code generation and optimization tasks[47,48]. The capacity of programming explanation and 
generation renders the LLMs invaluable assets for programming automatic welding systems[49,50].

To address the aforementioned challenges, a progressive monitoring system for the intelligent welding 
industry is presented in the research, harnessing wide-ranging image data amassed from tungsten inert gas 
(TIG) experiments. In Section “Weld state classification based on convolution neural network”, CNNs are 
employed for image data classification, followed by the evaluation of classification metrics and feature 
visualization to enhance the classifiers. In Section “Weld seam forming prediction on back propagation 
neural network”, backpropagation neural networks (BPNNs) are applied to establish a mapping between 
welding process parameters and welding formation geometry with model performance further ungraded by 
incorporating arc geometric features. In Section “Automatically programming based on LLMs”, LLMs are 
introduced to support programming tasks in image processing, with the code generation capabilities 
evaluated for arc contours extracting and welding image stitching.

MATERIALS AND METHODS
Artificial intelligence agents have been effectively integrated into the workflow of smart welding as assistants 
in the field of intelligent manufacturing[51]. As illustrated in Figure 1, LLMs are utilized to automate 
programming based on welding image data gathered from high-throughput experiments, with the objective 
of optimizing the defect detection process during welding of titanium alloys[52]. The methodologies 
encompass titanium alloy tube-to-plate welding experiments, deep learning techniques and automatic 
programming of intelligent welding based on LLMs.

Tube-to-tube-sheet welding experiments for titanium alloy
Owing to the high chemical reactivity of titanium and the propensity to adsorb hydrogen, oxygen and 
nitrogen at elevated temperatures, conventional welding techniques such as manual metal arc welding, gas 
welding and CO2 gas-shielded welding are deemed unsuitable[53]. TIG welding is employed in the research, 
with the arc generated between the tungsten electrode and the workpiece to melt the metal, while the inert 
gas is introduced around the electrode to safeguard the metal and maintain arc stability[54]. The schematic 
diagram of a TIG tube-to-tube-sheet welding robot system is shown in Figure 2. The heat exchanger tubes, 
tube sheet and welding wire are all composed of TA2, which is an α-phase titanium alloy with excellent 
corrosion resistance and cold workability[55]. The chemical composition of TA2 is presented in Table 1. The 
heat exchanger tubes feature an outer diameter of 10 mm and a wall thickness of 1.5 mm. The tube sheet, 
measuring 100 mm in thickness, includes a 1 mm × 1 mm chamfer at a 45° angle. The diameter of the 
welding wire is 0.8 mm.
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Table 1. The chemical composition table of titanium alloy TA2

Material Fe C N H O Ti

TA2 0.027 0.0063 0.0047 < 0.001 0.10 Margin

Figure 1. The technical roadmap of AI agent assistant smart welding consisted of five basic sections, including large language model, 
auto-coding via AI agent, image processing, image mosaic and machine learning for welding defect detection. AI: Artificial intelligence.

The intelligent system is equipped with the TPR 2000 welding machine, 500A programmable power supply, 
real-time data acquisition system and vision system[56]. In the vision system, the Xiris XVC-1100 high 
dynamic range (HDR) camera is employed to observe the welding process with a maximum frame rate of 55 
fps[21]. High-speed imaging provides a direct approach to capturing the melting dynamics of the welding 
wire and the flow behavior of the molten pool[57,58]. The camera position is refined through multiple 
experiments to capture high-quality images of the molten pool[59]. The input/output channels of the camera 
are equipped with photoelectric isolation to protect against electromagnetic noise. As a full factorial 
experimental design requires testing all possible parameter combinations which is both time-intensive and 
costly, the orthogonal experimental method is employed to efficiently limit the number of tests while 
ensuring experimental validity[60]. Table 2 shows the parameter values for each experimental sample, 
including pulse current (Ip), welding speed (Vs), pulse width (tp), duty cycle ratio (δ) and weld seam 
thickness at the arc starting point (H).

Deep learning methods
BPNNs constitute a class of multi-layer feedforward neural networks trained through the error 
backpropagation algorithm[61]. As depicted in Figure 3, the typical architecture of BPNNs comprises three 
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Figure 2. The schematic diagrams of intelligent robot system of TIG tube-to-tube-sheet welding with XVC-1100 HDR camera. TIG: 
Tungsten inert gas; HDR: High dynamic range.

primary layers: an input layer, one or more hidden layers, and an output layer[62]. Neurons within these 
layers are interconnected by weights and no connections exist between neurons within the same layer or 
across non-adjacent layers. The input layer receives external input data and forwards the data to the hidden 
layer. As the core of the BPNNs, the hidden layer contains multiple neurons responsible for the nonlinear 
transformation and feature extraction of the input data. The number of hidden layers and neurons can be 
adjusted based on the complexity and specific requirements of the problem. The output layer receives 
processed information from the hidden layer and produces the final output of the BPNN.

CNNs represent a foundational class of deep learning models that have attained remarkable success in 
computer vision, especially in the domain of image recognition[63,64]. CNNs excel at image perception due to 
the convolutional operations, which simulate the biological visual system by extracting features from input 
data through localized perception and weight sharing[65]. The basic structure of CNNs consists of 
convolutional layers, pooling layers and fully connected layers. Convolutional and pooling layers are 
alternately stacked, followed by one or more fully connected layers that generate the final outputs[66]. 
Numerous CNN models have been developed, with prominent examples including ResNet34, MobileNetV2 
and ConvNeXt, which will be discussed in detail below.

ResNet34 architecture
In contrast to traditional machine learning, deep learning is distinguished by its intricate network 
architectures, which are essential for significantly enhancing performance. However, as the depth of the 
network increases, issues such as vanishing and exploding gradients may arise, negatively affecting the 
training process[67]. As depicted in Figure 4, ResNet mitigates this challenge by incorporating residual blocks, 
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Table 2. The technical parameters of pulsed TIG welding for each experimental group with the orthogonal experimental method

Group numbers Ip (A) Vs (mm/min) tp (s) δ H (mm)

1 125 120 0.04 0.67 1.917

2 75 60 0.08 0.50 1.955

3 95 90 0.10 0.33 1.525

4 85 100 0.08 0.67 1.789

5 105 120 0.10 0.50 1.61

6 125 80 0.04 0.33 0.915

7 85 110 0.10 0.67 1.713

8 105 60 0.04 0.50 1.748

9 125 90 0.08 0.33 1.963

10 75 90 0.08 0.67 2.211

11 95 110 0.10 0.50 1.268

12 115 60 0.04 0.33 0.981

13 105 80 0.08 0.67 1.829

14 125 100 0.10 0.50 1.657

15 85 120 0.04 0.33 1.664

16 95 100 0.04 0.67 1.597

17 115 120 0.08 0.50 1.536

18 75 80 0.10 0.33 1.720

19 115 110 0.04 0.67 1.718

20 85 80 0.08 0.50 1.623

21 105 100 0.10 0.33 1.452

22 115 80 0.10 0.67 1.940

23 75 100 0.04 0.50 1.634

24 95 120 0.08 0.33 1.643

25 95 60 0.08 0.67 1.863

26 115 90 0.10 0.50 1.447

27 75 110 0.04 0.33 1.806

28 125 60 0.10 0.67 1.856

29 85 90 0.04 0.50 1.133

30 105 110 0.08 0.33 1.803

31 75 120 0.10 0.67 1.683

32 95 80 0.04 0.50 1.943

33 115 100 0.08 0.33 1.616

34 105 90 0.04 0.67 1.543

35 125 110 0.08 0.50 1.479

36 85 60 0.10 0.33 1.640

TIG: Tungsten inert gas.

thereby enabling the network to learn incremental refinements through the innovative residual structure[68]. 
Furthermore, the architecture substantially accelerates training and enhances convergence rates, particularly 
in the context of large-scale datasets. ResNet-34, a variant of the ResNet architecture featuring 34 layers, 
adeptly balances depth and computational efficiency, rendering it exceptionally effective for addressing 
complex challenges in the welding domain[69].

MobileNetV2 architecture
MobileNetV2 is a streamlined neural network architecture optimized for efficient image classification on 
mobile devices and embedded systems[70,71]. By employing depthwise separable convolutions, the 
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Figure 3. The structure of BPNN to predict weld seam thickness based on the input of technological parameters and arc geometric 
features. BPNN: Backpropagation neural network.

Figure 4. The structure of ResNet34 and the residual block structure for welding unfused defect classification.

architecture significantly reduces computational demands while preserving performance and minimizing 
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model size[72]. The introduction of the inverted residual structure enhances gradient flow, mitigating
vanishing gradients and improving overall network stability during training. The architecture also facilitates
more efficient information transfer across layers, enabling deeper networks to capture data features more
effectively. Compared to traditional residual connections, the inverted residual structure achieves greater
computational efficiency with fewer parameters, optimizing both training and inference processes.

ConvNeXt architecture
ViT faces challenges of extensive parameters and substantial computational demands, which hinder the
suitability for lightweight deployment[73,74]. By addressing the limitations above, ConvNeXt leverages the
design principles and optimization advancements inspired by ViT, combining with the efficiency of
CNNs[75,76]. The innovative architecture improves upon existing frameworks by substituting the commonly
employed ReLU activation function with the Gaussian error linear unit (GELU):

(1)

(2)

Proposed by Hendrycks and Gimpel in 2016, GELU has gained attention for its smoother nonlinear
characteristics, which improve model performance[77]. The activation function integrates the advantages of
both Sigmoid and ReLU, providing a continuous derivative that enhances gradient propagation during
training and thereby mitigates the risk of gradient vanishing[78]. Additionally, ConvNeXt enhances the
performance using grouped convolution within the ConvNeXt Block, which partitions input feature maps
into distinct groups for independent convolutions, thereby improving representational capacity and feature
extraction efficiency[79].

Automatic programming of intelligent welding based on LLMs
LLMs are advanced deep learning architectures trained on vast datasets, which can not only generate
coherent natural language text but also deeply grasp the context and meaning[80-82]. LLMs excel in various
natural language processing tasks, such as text summarization, intelligent question-answering systems and
machine translation, showcasing their versatility across multiple domains[83]. The construction of LLMs
involves several critical steps. The process begins with a requirements analysis to delineate the model’s
intended application, functionality and performance objectives. Relevant textual data is collected from
diverse sources, including web pages, books and articles, followed by noise elimination[84,85]. The model is
trained guided by hyperparameters including learning rate, batch size and iteration count, while
performance is validated based on metrics such as perplexity, F1 score, bilingual evaluation understudy
(BLEU) and recall-oriented understudy for gisting evaluation (ROUGE). Additionally, LLMs undergo
fine-tuning for specific tasks or domains, a process that generally requires fewer resources compared to the
initial training phase[86,87]. For the purpose of optimizing operational efficiency, compression is necessary
through techniques including pruning and quantization. Finally, the model is deployed on suitable
platforms equipped with a user-friendly application programming interface (API) for integration and
subjected to real-time monitoring to ensure stability.

Figure 5 showcases the application of LLMs including ChatGPT-3.5, Copilot, Claude 3, and Ernie Bot in
facilitating automated coding processes. In a specific test case focusing on the extraction of welding arc
contours, all these models successfully generated executable programs to achieve the desired objectives. The
input provided to the LLMs for this task was as follows: “We require processing welding arc images with
three channels to extract the arc contours. It is known that the brightness of the arc area is significantly
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Figure 5. The process of automatic programming by a LLM via an AI agent based on ChatGPT-3.5, Copilot, Claude3 and Ernie Bot, 
comparing the user interface and model functions of different language models. LLM: Large language model; AI: Artificial intelligence.

higher than that of the non-arc area. Please generate executable Python programs to achieve this, along with 
necessary explanations”. The generated programs were seamlessly executed in the Python environment, 
producing welding arc contour images without requiring human intervention. This demonstrates the 
effectiveness of LLMs in automating complex image-processing tasks. However, the inherent stochasticity 
of LLMs can lead to different outputs for the same input, and the generated code might not fit the local 
environment. The limitations above can be mitigated by iterative refinement: users can re-input the 
generated programs into the LLMs with additional specifications to receive optimized versions. The iterative 
process can be repeated as needed until a fully functional program meeting all requirements is obtained.

RESULTS AND DISCUSSION
Weld state classification based on convolution neural network
In pulsed TIG welding, insufficient heating input may result in incomplete fusion of the weld seam, leading 
to defects that compromise weld strength and quality. CNNs excel in image-related tasks by directly 
processing raw images, thereby obviating the necessity for manually defined features and minimizing 
extraction errors. The capability renders the model less sensitive to image clarity, enhancing reliability and 
fault tolerance. In this section, CNNs will be applied to establish a classification model for unfused defects in 
TIG welding, which can be used for online monitoring of unfused defects during welding, preventing 
products with welding defects from flowing out of the production line and posing potential safety hazards 
during service.

Data augmentation and training parameters setting
Data augmentation is applied to experimental image data to improve the generalization and robustness of 
the CNNs, enabling the model to recognize images with different transformations and distortions[88]. As 
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indicated in Figure 6, the data augmentation methods encompass image flipping, random rotation, resizing, 
cropping and adjustment to lightness, saturation, contrast and color. Additionally, CNNs are heavily 
dependent on training samples, and changes in the target task or application routinely necessitate retraining 
and re-annotation, potentially reducing development efficiency. To address the problems above, the transfer 
learning method is introduced, which applies knowledge learned from one task to another related task[89,90]. 
The models are pre-trained with the ImageNet dataset, which contains millions of labeled images 
commonly implemented for image recognition tasks[91]. The pre-training enables the model to capture 
general image features and significantly accelerates the entire training efficiency.

Two strategies are typically adopted for updating weights in transfer learning models: partial layer freezing 
and full fine-tuning. Partial layer freezing fixes some layers after loading pre-trained weights, allowing only 
the remaining layers to be trained. Full fine-tuning utilizes pre-trained weights as initialization and updates 
the entire model with a lower learning rate, leveraging prior knowledge to speed up convergence. 
Determining the optimal freezing range necessitates extensive experimentation, which can be 
time-consuming and resource-intensive. Therefore, pre-trained weights are initially loaded during the 
construction of the defect recognition model, followed by comprehensive fine-tuning. Training parameters 
are shown in Table 3. Due to the memory limitations of the RTX 3050 GPU, eight images per batch are used 
throughout local training, while 32 images per batch are used on the NVIDIA A100 platform. 
Supplementary Materials include the programs employed for the training and validation of CNNs in the 
research.

Performance evaluation of neural network models
Incomplete fusion of the weld seam during pulsed TIG welding can result in flaws that undermine the 
welding strength and overall quality. The CNN architectures including ResNet34, MobileNetV2, and 
ConvNeXt are placed into experiment to examine the unfused defect on pulsed TIG welding images. Two 
ResNet34 training experiments are conducted: one with randomly initialized weights, and the other with 
weights pre-trained on the ImageNet dataset. Both models are then trained on welding images from pulsed 
TIG experiments. As shown in Figure 7, both versions of ResNet34 initially had a validation accuracy of 
around 0.55, indicating no classification capability. However, the classification accuracy of pre-trained 
ResNet34 swiftly ascends, reaching 93.41% after 500 iterations. In contrast, the accuracy of randomly 
initialized ResNet34 grows sluggishly, plateauing at 78.18%. Although further improvement is possible, it 
would require substantial computational resources, making it less cost-effective for defect classification. 
Furthermore, it is worth noting that the improvement of pre-trained ResNet34 significantly diminishes after 
the initial surge. The accuracy has increased marginally from 93.31% to 93.79% until 5000 epochs, indicating 
that the model’s performance remained at a stable level after the initial rapid rise and was difficult to 
continue to improve.

The confusion matrices provide a detailed evaluation of model performance, presenting precision and recall 
values for CNNs as shown in Table 4. In the research, the fully fused state is defined as positive, while the 
unfused state is regarded as negative. Precision represents the proportion of true positives among all 
predicted positives; high precision ensures that samples predicted as fused are indeed fused. Recall measures 
the ratio of identified positive samples to all actual positive samples; high recall guarantees that no fused 
samples are overlooked by the classification model. In welding defect recognition, all positive samples are 
directly utilized in the workflow, making it essential to ensure that these samples are genuine positives. 
Therefore, precision takes precedence over recall. As shown in Figure 8, ResNet34 achieved a precision of 
96.52% and a recall of 92.5%, meeting industry requirements effectively. The defect classification model 
tends to classify well-fused images as non-fused, a trend that supports timely control measures during the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4064-SupplementaryMaterials.zip
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Table 3. Training parameter configuration of transfer learning model for welding unfused defect recognition with the strategy of 
loading pre-trained weights followed by performing entire fine-tuning

Training parameters Parameters values

Image resize dimension 224 × 224

Batch 8 or 32

Learning rate 0.001

Epoch 5000

Loss function Softmax cross entropy

Optimizer Adam

Table 4. The accuracy precision and recall metrics of typical convolutional neural networks

Metrics Accuracy (%) Precision (%) Recall (%)

Random initialization-ResNet34 78.18 81.23 80.56

500 Epochs trained-ResNet34 93.31 96.76 91.39

5000 Epochs trained-ResNet34 93.79 96.52 92.5

MobileNetV2 81.05 76.03 97.78

ConvNeXt 99.52 100 99.17

Figure 6. Data augmentation methods. (A) Original image; (B) flipping; (C) rotation; (D) resizing; (E-H) adjustment of lightness, 
saturation, contrast and color; (I) cropping.
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Figure 7. The performance of defect classification fluctuated over time based on the ResNet34 architecture, reflected in (A) training 
accuracy and (B) training loss.

Figure 8. The confusion matrix evaluation of the ResNet34 architecture on defect classification task. (A) Confusion matrix diagram; (B) 
confusion matrix with randomly initialized weights; (C) loaded pre-trained weights and trained for 500 epochs; (D) loaded pre-trained 
weights and trained for 5000 epochs.

welding monitoring process to prevent defects. However, an excessively high defect response may hinder 
the efficiency of automated production.

The accuracy variation and confusion matrices for MobileNetV2 and ConvNeXt are presented in Figure 9. 
ConvNeXt achieved a remarkable classification accuracy of 99.52%, significantly surpassing MobileNetV2’s 
85.94% in defect detection. This disparity can be partly attributed to MobileNetV2 being a lightweight 
model that prioritizes computational efficiency, potentially sacrificing some performance. The confusion 
matrix indicates that MobileNetV2, with a precision of 76.03% and a recall of 97.78%, tends to classify 
unfused images as defect-free, posing a risk in the welding process. Based on the appraisal above, 
MobileNetV2 is considered unsuitable for welding defect recognition. In contrast, ConvNeXt demonstrates 
superior performance in welding image recognition, achieving higher accuracy than previous deep learning 
models[12,21]. The welding monitoring system, incorporating the ConvNeXt model, achieves high-precision 
recognition of unfused defects without the necessity of human intervention. This capability holds significant 
potential for enhancing the quality of welding products and augmenting the productive efficiency within the 
automatic welding industry.

Performance optimization through t-distributed stochastic neighbor embedding
In supervised machine learning, the quality of a classifier is directly related to the quality of the data used for 
training. The presence of unwanted outliers in the data can significantly reduce the model’s accuracy. 
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Figure 9. Model performance and confusion matrix loaded pre-trained weights and trained in the welding image dataset for 500 epochs. 
(A) MobileNetV2 architecture; (B) ConvNeXt architecture.

Therefore, identifying and eliminating these outliers is crucial for constructing a high-quality training 
dataset. The t-distributed stochastic neighbor embedding (t-SNE) is employed to model the original 
high-dimensional data into a low-dimensional embedding space using conditional probability 
distributions[92]. The method optimizes the objective function based on the Kullback-Leibler divergence, 
applying gradient descent to find the most suitable embedding points in the low-dimensional space. By 
assigning each data point a position in a two-dimensional plot, t-SNE visualizes high-dimensional data with 
similar objects grouped closely together, while dissimilar objects are placed farther apart.

In the research, the dataset was randomly split into 70% for training, 20% for validation, and 10% for testing. 
As shown in Figure 10, the distribution of features extracted from the randomly initialized ResNet34 model 
does not exhibit typical clustering behavior in the t-SNE visualization. Through loading pre-trained weights, 
more distinct clustering was observed among samples with the same labels, suggesting that the pre-trained 
process can cluster features for weld seam images. However, because the general ImageNet dataset lacks 
weld pool images and related defect features, there is room for improvement in the model’s performance on 
the self-constructed defect dataset. After 500 epochs of training, the output features of the trained model 
exhibit stronger intra-class cohesion and inter-class separation. Defect images are closely clustered in the 
two-dimensional space, while defect and non-defect images remain clearly separated. These visualization 
results indicate that transfer learning can equip the initial model with basic visual feature extraction 
capabilities, and the pre-trained model can effectively extract weld seam quality information from melt pool 
images.

Although t-SNE visualizations show the capability of CNN models to extract high-dimensional features for 
classification tasks, unscreened datasets may still fail to yield satisfactory results even after multiple training 
iterations. Therefore, t-SNE visualization is employed to classify and filter the dataset, aiming to improve 
model performance. In the context of pulse TIG welding, the most significant differences in melt pool 
images captured under identical welding parameters are in the arc features at peak and baseline moments. 
However, the features do not exhibit a strong correlation with the classification of unfused defects. To 
investigate whether differences in baseline and peak arc features affect model performance, additional 
experiments were conducted. The welding defect dataset was divided into categories as follows: the primary 
label indicating the presence of unfused defects and a sublabel indicating whether the image corresponds to 
the peak moment. Only primary labels were used for classification throughout training, while sub-labels 
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Figure 10. The t-SNE visualization of ResNet34 architecture. (A) With randomly initialized weights; (B) loaded pre-trained weights 
without being trained in the welding image dataset; (C) loaded pre-trained weights and trained for 500 epochs; (D) loaded pre-trained 
weights and trained for 5000 epochs. t-SNE: t-Distributed stochastic neighbor embedding.

were excluded from the training process. As shown in Figure 11, t-SNE visualizations reveal that even 
without feature alignment based on brightness during training, samples with similar brightness cluster 
noticeably. The phenomenon may be attributed to the simplicity of brightness as a feature, whereas unfused 
defects involve the senior features. The transfer learning-based architectures have already acquired the 
simple features during pre-training which interfered with defect classification. Accordingly, the dataset was 
refined by excluding all images associated with baseline currents, followed by retraining the models. 
Figure 12 illustrates a clearer distinction between defect and non-defect images in the t-SNE visualizations, 
demonstrating improved performance of defect recognition after separating peak moment images from 
baseline moment images. Therefore, optimizing data samples after the model’s performance plateaus can 
further enhance the accuracy of deep learning models.

Weld seam forming prediction on back propagation neural network
The performance of weldments in operational conditions is significantly correlated with the morphology of 
the weld seams[93]. The crucial function of intelligent welding systems is to establish a mapping relationship 
between welding parameters and weld appearance, thereby optimizing the welding conditions to produce 
superior weldments. This section proposes a method for predicting the thickness of weld seams with 
BPNNs. Additionally, by evaluating the correlation between arc length and welding voltage, the geometric 
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Figure 11. The t-SNE visualization on the dataset with primary labels of unfused defects and sublabels of lightness. t-SNE: t-Distributed 
stochastic neighbor embedding.

Figure 12. The t-SNE visualization on pruned dataset. (A) performance on training set and validation set; (B) performance on test set. 
t-SNE: t-Distributed stochastic neighbor embedding.

features of the weld are incorporated into the model to enhance prediction accuracy. Furthermore, various 
advanced image processing techniques are employed to efficiently identify and extract the geometric 
features of the welding arc. The Supplementary Materials provide access to the programs utilized for 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4064-SupplementaryMaterials.zip
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welding contour extraction and BPNN training in the research.

Weld seam thickness prediction based on technologic parameters
In the context of predicting weld formation for tube-to-tube-sheet welding, the introduction of various 
interfering factors diminishes the uniformity of the weld formation process, thereby complicating the 
prediction of weld seam thickness[94,95]. Traditional predictive models primarily depend on welding 
parameters, including welding current, Vs, welding period and δ which directly influence the welding 
outcome[96]. The BPNNs are initially established in the research that relies exclusively on the welding 
technical parameters to evaluate the predictive efficacy and identify potential avenues for enhancement. To 
mitigate the adverse effects of incorrect labels and bolster the accuracy of BPNNs, the strategy for managing 
outliers is implemented. The data points exhibiting clear errors, primarily due to misalignment of the 
welding machine’s core axis, were excluded. As illustrated in Figure 13, although the predictions of weld 
seam thickness show marked improvement following data screening, considerable deviations between 
predicted and actual values persist. Consequently, the intricate interplay of multiple factors influencing weld 
formation makes achieving an optimal weld appearance extremely challenging through parameter 
adjustments alone. A deeper exploration of arc characteristics is essential to improve the predictive accuracy 
of BPNNs.

Correlation analysis between arc length and welding voltage
The arc contains crucial information about the welding process and can be used to predict welding 
performance[97]. The arc shape directly reflects variations in welding process parameters and stability, closely 
related to the size and stress conditions of the molten pool which significantly affect weld quality. Therefore, 
leveraging arc geometry to predict welding performance is a practical approach. To evaluate the feasibility 
of the method, the relationship between arc length and key welding parameters specifically welding voltage 
is examined in the research. The 28th group is selected for the validation due to the slow Vs, which facilitates 
the collection of a larger volume of image data over the welding trajectory. Additionally, the high pulse duty 
cycle and prominent arc characteristics further enhance the data quality. The initial cycle of the welding 
torch travel takes 43.6 s, during which 1,244 molten pool images were captured. Through the thresholding 
technique, only the images recorded during the peak current phase are retained. Arc length variations over 
time are then extracted in batches with Python. As shown in Figure 14, the fluctuations in arc length closely 
align with the monitored voltage values, confirming the correlation between arc length and welding voltage. 
The outcome demonstrates that the arc shape encapsulates valuable process information and can be applied 
to predict welding performance. The subsequent step is to extract the arc's geometric features from the 
welding images for further analysis.

Image processing for arc contour extraction
Efficient extraction of the arc contour requires specialized preprocessing techniques for the welding images, 
including three-dimensional grayscale distributions, region of interest (ROI) extraction and image 
enhancement. Firstly, the machine vision system processes images based on the distribution and gradient of 
the grayscale values. Figure 15 presents the HDR images of pulsed TIG welding at both peak and base 
currents, along with their three-dimensional grayscale distributions and the grayscale variation along the 
direction of maximum arc length. The grayscale values approach saturation in the region illuminated by the 
arc, while the values drop sharply outside the arc area indicating a steep gradient between the arc and 
surrounding areas. The pronounced contrast allows for manageable extraction of the apparent arc contour 
by applying an appropriate grayscale threshold.
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Figure 13. The weld seam thickness prediction only based on welding parameters. (A) Raw data; (B) data after screening to exclude 
obvious offset.

Figure 14. The correlation between voltage and arc length. (A) Welding voltage changes over time; (B) arc length varies with time.

Secondly, the original molten pool image size obtained by the information acquisition and processing 
system is 1,280 × 1,024. The exceptionally high local temperature of the molten pool generates intense 
thermal radiation, leading to a predominantly black background in the molten pool images. Nevertheless, 
the background area contains minimal information relevant to welding quality. To reduce redundancy and 
improve image processing efficiency, the image is cropped to extract the ROI corresponding to the molten 
pool. As depicted in Figure 16, considering possible camera motion during the process, the cropping 
window size is set to 500 × 500, ensuring that the image captures only the molten pool region.

Thirdly, to further improve the visual effect of the arc image and achieve arc feature extraction, image 
enhancement technology is introduced. The original welding arc image, as shown in Figure 17A, lacks 
sufficient contrast for effective arc contour extraction. As shown in Figure 17B, adaptive histogram 
equalization is an improvement on histogram equalization, which not only effectively enhances the local 
contrast of the image but also avoids excessive contrast enhancement. In the case of different lighting 
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Figure 15. The grayscale distribution of pulsed TIG welding images. (A) At peak current; (B) at base current (i-iii) HDR images, 
three-dimensional grayscale distribution, grayscale variation along the direction of maximum arc length. TIG: Tungsten inert gas; HDR: 
High dynamic range.

Figure 16. Extraction of ROI from melting pool images. ROI: Region of interest.

conditions in the image, the technique can retain more detailed information. As shown in Figure 17C, 
gamma correction adjusts the brightness of the image by applying a power law transformation, and the 
degree of adjustment is determined by the gamma (γ) value. A γ value less than 1 will increase the contrast 
of the darker areas of the image, while a value greater than 1 will increase the contrast of the brighter areas. 
Applying gamma correction can adjust the overall contrast of the image. The texture information of the 
weld seam outside the molten pool in the original image is weak. Adjusting the Gamma value to 2.5 can 
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Figure 17. Image enhancement at base current moment. (A) Original image; (B) adaptive histogram equalization; (C) gamma 
correction.

enhance the morphological details of the “fish scale pattern” of the weld seam.

Weld seam thickness prediction incorporating arc geometric features
Utilizing straightforward programming derived from the OpenCV library enables the efficient extraction of 
two-dimensional morphological information regarding the arc in the molten pool image. As illustrated in 
Figure 18, the specific steps to extract arc features are as follows. Firstly, the molten pool image is converted 
into a grayscale image, and the arc area is segmented from the image by setting the appropriate grayscale 
threshold. Secondly, canny edge detection algorithms are implemented to extract the arc length and arc 
width, which estimate the arc length and width by counting pixels along the arc contour. Finally, the arc 
area size is calculated according to the number of non-zero pixels in the binarized image, which 
corresponds to the pixels within the arc region. Meanwhile, significant changes in the shape and size of the 
molten pool only exist during the initial welding preheating stage and the arc closing insulation stage. The 
shape and size of the molten pool are relatively stable during the welding process with periodic fluctuations 
within a certain range. Therefore, ten molten pool images taken two seconds after the arc initiates are 
selected from each set of welding processes, and the average values are used as the representative input 
variables for the molten pool characteristics in that process. As shown in Figure 19, the prediction values 
and prediction errors for the corner weld thickness of the BPNN added arc geometric features and the 
models only depending on process parameters for prediction are compared. After employing the arc 
features as input parameters, the maximum prediction error of the model for the corner weld thickness has 
decreased from the previous 0.8 to 0.6 mm. In 28 groups of experimental parameters, only four groups have 
an error exceeding 0.2 mm. Accordingly, the BPNN integrated with arc feature parameters has higher 
prediction accuracy and smaller fluctuations in prediction errors than the original process parameter 
BPNN.

Automatically programming based on LLMs
The AI agent is an intelligent entity driven by a LLM core, capable of perceiving the environment, making 
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Figure 18. Extraction method of melting pool features. (A) Raw arc image; (B) arc light contour extraction; (C) arc size calculation; (D) 
arc filtering.

Figure 19. The comparison in the pulse TIG weld seam thickness prediction chart between the performance of the BPNN considering 
visual parameters and the BPNN relying solely on process parameters. (A) weld seam thickness value; (B) prediction error. TIG: 
Tungsten inert gas; BPNN: Backpropagation neural network.

decisions, and executing actions. The automatic programming module of the AI agent is an important 
application scenario of AI agent technology. In this section, the exploration of the programming generation 
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ability of AI agent and LLMs is conducted. The deep learning architecture for welding image defect 
recognition is generated and optimized by LLMs to explore the workflow to program assisted by artificial 
intelligence, which can be the pioneer for automatic programming in the welding automation field.

Welding defect recognition through automated programming technology
The procedure for using AI agents for automated programming in welding defect recognition tasks can 
follow the steps below. The first and most crucial step is to clarify the requirements that the programming is 
expected to fulfill. The automatic programming process is conducted by inputting the requirement into the 
LLMs and obtaining the outputting programs generated by LLMs. To make sure the LLMs can understand 
the requirement completely, clear steps for the programs are required for the input content to LLMs. In the 
input content, the program functions should be involved, including dataset loading, image preprocessing, 
dataset splitting, pre-trained weights loading, and training loss storage. Additionally, the development 
environment, including details such as the programming language (Python) and frameworks (PyTorch), 
should be clearly defined. It is worth noting that the outputs and user interfaces of four LLMs including 
ChatGPT-3.5, Claude, Microsoft Copilot, and Baidu ERNIE Bot were compared only in the simple task of 
extracting arc contours. For programming deep learning models aimed at welding defect recognition, 
ChatGPT was exclusively utilized, as it demonstrated the best ability to understand input requirements and 
generate highly applicable code.

When requirements are input into ChatGPT, the programs are generated automatically. However, 
automated programming cannot be accomplished in a single attempt and requires multiple interactions 
between humans and artificial intelligence. Occasionally, the code generated by ChatGPT may not be 
runnable in a local integrated development environment, resulting in compiler errors. These error messages 
can be fed back into ChatGPT, which will then generate solutions. There may also be new requirements for 
the programming. Developers can input the current programming along with the new requirements into 
the ChatGPT, which will then generate new programming with the added functionality automatically. 
Through the methodologies above, the programming can be finalized to ensure stable execution and 
successful fulfillment of the specified tasks. The ability of ChatGPT to iteratively refine outputs based on 
repeated inputs was most valued. Expecting a single attempt by ChatGPT to fully comprehend all 
requirements and generate flawless code was not the focus of this approach. Compared to human-written 
programs, those generated by ChatGPT tend to be more standardized, comprehensible and characterized by 
clear logic and comments.

Welding image stitching through automated programming technology
Another application of automated programming in welding defect recognition is the development of image 
stitching technology. The input for ChatGPT involves generating an executable program in a Python 
environment to stitch high-resolution welding tissue images. The program is automatically generated based 
on the following function modules: preprocessing, feature detection, feature matching, image fusion, and 
post-processing. The initial version of the program may not perfectly meet the stitching requirements. 
Adjustments can be made according to the specific function modules. For instance, various methods can be 
applied to the feature detection function, including scale-invariant feature transform (SIFT), speeded-up 
robust features (SURF), and oriented FAST and rotated BRIEF (ORB). In this research, LLMs are employed 
to generate programs for feature detection based on these methods, with each method tested within the full 
program to compare their performance in the image stitching task. After comparison, the best feature 
detector is selected, employing the SIFT method to handle the high-resolution characteristics inherent in 
welding images.
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According to the automatic programming method, the complete programs for image splicing can be 
generated on the workflow as follows: Initially, the images undergo preprocessing which entails noise 
reduction, grayscaling and rescaling. Subsequently, the feature detector is established using the SIFT method 
to accommodate the high-resolution characteristics inherent in welding images. The feature detection phase 
extracts distinctive features from each image, resulting in the generation of descriptors. The 
feature-matching algorithms include brute-force matching, nearest neighbor matching and K-dimensional 
tree (KD-tree) matching. The KD-tree matching is utilized in the research to achieve an optimal balance 
between model efficiency and accuracy. The feature-matching algorithm discerns corresponding points 
between images based on the descriptors, thereby constructing a robust set of paired feature points. 
Furthermore, the random sample consensus (RANSAC) is employed to compute the homography matrix, 
which reflects the correspondence among feature points. Image fusion techniques including weighted 
averaging, Poisson blending and Laplacian pyramid blending facilitate seamless transitions in overlapping 
regions. The suitably sized blank canvas is prepared onto which the stitched images are rendered. Finally, 
post-processing enhances the quality of the stitched images through the cropping of extraneous areas and 
the adjustment of brightness to improve detail visibility. The image splicing programs applied in this 
research are available in the Supplementary Materials. The technology abandons traditional manual 
marking methods and adopts the unsupervised stitching approach, enabling precise stitching of weld joint 
images through automated detection and matching of feature points[98]. The technology exhibits remarkable 
adaptability, ensuring consistent performance across diverse scenarios, lighting conditions and sensor 
configurations. Meanwhile, by combining the clarity of high-magnification microscopy with the broad field 
of view offered by low-magnification microscopy, image stitching technology facilitates the acquisition of 
clear and complete microstructural images of weld joints.

The schematic illustration of the longitudinal cross-section of tube plate welding is shown in Figure 20A to 
depict the micrograph position of the weld seam vividly. Through the image-stitching process, lucid and 
expansive images of welding microstructures are obtained, facilitating the effortless observation of 
microstructural characteristics and the precise identification of welding defects. The majority of weld joint 
morphologies in the welding test samples exhibit a defect-free appearance, as depicted in Figure 20B, 
indicating stable control of welding parameters and favorable welding conditions. As illustrated in 
Figure 20C, the stitched image reveals porosity defects in the weld, which may be attributed to wet 
electrodes, moisture, oil, rust on the weldment or excessive Vs and currents. Figure 21 showcases the 
morphology of the welding sample with crack defects in grayscale mode, which are caused by stresses 
generated during the cooling process. Notably, the center of the stitched image exhibits a black-striped area 
due to the absence of overlap between images captured by the camera, indicating that not all areas of the 
sample surface were captured.

CONCLUSIONS
In the present work, an in-depth investigation is conducted into the welding formation and microstructural 
characteristics of titanium alloys. First of all, the overall framework and specific structural design of the 
CNN-based defect detection model are elucidated. Image enhancement techniques are applied to augment 
the weld pool image dataset, and transfer learning methods are adopted to enhance model training 
effectiveness. The performance of ResNet34, MobileNetV2, and ConvNeXt on welding defect datasets is 
evaluated. The classification accuracy of the pre-trained ConvNeXt model, utilizing transfer learning, attains 
an impressive 99.52% following 500 training iterations. In contrast, the accuracies of MobileNetV2 and 
ResNet34 stand at 85.94% and 93.41%, respectively. Additionally, through the visualization technique of 
t-SNE, the operational dynamics of the deep learning model in defect detection tasks are thoroughly 
examined. Utilizing a systematic layer-by-layer feature extraction process, the model recalibrates the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/jmi4064-SupplementaryMaterials.zip
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Figure 20. Schematic illustration of micrograph position of weld seam in the longitudinal cross-section of tube-to-tube-sheet welding 
and spliced images. (A) Micrograph position illustration; (B) spliced image of perfect weld seam; (C) spliced image of defective weld 
seam.

high-dimensional feature distribution of the data, thereby enhancing the efficacy of defect detection. In 
addition, a three-layer BPNN model is developed, incorporating both welding process parameters and weld 
feature quantities. The extracted arc length, arc width, and arc area are used as visual features for the 
dynamic prediction of weld seam thickness, improving model performance compared to models based 
solely on process parameters. The maximum prediction error for weld seam thickness decreases from 0.8 to 
0.6 mm, and out of 28 sets of experimental parameters, only four sets result in an error exceeding 0.2 mm. 
Furthermore, an automated programming technique based on LLMs is developed to program deep learning 
models for welding defect recognition. Various LLMs including ChatGPT 3.5, Bing Copilot, Claude3 and 
ERNIE Bot are tested for their application in automated programming. Through the technology above, the 
program for image stitching is programmed, enabling unsupervised automatic stitching of multiple welding 
microstructure images. The technique results in clear and wide-field weld images, providing robust support 
for subsequent image recognition processes.
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Figure 21. Spliced image of weld joint with crack defects in grayscale mode; meanwhile, the presence of black region in the image is due 
to the absence of cross area in the original photographs.
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