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Abstract
Maintenance of DNA integrity is crucial for faithful transmission of the genetic code from generation to generation. 
Our genetic code is constantly under attack from both endogenous and exogenous sources of DNA damage. To 
ensure genome stability, cells have developed elegant DNA damage repair mechanisms. Defects in DNA damage 
repair have been linked to several human diseases including promoting oncogenesis, heritable neurodegenerative 
and neuromuscular diseases caused by unstable DNA repeats, neuropathies and myopathies caused by mutations 
and rearrangements in mitochondrial DNA, neuropsychiatric disorders, and heritable premature aging syndromes. 
This review will discuss our current understanding of how these underlying errors in DNA repair contribute to the 
clinical outcomes of patients who present with these diseases.
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INTRODUCTION
Cells in our body are exposed daily to endogenous and exogenous sources that damage their DNA, which, if 
left unrepaired, can lead to genome instability as these errors are perpetuated over subsequent cellular 
divisions[1]. It has been estimated that approximately 105 DNA lesions are generated spontaneously each day 
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in the mammalian genome[2]. Endogenous sources of DNA lesions include the production of reactive 
oxygen and nitrogen species through oxidative respiration, byproducts of lipid peroxidation, endogenous 
alkylating agents, estrogen and cholesterol metabolites, reactive carbonyl species, as well as spontaneous 
disintegration and hydrolysis of DNA under physiologic conditions leaving non-coding 
apurinic/apyrimidinic abasic sites[3,4]. Exogenous sources include ultraviolet (UV) light from the sun, 
ionizing radiation (IR), genotoxic chemicals, and carcinogens that are inhaled or ingested[5]. It has been 
postulated that one day of sun exposure can cause up to 105 UV-induced DNA lesions in each exposed 
keratinocyte, with the release of oxidative damage locally that can induce inflammation[2].

Unrepaired DNA damage can induce cancer-causing mutations, cell death or senescence, and aging. The 
type of damage leads to distinct phenotypes and the activation of specific repair pathways. DNA lesions can 
cause roadblocks for the transcription and replication machinery, errors in gene transcription, changes in 
the epigenetic landscape, and dysregulation of the cell cycle. Damage caused by double-strand breaks 
(DSBs) is considered one of the major causes of genomic instability if left unrepaired, as they can lead to 
recombinatorial replication events that form cancer-prone chromosomal translocations and other 
chromosomal aberrations including aneuploidy and loss of heterozygosity[5]. Cells have developed 
sophisticated mechanisms to identify and repair damaged DNA in order to maintain genome stability. 
These involve multiple signaling pathways focused on the type of DNA lesion [i.e., DSB, single-strand break 
(SSB), inter-strand crosslink (ICL)], phosphorylation of damage sensing proteins and signaling kinases, 
recruitment of repair proteins to sites of damage, triggering cell cycle checkpoints and downstream effectors 
that allow for lesional repair, or activation of apoptotic or senescence pathways to ensure faithful 
transmission of genetic information to their progeny[6]. Loss of function of these repair pathways leads to 
characteristic human disease phenotypes, underlying the importance of DNA damage repair in the 
maintenance of human health and homeostasis.

DNA DAMAGE RESPONSE (DDR) AND REPAIR PATHWAYS
Mammalian cells have developed an evolutionarily conserved and sophisticated DNA damage response 
(DDR) to identify and repair damaged DNA in order to protect their genetic code for faithful replication 
and transmission of genetic information to future progeny[6,7]. This DDR repair pathway consists of families 
of proteins that serve as sensors of damage, mediators of the response, further recruitment of transducers 
that enable downstream signaling of effectors, which activate cell cycle checkpoints to allow for repair, or 
trigger apoptosis or senescence, to prevent transmission of erroneous genetic information to daughter cells. 
Many of these proteins have been implicated in human disease. As an in-depth discussion of the DDR is 
beyond the scope of this article, a concise review of the different repair pathways will be provided below as a 
primer to the readers. This will follow with comprehensive sections on the etiopathogenesis of human 
diseases associated with errors in DNA damage repair (summarized in Table 1).

Double-strand break (DSB) repair
DSBs are formed following exposure to IR, X-rays, chemotherapies, and free radicals[8]. The presence of 
DSBs is considered to pose the greatest threat to genome stability in mammalian cells[9]. Repair of DSBs 
occurs via two pathways: the efficient, but error-prone, non-homologous end-joining (NHEJ) pathway; or 
the less efficient, but less error-prone, homologous recombination (HR) pathway[10,11]. NHEJ functions 
during the G1 phase of the cell cycle and repairs breaks by the simple joining of free ends, which increases 
the risk of mutagenesis. Activation of NHEJ requires the recruitment of the phosphoinositol-kinase-kinase-
kinase (PI3K) ataxia telangiectasia mutated (ATM) to sites of DSBs, leading to phosphorylation of the 
histone variant H2A.X (γH2AX) next to the break sites, which can be propagated over kilobase distances, 
forming γH2AX DNA damage foci[12]. These foci serve as beacons to recruit downstream repair and effector 
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Table 1. Human diseases associated with deficient mechanisms of DNA damage repair. List of syndromes caused by mutations in 
genes involved in DNA damage repair categorized by syndrome, DDR pathways affected, associated mutations in DDR genes, and 
presenting symptoms.

Disease Affected DDR 
Mechanism

Affected 
Gene(s) Disease Prevalence Phenotype

(1) Cancer syndromes

Ataxia-Telangiectasia[43,152] DSB repair ATM 1 in 40,000-100,000 live births Lymphomas, leukemias, breast 
cancer 

Ataxia Telangiectasia-Like 
Disorder[153]

DSB repair MRE11 Rare Leukemias

Bloom Syndrome[96,97,154] HR repair BLM Overall prevalence is unknown; 
estimated 
1 per 48,000 births in the 
Ashkenazi Jewish population

Carcinomas, leukemias, lymphomas

Fanconi Anemia[30,32,155] ICL repair, HR FANCA-C, 
FANCD1, 
D2, FANCE-G, 
FANCI, J, L-N

1 in 136,000 newborns, varies 
from 
1 in 100,000 to 250,000 births

Leukemia, myelodysplasia, squamous 
cell carcinoma

Hereditary Breast and Ovarian 
Cancer Syndrome[156,157]

HR repair BRCA1, BRCA2 Estimated 1 in 333 to 500 
individuals have a BRCA1/2 
mutation

Breast and ovarian cancers

Hereditary Nonpolyposis 
Colorectal Cancer[158-160]

MMR MSH2, MSH6, 
MLH1, PMS2

2%-5% of the Caucasian 
population

Colorectal cancer, carcinomas

Li-Fraumeni Syndrome[161,162] DSB repair TP53 Not well established, one group 
reported 
prevalence at 1:3,555 to 1:5,5476

Gliomas and breast cancers, sarcoma

MYH-Associated 
Polyposis[163-165]

BER, oxidative 
damage repair

MYH Responsible for 7% of 
attenuated 
adenomatous polyposis and  
6.6% of classic polyposis cases

Colorectal cancer

Nijmegen Breakage 
Syndrome[117,166,167]

DSB repair NBS1 1 in 100,000 newborns 
worldwide

Lymphomas

Rothmund-Thomson 
Syndrome[101]

BER, HR? RECQL4 Prevalence is unknown; about 
300 cases have been reported in 
the literature

Osteosarcoma

Werner Syndrome[99,168,169] BER, HR, telomere 
maintenance

WRN 1 in 200,000 in the US, 
estimated 
1 in 30,000 people in Japan and 
Sardinia

Various cancers (thyroid, melanoma, 
soft tissue sarcoma, osteosarcoma) 

Xeroderma Pigmentosum[2,170,171] TC-NER XPA-G, POLH 1 in 1,000,000 in US and Europe, 
about 1 in 22,000 in Japan

UV-induced skin cancers

(2) Neurologic syndromes

Aicardi Goutieres 
Syndrome[172,173]

Damage signaling RNASEH2, 
TREX1

1 to 5 per 10,000 live births Cerebral atrophy, intracranial 
calcifications, 
microcephaly, neurodegeneration

Ataxia Telangiectasia[43,152] DSB repair ATM 1 in 40,000-100,000 live births Cerebellar ataxia, neurodegeneration, 
oculomotor apraxia

Ataxia Telangiectasia-Like 
Disorder[153]

DSB repair MRE11 Rare Cerebellar ataxia, neurodegeneration, 
oculomotor apraxia

Ataxia with Oculomotor Apraxia 
Type 1[64,77]

SSB repair APTX A rare disease, most frequent in 
Portugal 
and Japan

Cerebellar ataxia, neurodegeneration, 
oculomotor apraxia

Ataxia with Oculomotor Apraxia 
Type 2 [174,175]

SSB repair, R-loop 
resolution

SETX Estimated 1 in 900,000 
individuals worldwide

Cerebellar ataxia, neurodegeneration, 
oculomotor apraxia

Cerebro-Ocular Facio-Skeletal 
syndrome[176,177]

TC-NER CSB, XPD, 
XPG, ERCC1

Rare - fewer than 20 cases 
confirmed

Brain calcification, hypomyelination, 
microcephaly, neurodegeneration

Cockayne Syndrome[87,178] TC-NER CSA, CSB, 
XPB, XPD, XPG

Less than 1 case per 250,000 
live births in the US

Microcephaly, demyelination, 
neurodegeneration

Dyskeratosis Congenita[179] Telomere 
maintenance

DKC1, TERC Prevalence is unknown; more 
than 400 families were reported 
in the world

Microcephaly, cognitive impairment, 
developmental delay

Microcephaly, Intractable Microcephaly, seizures, growth NHEJ, SSB repair PNKP Rare, prevalence unknown
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Seizures, and Developmental 
Delay Syndrome [180-182]

defects

Seckel Syndrome[139,183] DSB repair, 
replication fork 
repair

ATR, PCTN, 
SCKL2, SCKL3

Less than 1 in 1,000,000 Microcephaly, cognitive impairment, 
developmental delay

Spinocerebellar Ataxia with 
Axonal Neuropathy[75]

SSB repair TDP1 Rare Cerebellar ataxia, neurodegeneration

(3) Aging syndromes

Ataxia-Telangiectasia[43,152] DSB repair ATM 1 in 40,000-100,000 live births Premature bone marrow exhaustion, 
early-onset diabetes, 
neurodegeneration

Alpers-Huttenlocher 
Syndrome[184]

Mitochondrial DNA 
replication and 
repair

POLG1 1 in 100,000 individuals Neurodegeneration, liver failure

Bloom Syndrome[96,97,154] HR repair BLM Overall prevalence is unknown; 
estimated 1 per 48,000 births in 
the Ashkenazi Jewish population

Early-onset diabetes, pulmonary 
disease, increased cancer risk

Cockayne Syndrome[86,87,178] TC-NER CSA, CSB, 
XPB, XPD, XPG

Less than 1 case per 250,000 
live

Cataracts, muscle atrophy, 
neurodegeneration

Fanconi Anemia[30,32,155] ICL repair FANCA-W 1 in 136,000 newborns, varies 
from 1 in 100,000 to 250,000 
births

Premature bone marrow exhaustion, 
increased cancer risk

Hutchinson-Guilford Progeria 
Syndrome[185,186]

DDR, DSB repair, 
chromatin 
organization

LMNA Approximately 1 in 20,000,000 Alopecia, atherosclerosis

Werner Syndrome[99,168,169] BER, HR, telomere 
maintenance

WRN 1 in 200,000 in the US, 
estimated 1 in 30,000 people in 
Japan and Sardinia

Growth retardation, short stature, 
premature graying of hair, alopecia, 
arteriosclerosis, 
atrophic skin, bilateral cataracts, 
type II diabetes

(4) Immunodeficiencies

Hyper-IgM Syndrome[112] CSR AID, UNG Fewer than 1 in 1,000,000 Increased IgM levels, lymphoid 
hyperplasia

Immunodeficiency with 
Microcephaly[1,187]

NHEJ XLF Less than 1 in 1,000,000 
worldwide

Hypogammaglobulemia, 
lymphopenia, microcephaly

Ligase IV Syndrome[82,188] NHEJ LIG4 Prevalence is unknown; globally 
only 28 cases are described

Hypogammaglobulemia, 
lymphopenia[188]

Radiosensitive Severe Combined  
Immunodeficiency[187]

NHEJ ARTEMIS Rare Agammaglobulinemia, lymphopenia

Schimke Immuno-Osseous 
Dysplasia [189]

Replication fork 
repair

SMARCAL1 1 in 1,000,000 to 3,000,000 
people in North America

T cell deficiency

Severe Combined 
Immunodeficiency 
Syndrome[154,187]

NHEJ Rag1, Rag2 1 in 100,000 in US Agammaglobulinemia, lymphopenia

DDR: DNA damage response; DSB: double-strand break; HR: homologous recombination; ICL: Interstrand crosslink; MMR: mismatch repair; BER: 
base excision repair; TC-NER: Transcription-coupled nucleotide excision repair; SSB: single-strand break; NHEJ: non-homologous end-joining; 
CSR: class-switch recombination.

proteins to sites of damage, leading to activation of the G1 cell cycle checkpoint kinase Chk1 and cell cycle 
arrest in a p53-dependent manner[13]. HR requires a template sister chromatid for accurate alignment and 
annealing of DSBs and thus occurs during the G2 and S phases of the cell cycle. Phosphorylation of H2A.X 
during HR requires the PI3K ataxia telangiectasia related (ATR) and subsequent recruitment of key proteins 
such as BRCA1 and BRCA2 to the replication fork for DNA template repair. Mutations in BRCA1/2 (breast 
cancer gene 1/2) have been linked to familial breast cancer syndromes[14,15].

Nucleotide excision repair
Nucleotide excision repair (NER) is the most versatile repair pathway with the ability to repair damaged 
SSBs and other lesions caused by UV, chemical-induced DNA adducts, crosslinks, and oxidized bases[16]. 
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Two NER pathways have been identified in eukaryotes in response to distinct types of DNA lesions: the 
general genome NER (GG-NER) pathway responds to genome-wide DNA damage and requires the 
xeroderma pigmentosum (XP) complementation group C/Human Homolog of Rad23 B (XPC/HHR23B) 
complex[17]; and transcription-coupled NER (TC-NER), which exclusively repairs lesions identified on 
single-stranded DNA templates during transcription and requires recruitment of Cockayne Syndrome (CS) 
A and B (CSA and CSB) proteins to stalled RNA polymerase II at lesion sites[18-20]. Mutations in XPC have 
been associated with photosensitivity and predisposition to cancers in patients with XP[21], while patients 
harboring mutations in CSA and CSB present with developmental growth delays and deformities, thought 
to be due to dysregulated transcription[22].

Base excision repair
Base excision repair (BER) responds to damage caused by byproducts of cellular metabolism including the 
formation of reactive oxygen species (ROS), methylation, deamination, and hydroxylation[23]. This pathway 
recognizes and repairs abasic sites, SSBs, and damaged nucleotide bases[24]. There have been no known 
human disorders associated with BER deficiency to date, suggesting that there are likely redundancies in the 
BER pathway that allow for safeguards against genome instability. However, loss of function of core BER 
pathway proteins in mice is embryonic lethal, highlighting the importance of this pathway[5]. Certain 
polymorphisms in the BER pathway scaffold protein XRCC1 may appear to be associated with lung and 
other cancers, pointing to the possible involvement of this pathway in regulating oncogenesis[25].

Mismatch repair
Errors in base-pairing or small in-frame deletions (indels) made by DNA polymerase are identified and 
corrected by the mismatch repair (MMR) system to ensure faithful replication of the genetic code[26]. 
Mismatches or indels are repaired by a heterodimeric complex requiring the proliferating cell nuclear 
antigen ring protein[27], which serves as a sliding clamp along a coding strand template of the DNA 
replication fork to recruit the MMR assembly composed of MSH2, MSH3 and/or MSH6 (MutS Homolog 
2/3/6), MLH1 (MutL Homolog 1), EXO1 (Exonuclease 1), and DNA polymerases[28]. Defects in MMR lead 
to microsatellite instability, as seen in hereditary nonpolyposis colorectal cancer (HNPCC) and other 
sporadic cancers[29].

Interstrand crosslink repair
The formation of interstrand crosslinks (ICLs) between two strands of DNA causes roadblocks for both the 
transcription and replication machinery leading to transcriptional and/or replication stress. Due to the 
complex structure of ICLs, several steps and a multitude of enzymes and protein complexes are required to 
remove these lesions from damaged DNA and enable repair. Core to this repair machinery is the members 
of the Fanconi anemia (FA) pathway, 13 of which are mutated in FA syndrome[30,31]. Central to the 
recognition and repair of ICLs is the ID (FANCI-FANCD2) complex, which accumulates at sites of ICLs 
and recruits FA enzymes including the FAN1 endo- and exo-nuclease, translesional synthesis polymerases 
REV1 and Polζ, and FA proteins BRCA2/FANCD1, PALB2/FANCN, and BACH1/FANCJ in an ATR-
dependent manner to facilitate HR repair of excised ends[10]. FA patients with mutations in FA proteins 
present with increased cancer risks and premature bone marrow failure[32].

THE ROLE OF PHYSIOLOGICAL DNA DAMAGE IN BIOLOGICAL PROCESSES
V(D)J recombination, class-switch recombination, and somatic hyper-mutation
Certain biological processes depend on programmed DNA damage. Immature T lymphocytes rely on DSB 
formation at exons encoding the variable regions used for antigen recognition and binding on T cell 
receptors (TCR) during V(D)J recombination. Recognition of cleavage sequences flanking these V, D, and J 
exons by the RAG1-RAG2 complex leads to the formation of blunt-ended DSBs, which are recombined and 
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repaired using NHEJ[33,34]. These recombination events increase the T cell repertoire and TCR diversity, 
ensuring healthy and active immune surveillance. Subsequently, defects in NHEJ cause severe combined 
immunodeficiency syndrome (SCID)[35]. Immature B cells have a rearranged immunoglobulin (Ig) heavy-
chain variable domain that is initially fused to an Igμ constant region. During antigen-stimulated B-cell 
differentiation, class-switch recombination (CSR) juxtaposes a V region to any constant region to encode 
distinct antigenic memory on the resultant differentiated Ig. Antigenic stimulation of B cells also activates 
somatic hypermutation to increase mutation rates in the heavy- and light-chain variable regions to expand 
the repertoire of variable segments to allow for the selection of B cells that express Ig molecules with high 
antigen specificity. CSR and somatic hypermutation require activation-induced deaminase, which targets 
the variable-region exons and IgH switch regions, causing deamination of cytosine residues to uracil and 
the formation of U:G mismatches, triggering repair through the MMR or BER pathways to form SSBs. It is 
thought that SSBs formed during CSR are converted to DSBs and repaired using NHEJ to ligate the variable 
region to a constant region, while SSBs formed during somatic hyper-mutation are repaired in an error-
prone manner to yield mutations within the variable regions[34].

Meiotic recombination
The exchange of genetic information during meiosis is crucial to allow for genetic diversity and gamete 
formation. Chromosomal alignment and exchange of genetic information between homologous 
chromosomes during phase I of meiosis requires the formation of DSBs generated by Spo11[36]. The Mre11-
Rad50-Nbs1 (MRN) complex is recruited to sites of damage and resects the DSBs to form ssDNA, which 
can be repaired by HR using the homologous chromosome and requires the meiosis-specific RAD51-like 
protein DMC1[37]. Spo11 or Dmc1 knockout mice are viable but infertile[38].

Telomere maintenance
The ends of mammalian chromosomes are organized into telomeres - stretches of short tandem DNA 
repeats terminating in a 3’ ssDNA overhang that is sequestered in a Shelterin complex which prevents 
access by the NHEJ or HR machinery[39-41]. However, during the G2 phase of the cell cycle, exposed telomeres 
can be recognized by the MRN complex and ATM to possibly encourage a localized DDR for telomere end-
processing and shelterin complex formation[42]. Along these lines, loss of function of several proteins 
involved in the DDR causes telomere shortening and dysfunction that can trigger chromosomal fusions and 
chromosomal instability[41,43].

Human cells normally do not express enough telomerase to withstand naturally occurring telomere 
shortening due to the inability of the DNA replication machinery to fully replicate the ends of 
chromosomes, leading to open terminal ends of chromosomes that are perceived to be DSBs and are 
subjected to repeated cycles of breakage and repair[44]. These cycles can lead to apoptosis or senescence, and 
are also believed to contribute to the aging process and other age-related pathological processes such as 
atherosclerosis and arthritis[45].

HUMAN DISEASES CAUSED BY ERRORS IN DNA DAMAGE REPAIR
Cancer syndromes
Cancer is considered to be a disease of genome instability and mutation caused by errors in DNA damage 
repair[5,46,47]. Cytogenetics analysis of cancer cells often reveals chromosomal instability, copy number 
alterations, and expansions or contractions of repetitive microsatellite sequences[46]. Evidence that errors in 
DNA damage maintenance are linked to cancer development lies in the fact that mutations in several DDR 
genes are linked to several cancer syndromes [Table 1].
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Point mutations in the HR pathway genes BRCA1 and BRCA2 predispose women to hereditary breast and 
ovarian cancer (HBOC) syndrome[14,48]. HBOC accounts for up to 10% of breast cancer cases - individuals 
that are heterozygous carriers of BRCA1/2 mutations have a 40-80% lifetime risk of developing breast 
cancer[49] while male patients who harbor BRCA1/2 mutations have an increased risk of developing breast, 
pancreas, and prostate cancers[50-52]. Familial mutations in HR pathway genes BACH1, PALB2, and RAD51C 
have also been identified in 3% of familial breast cancer patients and confer a 2-fold increased risk of 
developing breast cancer[53], while mutations in key genes involved in DSB repair including CHK2, ATM, 
NBS1, and RAD50 have been shown to also confer a 2-fold increased risk of breast cancer[54].

Heterozygous mutations in MMR pathway genes MLH1, MSH2, MSH6, and PMS2 have been linked to 
HNPCC, or Lynch Syndrome[55]. Patients present primarily with colorectal cancer but also have an increased 
predisposition to developing endometrial, ovarian, gastric, and renal carcinomas.

FA is a genetic syndrome characterized by mutations in 13 FA genes (FANCA to FANCV) involved in the 
ICL repair pathway. Monoallelic inactivation of FANCD1(also known as BRCA2) leads to adult HBOC 
cancer predisposition syndrome with an increased lifetime risk of breast cancer by 50% and a 15% increased 
lifetime risk of ovarian cancer (reviewed in Nalepa & Clapp)[56]. A review of The Cancer Genome Atlas has 
identified acquired mutations, epigenetic silencing, and copy number variations in FA genes have been 
identified in patients with a variety of malignancies[57].

Environmental sources of DNA damage and tumorigenesis
Benzo(α)pyrene in cigarette smoke has been shown to react with the 2-amino position of guanine residues, 
forming a guanine adduct, which after one cycle of DNA replication, leads to the incorporation of an 
adenine base instead of cytosine and subsequent guanine to threonine tranversion[58]. This transversion 
causes a mutational profile in the tumor suppressor gene TP53, which strongly correlates with lung cancer 
in smokers vs. non-smokers[59]. Environmental sources of IR or X-rays produced by cosmic radiation, soil, 
rocks, radioactive materials, and medical devices can lead to direct DNA damage or indirect DNA damage 
by radiolysis of water molecules to form reactive hydroxyl radicals[8]. IR can lead to base damage, DSBs, and 
SSBs, all of which require prompt repair via the BER and HR pathways[60]. Repair of UV sunlight-induced 
DNA crosslinks requires the XP family member of proteins involved in the BER pathway[61]. Hereditary 
mutations in these genes lead to the familial syndrome with their namesake XP, in which patients present 
with premature skin photoaging and an increased incidence of skin cancer[62]. Lifetime ingestion of 
carcinogens including polycyclic aromatic hydrocarbons, nitrosamines in cured foods, aldehydes in alcohol, 
and arsenic in contaminated drinking water, has been implicated in the development of colorectal 
cancers[63].

Neurological diseases
Until recently, it has been thought that post-mitotic neurons rely solely on error-prone NHEJ for DNA 
repair, but recent reports now suggest that neurons are able to use a transcription-triggered, replication-
independent recombination repair pathway that requires the HR repair protein RAD52 for the repair of 
DSBs[64,65]. As neurons are obligative aerobes, they rely heavily on oxidative phosphorylation via 
mitochondrial respiration, which leads to the production of ROS that can cause DNA damage[43]. Defects in 
DDR repair in neurons lead to neurodegenerative syndromes that primarily affect the oxygen-dependent 
cells of the cerebellum[66]. Patients present with ataxia (loss of motor coordination), oculomotor apraxia 
(disco-ordinated eye movements), and dysarthria (speech deficits). Perhaps the most extensively studied 
central nervous system disease caused by a DDR defect is Ataxia-Telangiectasia (A-T), caused by mutations 
in ATM[67]. A-T patients have progressive loss of Purkinje and granule cells in their cerebellum, leading to 
rapid loss of motor coordination with early onset in their childhood years[67]. Similarly, patients with A-T-
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like Syndrome (A-TLD) have mutations in MRE11, a member of the MRN complex which senses the
presence of DSBs and recruits ATM to amplify the DDR, and present with motor deficits similar to patients
with A-T, albeit with a delayed onset and slower progression[10].

Patients with DDR syndromes often present with an abnormally small head circumference (microcephaly),
thought to be due to defective proliferation of neuroprogenitor cells during fetal development[68]. A
hypomorphic mutation in the ATR gene is found in patients with Seckel Syndrome (SS) - these patients
present with a constellation of findings including dwarfism and a “bird-like” facies. Loss of function of ATR
in cells leads to a decreased ability to repair replication stress-induced DNA damage through HR[68]. Patients
with defects in HR, such as Bloom Syndrome (BS) patients (who have mutations in the RECQ helicase
BLM), FA patients, and patients with XFE Progeroid Syndrome (who have XPF mutations), also present
with microcephaly[68]. Other microcephalic syndromes that are associated with defects in the ATR DDR
pathway include Miller-Dieker Lissencephaly and Williams-Beuren Syndrome[69]. Patients with Nijmegen
Breakage Syndrome (NBS) and Nijmegen Breakage Syndrome-Like Disorder (NBSLD) have hypomorphic
mutations in NBS1 and RAD50, respectively, members of the aforementioned MRN complex that are
involved in DSB repair[70,71]. Interestingly, NBS and NBSLD patients do not present with the same findings as
patients with A-T despite having mutations in genes that are involved in the ATM DDR pathway; however,
NBS mutant neurons exhibit ATM-dependent apoptosis, suggesting that a robust ATM response may
decrease the severity of neurodegeneration and microcephaly in these patients[72]. Finally, pregnant survivors
of the Hiroshima and Nagasaki atomic bombs were found to deliver fetuses with microcephaly and smaller
brain volume, emphasizing the deleterious effects of in utero exposure to large doses of IR[73].

The necessity of non-dividing, post-mitotic neurons to rely on SSB repair (SSBR) machinery has led to the
identification of several neurological disorders associated with mutations in members of the SSBR
pathway[74]. A histidine to arginine mutation at residue 493 (H493R) in tyrosyl-DNA phosphodiesterase, the
enzyme that hydrolyzes the tyrosyl-3’ phosphate linkage in order to resolve stalled topoisomerase 1-DNA
complexes during SSBR, was identified in patients with hereditary Spinocerebellar Ataxia Axonal
Neuropathy type 1 (SCAN1)[75]. SCAN1 patients present with progressive childhood-onset of cerebellar
ataxia followed by areflexia and peripheral neuropathy[76]. Similarly, germline mutations in the SSBR
pathway protein APTX have been linked to individuals with Ataxia Ocular Motor Apraxia type 1 (AOA1), a 
progressive neurological disorder that resembles other types of cerebellar ataxia including A-T[77,78].
APTX nuclease cleaves AMP from the 5’-terminal of ssDNA breaks, thus allowing for ligation of the 5’-
phosphate terminus[79]. Mutant APTX in terminally differentiated cells such as neurons may lead to the
accumulation of ssDNA breaks, creating transcriptional blocks and increased transcriptional stress,
triggering apoptosis. Indeed, fibroblasts from AOA1 patients are more sensitive to oxidative DNA damage
and there is more oxidative DNA damage in the cerebellum of AOA1 patients[80]. Finally, biallelic mutations
in exon 12 of the SSBR scaffold protein XRCC1 (K431N) lead to axonal neuropathy and cerebellar ataxia in
patients with AOA type 5[81]. Taken together, these findings support the role of dysfunctional DDR in the
etiopathogenesis of neurologic diseases. A summary of these neurological diseases is provided in Table 1.

Patients with missense mutations in DNA ligase IV (LIG IV) can present with microcephaly, growth
retardation, pancytopenia, a predisposition to lymphomas, combined immunodeficiency, and
hypersensitivity to chemotherapies[82]. This is similar to patients with mutations in XLF, who present with
milder symptoms of radiosensitivity, pancytopenia, and impaired survival[83]. Loss of function of XRCC4 has
been reported in a patient with microcephaly and cerebellar ataxia with an intact immune system,
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suggesting that this protein is not essential for V(D)J recombination[84].

Aging
Aging is a complex process thought to consist of a gradual decline in mitochondrial function, metabolic 
dysregulation, the loss of stem cell function, and the accumulation of damaged macromolecules within 
cells[85]. Evidence that the accumulation of DNA damage can lead to premature aging lies in several 
premature aging syndromes that are linked to defects in DDR pathways, including: progeroid syndromes 
like Cockayne Syndrome (CS), Trichothiodystrophy (TTD), Cerebro-Oculo-Facio-Skeletal Syndrome 
(COFS), Dyskeratosis Congenital (DKC); Hutchinson-Gilford Progeroid Syndrome (HGPS); Werner 
Syndrome (WS); Xeroderma Pigmentosum (XP); and Rothmund-Thomson Syndrome (RTS) [Table 1][1].

CS patients have mutations in CSA (also known as ERCC8) or CSB (also known as ERCC6) and present with 
early developmental growth retardation, progressive vision loss, sensorineural deafness, early-onset 
neurodegeneration, and an average life span of 12 years of age[22]. Approximately 70% of CS patients have a 
mutation in CSA and the remaining 30% have a mutation in CSB[86,87]. There are approximately 78 known 
CSB mutations and 30 CSA mutations, with patients harboring CSA mutations presenting with a more 
moderate form of CS[87]. Interestingly, despite defects in TC-NER being linked to mutations in CS genes, 
patients with CS do not present with UV hypersensitivity, nor have there been any reported cases of cancer 
in patients with CS, suggesting that repair defects in DNA damage alone are not sufficient to cause cancer 
but can promote premature aging[1]. This is in contradistinction to XP patients who also harbor defects in 
TC-NER due to mutations in XP genes, present with increased incidences of skin cancer, and can present 
with early-onset CS, combined XP/CS, and segmental progeria with features of dwarfism, cachexia, and 
microcephaly[88].

TTD patients have point mutations in the DNA helicases XPB and XPD, components of the repair and 
transcription factor IIH (TFIIH), causing them to suffer from progeria with CS features in addition to brittle 
hair, nails, and ichthyotic skin[88,89]. Mutant NER transgenic mice display signs of progeria, including 
accelerated aging, bony deformity, neurodegeneration, hearing loss, growth retardation, infertility, cachexia, 
stem cell depletion, and frailty, further emphasizing the role that NER plays in the aging process[90-92].

Defective GG-NER in XP patients caused by mutations in the NER repair enzymes XPA through to XPG 
leads to increased DNA damage across the entire genome[93]. Consequently, XP patients with GG-NER 
suffer from UV-induced skin hyperpigmentation with a 2000x increased risk of skin cancer as well as the 
development of tumors elsewhere in the body[93]. XP patients who also have defects in TC-NER present with 
rapid neurodegeneration[2,94].

Patients with mutations in the RECQ family of DNA helicases BLM, RECQL4, and WRN present with 
progeroid syndromes[95]. The BLM helicase suppresses recombination and maintains genome stability[96,97], 
RECQL4 participates in DNA replication and repair[98], and the WRN helicase manages replication stress 
and telomere stability[99]. Mutations in BLM cause BS, in which patients present with a shortened lifespan 
and early presentation of age-related diseases, including diabetes, chronic obstructive pulmonary disease, 
and cancer[100]. RECQL4 mutations lead to RTS, presenting with juvenile cataracts, epidermal atrophy, and 
increased cancer risk[101]. WRN mutations cause WS with premature onset of age-related diseases, growth 
retardation, and lipodystrophy[102].
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Immunodeficiency
Healthy immune surveillance is required to defend the body from foreign pathogens and antigens. Then, 
lymphoid B and T cells must be able to generate a diverse repertoire of B and T cell receptors (BCR and 
TCR, respectively). This relies on V(D)J recombination and CSR. To perform V(D)J recombination, cells 
require the recombinases RAG1 and RAG2[103]. These programmed DSBs are repaired in G0/G1 by NHEJ, 
requiring the damage sensing PI3K DNA dependent protein kinase to phosphorylate the exonuclease 
Artemis to process the breaks[104]. Repair by NHEJ requires ATM, the MRN complex, 53BP1 and 
RNF168[105]. These DSB repair proteins share overlapping functions with the DNA repair protein XLF[105]. 
End ligation is performed by the DNA LIG IV/XRCC4-XLF complex[106]. B cells undergo CSR to generate 
multiple Ig subsets and require activation-induced cytidine deaminase (AID) to deaminate cytidine to uracil 
at the transcriptionally active switch region, which is then modified by UNG (uracil-DNA glycosylase) to 
allow for BER[107].

Mutations in RAG1 or RAG2 lead to defective V(D)J recombination in T and B cells, resulting in severe 
SCID[108,109]. RAG1/2 deficient SCID patients are not radiosensitive and do not present with developmental 
delay but require stem cell transplantation in order to reconstitute their immune systems. In contrast, 
patients with mutations in the gene DCLRE1C that encodes for Artemis present with radiosensitive SCID 
and are predisposed to lymphoma[110].

Somatic mutations in AICDA and UNG affect CSR, resulting in hyper IgM gammopathy[111-113]. AID and 
UNG patients have lymph node hyperplasia due to the presence of giant germinal centers. AID patients 
may present with signs and symptoms of autoimmunity, inflammation, diabetes, arthritis, hemolytic 
anemia, immune thrombocytopenia, and chronic uveitis[112]. Defects in the chromatin remodeling and DDR 
complex INO80 affect CSR with reports of patients presenting with normal IgM but decreased IgG and IgA 
levels[114]. Constitutional MMR deficiency syndrome (CMMRD) presents with a partial Ig-CSR defect in 
which patients can present with brain tumors, hematological malignancies, and other solid organ 
cancers[115]. Somatic hypermutations in the MMR pathway genes PMS2, MSH6, MSH2, or MLH1 have been 
detected in CMMRD patients[115]. Mutations in RNF168, which is responsible for ubiquitylation of 53BP1 
and downstream recruitment of BRCA1 to DSBs[105], lead to defective DSB repair and Radiosensitivity, 
Immunodeficiency, Dysmorphic features, and Learning difficulties (RIDDLE) Syndrome[116]. Patients with 
RIDDLE syndrome have decreased IgG and IgA with clinical features of A-T[116]. Finally, patients with 
mutations in NBS1, a member of the MRN DSB repair sensor complex, present with NBS characterized by 
microcephaly, growth retardation, cognitive delay, immunodeficiency with a decreased complement of T 
and B cells, and increased cancer risk[117]. In summary, this diverse group of immunodeficiencies linked to 
mutations in DDR genes hits home the importance of preprogrammed DNA damage and repair for 
immune system maintenance (further outlined in Table 1).

USING ANIMAL MODELS TO STUDY HUMAN DISEASES OF DNA DAMAGE
To study the phenotype of deficient DNA repair, mouse models have been used extensively to model the 
symptoms found in many human diseases of DNA damage repair[118]. These murine models serve as 
invaluable tools to study the phenotypic effects of defects in DNA damage repair pathways at the cellular 
and whole organism levels; however, many of these models do not completely recapitulate the complexity of 
signs and symptoms that are seen in humans, and therefore, one must be aware of these limitations when 
conducting studies using these animal models. Listed below are several known genetically-engineered 
mouse models of human diseases of DNA damage:
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(1) A-T mice faithfully recapitulate tissue radiosensitivity and immunodeficiency seen in patients with A-T; 
however, earlier mouse models lacked the typical neurological symptoms and cerebellar dysfunction seen in 
humans. A-T mice faithfully recapitulate tissue radiosensitivity...cerebellar dysfunction seen in 
humans[119-124]. A more recent report using the insertion recent report using the insertion of null mutations 
in both the ATM and APTX genes in a mouse model of A-T, successfully generated mice that developed 
severe ataxic symptoms and atrophy of the cerebellar molecular layer[125].

(2) Mouse models of HR deficiency require mutations in both alleles of Brca1 or Brca2 in order for mice to 
develop breast tumors while heterozygous deletions of either BRCA1 or BRCA2 are sufficient to drive 
tumorigenesis in humans[126-129].

(3) Mouse models of MMR deficiency are also tumor prone; however, unlike the hereditary colon cancer 
syndrome in human patients (Lynch syndrome), mice with mutations in MMR genes such as Mlh1, Msh6, 
and Msh2 form tumors in the lymphatic compartment and not in the gut[130,131].

(4) Early mouse models of BS demonstrated that homozygous mutation of the murine BS gene Blm caused 
developmental delay and embryonic lethality[132].

(5) Several mouse models have attempted to model the complexity of FA, caused by mutations in more than 
a dozen genes involved in DNA interstrand crosslink repair. However, knockout mice with single-gene 
knockouts such as FancA-/- mice do not spontaneously display congenital anomalies nor have hematological 
abnormalities seen in FA patients[133]; however, FancA-/- and FancG-/- mice develop microcephaly due to 
increased neuronal apoptosis and can be interpreted as accelerated aging of stem cells in FA. Similarly, 
FancC-/- mice do not develop skeletal abnormalities or hematological abnormalities, but they do have 
impaired fertility, similar to that seen in FA patients, as well as hypersensitivity to DNA crosslinking 
agents[134,135].

(6) Mouse models of the progeroid diseases, Hutchinson-Gilford Progeria (HGP) and WS, do not have a 
marked progeroid phenotype, unlike the premature aging seen in patients. This has been postulated because 
mice have longer telomere lengths and may lead to relative resistance to the accelerated aging seen in WS 
patients with mutations in the WRN gene that encodes the BLM-related helicase[136]. Interestingly, mouse 
models of HGP harboring mutations in LmnA, a gene related to nuclear lamina and not to DNA repair 
pathways, also do not show signs of early aging, but HGP cells accumulate high levels of DNA damage[137,138].

(7) Seckel Syndrome (SS), a rare genetic condition caused by mutations in several genes, including genes 
involved in the ATR DNA damage repair pathway, namely ATR and ATRIP, presents with intrauterine 
growth restriction, dwarfism, microcephaly, and intellectual disability[139]. The mouse model harboring 
hypomorphic mutations on ATR recapitulates faithfully many of the features of SS patients and mice 
accumulate high amounts of DNA damage and genome instability in utero, leading to accelerated aging at 
birth[140].

(8) Mouse models of XP, defective in NER genes (XPA, XPB, XPC, and others), present with 
hypersensitivity to UV light and a high cancer incidence, similar to that seen in XP patients[141]. 
Interestingly, mouse models of CS, which are caused by mutations in the NER genes ERCC6 and ERCC8, 
also present with accelerated aging and a predisposition to cancer[142].
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(9) Mouse models of NBS have hypomorphic mutations in Nbn1, and null mutations of Nbn are 
embryonically lethal[143]. Mice harboring hypomorphic mutations in Nbn are viable, but they do not 
demonstrate any neurological phenotypes as that seen in the human NBS patients[144]. The cerebellum of 
Nbn mice has agenesis and decreased proliferation of neuronal progenitor cells accompanied by marked 
death of cerebellar neurons[145]. Specific deletion of Nbn in the mouse CNS (NbnCNS-del) leads to growth 
retardation and early onset of cataracts[146], as well as microcephaly, decreased white matter integrity, retina 
and astrocyte functionality, recapitulating the microcephaly seen in human patients with NBS[147-149].

DIFFERENCES IN THE DNA DAMAGE AND REPAIR RESPONSE BETWEEN HUMAN AND 
MOUSE NEURONS AND ASTROCYTES
It is interesting that many mouse models of DNA damage repair do not faithfully recapitulate the 
neurological symptoms seen in their human counterparts, suggesting that there are inherent differences in 
DNA damage repair between mouse and human neurons. Indeed, a recent study comparing mouse and 
human neurons identified distinct differences in their response to different forms of DNA damage[150]. 
Human and mouse neurons treated with identical doses of the DNA damaging agent camptothecin (CPT) 
for the same period of time demonstrated markedly different alterations in the nuclei of degenerating 
neurons. CPT-treated differentiated human neurons showed homogeneous and uniform chromatin 
condensation within the nucleus but did not form discrete round chromatin clumps or crescentic 
marginations at the nuclear envelope nor form discrete round chromatin clumps at the nuclear envelope as 
would be seen during neuronal apoptosis; instead, they demonstrated signs of pyknosis. In contrast, mouse 
neurons demonstrated signs of apoptosis which was demonstrated consistently regardless of where neurons 
were harvested in the mouse brain. Mouse neurons underwent apoptosis through activation of caspase-3, 
while human neurons only had mild activation of caspase-3 but instead showed robust activation of 
caspase-6. Interrogation of the mitochondria cell death pathway also demonstrated different response rates 
between human and mouse neurons. Mouse neurons had early activation of Bax while Noxa levels 
remained at baseline, and Puma levels also had an early spike in response to CPT. In contrast, human 
neurons had a much later spike of Bax levels, while Noxa and Puma levels exhibited a significant and 
progressive increase over the course of many hours throughout the treatment course[150]. Finally, an 
investigation of the individual components of the DDR pathway in mouse and human neurons during CPT 
treatment demonstrated that mouse neurons did not mount a robust activation of the MRN complex, which 
senses DSBs caused by CPT, while human neurons mounted a rapid activation of MRN. Human neurons 
showed sustained activation of ATR, p53 and p73, while mouse neurons showed rapid suppression of ATR 
and had sustained activation of p53 and p73[150].

Another study identified differences in the response of mouse and human astrocytes to oxidative stress, 
hypoxia, inflammatory cytokine treatment, and simulated viral infections[151]. This study helps shed light on 
why many mouse models of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, 
and Huntington’s disease often have milder phenotypes compared to human patients, possibly owing to the 
inherent increased resilience of mouse astrocytes to the effects of oxidative stress. The authors also showed 
that mouse astrocytes activated a pro-growth program in response to hypoxia but not in human astrocytes, 
possibly explaining the greater functional recovery observed in mouse models of ischemic stroke compared 
to human stroke patients. Taken together, these studies demonstrate differences in the ways that different 
populations of mouse and human brain cells process DNA damage and other forms of cellular stress and 
insult, and further address the potential limitations in interpreting studies performed using animal models 
of DNA damage and neurological diseases.
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CONCLUSION
In summary, the ability of human cells to respond effectively to daily endogenous and exogenous sources of 
DNA damage ensures longevity and health. As we continue to uncover a further mechanistic understanding 
of these inherited syndromes, the hope is to be able to discover targeted therapies that will effectively reverse 
the devastating effects of these diseases and improve the quality of life and survival for these patients.
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