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Abstract
HER2-positive breast cancer is an aggressive disease. As a result of the development of specific HER2-targeted 
therapies, such as trastuzumab, more than 20 years ago, the prognosis of these patients has improved. Metastatic 
HER2-positive breast cancer patients are achieving better survival rates upon treatment with anti-HER2 therapies 
than patients with HER2-negative disease. Double HER2 blockade with trastuzumab and pertuzumab combined 
with a taxane achieved an unprecedented survival of over 57 months in first-line patients. Trastuzumab emtansine, 
the first antibody-drug conjugate approved for patients in second-line treatment was a potent cytotoxic agent 
bound to trastuzumab and is currently a standard therapeutic strategy. Despite the progress in treatment 
development, most patients develop resistance and eventually relapse. Advances in the design of antibody-drug 
conjugates have led to the development of new generation drugs with enhanced properties, such as trastuzumab 
deruxtecan and trastuzumab duocarmazine, which are significantly changing the paradigm in the treatment of 
HER2-positive metastatic breast cancer.
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INTRODUCTION
The development of anti-HER2 therapies: from antibodies to antibody-drug conjugates            
Human epidermal growth factor receptor 2 protein (HER2)-positive breast cancer is an aggressive disease
that accounts for approximately 15%-20% of the total breast cancer cases worldwide[1]. Most of these cases
are diagnosed at the early stage. The HER2 pathway drives the growth and expansion of tumor cells.
Research into the development of anti-breast cancer therapies has been focused on blocking the HER2
receptor with different strategies.

Trastuzumab
Trastuzumab is an anti-HER2 humanized monoclonal antibody directed against the extracellular portion of
HER2. Trastuzumb was the first therapy approved by the FDA in 1998 for metastatic breast cancer patients
with tumors with HER2 overexpression and it was approved in 2006 for use in the adjuvant setting after
demonstrating a significant benefit in progression-free survival (PFS) and overall survival (OS) in both early
and advanced disease[2,3]. The mechanisms of action of trastuzumb are the inhibition of HER2 shedding and
inhibition of the PI3K-AKT pathway, resulting in an attenuation of cell signaling and promotion of
antibody-dependent cell-mediated cytotoxicity (ADCC). Trastuzumab has significantly changed the
landscape for HER2-positive patients[4]. However, some tumors acquire resistance to trastuzumab through
mechanisms including increased cell signaling, PTEN loss, PIK3CA mutations, increased AKT activity,
alternative cell signaling mediated by EGFR pathways, TGF-α overexpression, and expression of
extracellular domain-truncated HER2 (p95 HER2)[5].

Pertuzumab
To overcome trastuzumab resistance and improve treatment efficacy, a strategy was developed of
combining trastuzumab with pertuzumab, another antibody that binds a different epitope of HER2,
preventing the formation of HER2-HER3 heterodimers, the most active forms in signaling[6]. The
combination of this double anti-HER2 blockade with a taxane was approved by the FDA in 2012 for first-
line treatment for HER2-positive advanced disease on the basis of results of the CLEOPATRA trial, which
demonstrated an improvement in PFS and OS with this strategy[7].

Trastuzumab-emtansine (T-DM1): the first anti-HER2 ADC
Through continued research, another strategy was developed using a novel drug design technology for
antibody-drug conjugates (ADCs), in which a potent cytotoxic agent is conjugated to an antibody with a
linker to selectively deliver the payload to cells expressing a specific antigen, theoretically sparing
normal cells from toxicity [Figure 1]. HER2-positive disease was an attractive target for ADC
development. T-DM1, the first ADC, was designed to act against the HER2 receptor [Table 1]. The
clinical benefit of T-DM1 in terms of both efficacy and toxicity was demonstrated in the EMILIA
trial, which compared T-DM1 with the combination of capecitabine and the tyrosine kinase
inhibitor (TKI) lapatinib. The results showed a significant improvement in PFS and OS with 
T-DM1, leading to the approval of T-DM1 by the FDA in 2013[8,9]. Later attempts to position T-DM1 
in advanced first-line treatment or even in the neoadjuvant setting were not so successful, as there was 
no significant benefit in first-line treatment with T-DM1 compared with trastuzumab and a 
taxane or in the neoadjuvant early setting comparing TM-1 combined with pertuzumab and TCHP 
(docetaxel, carboplatin, trastuzumab, pertuzumab)[10,11]. However, in the KATHERINE trial, T-DM1 
significantly decreased the risk of relapse in patients who had remaining residual disease after anti-HER2 
neoadjuvant treatment[12].

A better understanding of the mechanisms of action of T-DM1 will help elucidate how primary and
acquired resistance develop in vivo, and thus these mechanisms have been a subject of intense
investigation[13]. The antitumor effects of T-DM1 reflect the activities of its components. Trastuzumab not
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Table 1. T-DM1 main phase 3 trials

ADC Characteristics Trial/Population Design Results

Ado-
trastuzumab 
emtansine 
T-DM1

Payload: DM1 
DAR: 3,5 
Linker: non-cleavable 
thioether 
Bystander effect: no

EMILIA[8,9]: HER2+ MBC previously treated 
taxane + trastuzumab

T-DM1 vs. Capecitabine + 
Lapatinib (C + L)

T-DM1 vs. C + L 
PFS: 9.6 m vs. 6.4 m. 
HR 0.68 (0.55-0.86) 
OS: 30.9 m vs. 25.1 m. 
HR 0.65 (0.55-0.77)

TH3RESA: HER2+ MBC previously treated 
taxane, trastuzumab, lapatinib

T-DM1 vs. TPC T-DM1 vs. TPC 
PFS: 6.2 m vs. 3.3 m. 
HR 0.53 (0.53-0.66) 
OS: 22.7 m vs. 15.8 m. 
HR 0.68 (0.54-0.85)

MARIANNE[10]: HER2+ previously untreated MBC Trastuzumab + taxane vs. 
T-DM1 vs. T-DM1 + 
pertuzumab

T-DM1 vs. 
Trastuzumab + taxane 
PFS: 14.1 m vs. 13.7 m. 
HR 0.91 (0.73-1.13) 
T-DM1 + pertuzumab 
vs. Trastuzumab + 
taxane 
PFS: 15.2 m vs. 13.7 m. 
HR 0.87 (0.69-1-08)

KATHERINE[12]: HER2+ early disease. Residual 
invasive disease after neoadjuvant treatment with 
a taxane + trastuzumab

T-DM1 vs. Trastuzumab TDM1 vs. Trastuzumab 
IDFS: 87.8% vs. 77.8%. 
HR 0.50 (0.39-0.64) 
OS: 94.35 vs. 92.5%. 
HR 0.70 (0.47-1.05)

ADC: Antibody-drug conjugate; DAR: drug-to-antibody ratio; MBC: metastatic breast cancer; m: month; HR: hazard ratio; PFS: progression-free 
survival; OS: overall survival; TPC: treatment of physician’s choice; IDFS: invasive disease free survival.

Figure 1. General structure of an antibody drug conjugate. The antibody drug conjugate contains three key components: antibody, 
linker, and payload.

only enables binding to tumor cells, but also inhibits HER2 signaling, HER2 extracellular domain shedding 
and ADCC. DM1 is a potent derivative of the maytansinoid toxin with a cytotoxic effect that is mediated 
through the inhibition of tubulin polymerization, which leads to the death of proliferating cells. Another key 
component is the non-cleavable thioether linker that conjugates trastuzumab and its payload, which allows 
the release of DM1 through liposomal degradation after the receptor-ADC complex has been internalized in 
the cell [Figure 2]. The drug-to-antibody ratio (DAR) for T-DM1 is 3.5:1 which defines the number of 
cytotoxic payloads held by each antibody. This is an important characteristic of an ADC that may be related 
to its potency[14]. Once the active payload lysine-MCC-DM1 complexes are released from the lysosome, 
cytotoxic effects are induced in the tumor cell but not in neighboring cells because of the membrane 
impermeability of the complexes[15]. Hence, there is no bystander effect from the killing of nearby tumor 
cells that do not present the antigen. Notably, loss or reduction of HER2 expression disables the 
internalization of ADC and thus represents the main mechanism of resistance[16,17]. Intratumor 
heterogeneity of HER2 expression leads to reduced access of T-DMI to non-HER2-expressing cells and 
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Figure 2. General mechanism of action of an antibody drug conjugate (ADC). A: The antibody binds to the HER2 receptor (RT) in the 
tumor cell and initiates the internalization process. B: The ADC-RT complex forms an endosome. C: Lysosomal degradation of the 
endosome releases the payload to the cytoplasm. D: The payload produces various cytotoxic effects, such as the following: D1, DNA 
damage, as with the topoisomerase I inhibitor in trastuzumab deruxtecan; D2, microtubule assembly interference, as with DM1 in 
trastuzumab emtansine; and E, bystander killing effect in neighbor tumor cells not expressing the antigen. After payload liberation in the 
tumor microenvironment by proteases, the payload, with cell membrane permeability, exhibits cytotoxic effects in neighboring tumor 
cells.

might influence primary resistance to T-DM1, as has been suggested in clinical trials[18,19]. Alterations in the
internalization of the receptor-T-DM1, formation of endosomes and the lysosome pathway required for
release of the DM1 payload have also been described in T-DM1 resistant cell lines in preclinical studies[13].
The upregulation of drug efflux transporters of which T-DM1 and other maytansinoids are substrates may
also lead to resistance[20]. Other in vitro studies suggest that resistance to DM1-mediated cytotoxicity may
result from the reduction of cyclins needed to promote cell progression to the mitotic phase, causing
attenuation of mitotic catastrophe and apoptosis[21].

One of the strategies proposed to overcome or delay resistance to T-DM1 is the combination of T-DM1
with other drugs. The combination of T-DM1 with the anti-PD-L1 antibody atezolizumab was evaluated in
the phase II trial KATE2 and showed improved PFS for the PD-L1-positive population but negative results
for the intention-to-treat population[22]. The subsequent clinical trial, KATE3, is recruiting HER2+/PD-L1-
positive patients with advanced breast cancer and will explore the efficacy of the combination. Furthermore,
the Astefania study is examining the efficacy of the combination of T-DM1 and atezolizumab in patients
with high-risk (N+) residual disease after neo-adjuvant chemo/trastuzumab/pertuzumab[23].

The combination of T-DM1 with anti-HER2 TKIs is another potential treatment strategy to improve
efficacy and takes advantage of different anti-HER2 mechanisms of action as well as increasing activity in
the brain since TKIs are able to cross the brain-blood-barrier. The HER2CLIMB 02 trial phase III is
exploring the combination of T-DM1 with the reversible anti-HER2 TKI tucatinib[24].
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NEW GENERATION OF ADCS
As another potential strategy to overcome resistance, a new generation of anti-HER2 ADCs, such as 
trastuzumab deruxtecan (T-DXd) and trastuzumab duocarmazine (SYD985), with an enhanced design that 
confers improved efficacy, is a current focus of research. There are new generation ADCs that are similar to 
T-DM1, as they use antibodies with the same sequence as trastuzumab, thus targeting the same antigen 
[Tables 2 and 3]. This is the case for trastuzumab deruxtecan and trastuzumab duocarmazine. Others, like 
ARX-788, use a different anti-HER2 antibody to bind to tumor cells. These ADCs also show differences in 
the linker technology design that permits them to be cleavable under specific conditions and do not require 
lysosomal degradation, as in T-DM1. The cytotoxic payloads have different mechanisms of action and 
properties, such as membrane permeability, which allows for killing of neighbor cells not presenting the 
antigen, enhancing the efficacy of these agents [Figure 2]. These properties also result in activity in tumors 
expressing lower levels of HER2 (defined as HER2-low tumors) and enable the treatment of HER2-negative 
patients that might also obtain clinical activity from these ADCs[25].

All these potential improvements are already being translated into a significant clinical benefit in HER2- 
positive metastatic breast cancer patients, as some of these new ADCs such as T-DXd and trastuzumab 
duocarmazine are already in an advanced phase of clinical development.

These promising therapies have raised interest in the scientific community, and several recent reviews 
describing the most updated data in this field have been published[26-28].

Trastuzumab-Deruxtecan
T-DXd is composed of trastuzumab linked by an enzymatically cleavable peptide-linker to DXd, which is an 
exatecan derivative, a potent topoisomerase I inhibitor that induces double-strand DNA breaks and 
apoptosis. The DAR of T-DXd is 7.7:1, which is higher than that of T-DM1 (3.5:1), allowing more delivery 
of payload by each ADC in target tumor cells. Preclinical results have shown promising antitumor effects in 
T-DM1-resistant cells and low HER2-expressing cells[29]. From these results, the initial clinical development 
plan targeted HER2-positive patients who had become resistant to T-DM1 or whose tumors were 
expressing low HER2 [defined as HER2 1+ and 2+ by immunochemistry with in situ hybridization (ISH) 
negative]. The phase I trial included 115 HER2-positive patients treated with the doses recommended for 
expansion that had received previous therapy (a median of seven lines); the overall response rate (ORR) was 
60% in this heavily pretreated population. The toxicity profile showed more frequently gastrointestinal and 
hematological adverse events and 20 patients developed  interstitial lung disease (ILD), including two 
treatment-related deaths from pneumonitis[30]. The phase 2 trial DESTINY-breast01 confirmed the clinical 
activity of T-DXd in HER2-positive patients resistant to T-DM1 and confirmed 5.4 mg/kg as the 
recommended dose for further development in phase III trials. A total of 184 patients received T-DXd at the 
recommended dose with a median of six previous lines of therapy in the metastatic setting. The primary 
endpoint was objective response following independent central review with other efficacy and safety 
secondary endpoints[31]. Updated results with a 20.5 median follow-up confirmed a 61.4% ORR and 19.4 
months PFS with a median duration of response of 20.8 months. The most common G3 or higher adverse 
events were neutrophil count decrease, anemia, and nausea. Approximately 15.2% of cases had ILD, and 
2.7% (5 patients) died[32]. As a result of the clinical activity demonstrated in this phase 2 trial for patients 
who had developed resistance to previous therapies including T-DM1, T-DXd was approved by the FDA 
and EMA for use in HER2-positive metastatic patients that had received at least two previous lines of 
treatment. The most relevant data on the clinical activity of T-DXd reported thus far is the head-to-head 
comparison with T-DM1 in the phase III DESTINY-breast03 trial. Patients with HER2-positive advanced 
breast cancer that had been previously treated with a taxane and trastuzuzmab were randomized at 1:1 to 
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Table 2. New generation anti-HER2 ADCs main trials in HER2-positive population with available results

ADC Characteristics Main trials in MBC Design Available 
results

Trastuzumab 
deruxtecan 
T-DXd

Payload: exatecan 
derivative 
DAR: 7,7 
Linker: cleavable 
Bystander effect: yes 

DESTINY-Breast 01[31,32] 
Phase 2: HER2+ MBC 
previously treated with T-
DM1 
NCT03248492 

Single arm T-DXd ORR: 61.4%  
PFS: 19.4 m (14.1-
NE) 
OS: 24.6 m (23.1-
NE)

DESTINY-Breast 03[33] 
Phase 3: HER2+ MBC 
previously treated taxane + 
trastuzumab 
NCT03529110 

T-DXd vs. T-DM1 T-DXd vs. T-DM1 
ORR: 79.7% vs. 
34.2% 
PFS: NR vs. 6.8 m. 
HR 0.28 (0.22-
0.37) 
OS: NR vs. NR. HR 
0.56 (0.36-0.86)  
12 m OS: 94.1% vs. 
85.9%.

Trastuzumab 
duocarmazine  
SYD985

Payload: vc-seco-DUBA  
DAR: 2.8 
Linker: cleavable valine-
citruline  
Bystander effect: yes

TULIP[41] 
Phase 3: HER2+ MBC 
previously treated with 2 lines 
or T-DM1 
NCT03262935

SYD985 vs. TPC: Capecitabine + 
trastuzumab/lapatinib or Vinorelbine + 
trastuzumab or eribuline + trastuzumab

SYD985 vs. TPC 
PFS: 7 m vs. 4.9 m. 
HR 0.64 (0.49-
0.84)  
OS: 20.4 m vs. 16.3 
m. HR 0.83 (0.62-
1.09) 

ARX788 Payload: dolastatin 
monomethyl auristatin F 
Linker: non-cleavable 
AS269 
DAR: 1.9  
Bystander effect: no

ACE-Pan Tumor 01[43] 
Phase 1: advanced solid 
tumors with HER2 expression 
NCT03255070 

ARX788 Breast cohort:  
PFS 17 m

RC48-ADC Payload: monomethyl 
auristatin E 
DAR: 4 Linker: cleavable 
valine-citruline  
Bystander effect: no 

Phase 1[45]: advanced breast 
cancer with HER2+ or HER2 
low expression 
NCT03052634

RC48-ADC Pooled results in 
HER2+ MBC:  
PFS: 4 to 6.3 m

ZW49 Payload: N-acyl 
sulfonamide auristatin 
DAR: 2 
Linker: cleavable  
Bystander effect: NA 

Phase 11[51]: HER2 expressing 
cancers 
NCT03821233 

ZW49 Results in HER2+ 
MBC:  
ORR: 13% 
PFS: NA

ADC: Antibody-drug conjugate; DAR: drug-to-antibody ratio; MBC: metastatic breast cancer; NA: non available; ORR: objective response rate; m: 
month; HR: hazard ratio; PFS: progression-free survival; OS: overall survival; TPC: treatment of physician’s choice.

receive T-DXd or T-DM1. The primary endpoint was PFS and OS was a key secondary endpoint. The 
median follow-up for T-DXd was 16.2 months; the median PFS was 6.8 months for the T-DM1 groups, 
while the median PFS had not been reached for the T-DXd group, with a highly significant difference (HR 
of 0.28, 0.22-0.37, P = 7.8 × 10-22). The median OS had not been reached for both treatment arms, with a 
12-month OS rate of 94.1% for the T-DXd group and 85.9% for the T-DM1 group, with no significant 
difference in this first analysis. The difference in ORR between the groups, with 79.7% for the T-DXd group 
compared with 34.2% for the T-DM1 group, was remarkable. The most common toxicity was hematological 
and gastrointestinal toxicity, with nausea as the most frequent event. Among the 524 randomized patients, 
27 patients (10.5%) had ILD and 2 cases had G3 events with no cases of fatal pneumonitis for T-DXd 
compared with 5 cases of G1-2 for T-DM1[33]. These data currently position T-DXd as a standard second-
line treatment in the metastatic setting, moving T-DM1 to later lines[34]. Another ongoing clinical trial is 
exploring the role of T-DXd in first-line treatment; this trial is comparing T-DXd combined with 
pertuzumab/placebo to the standard treatment of a taxane plus double blockade with trastuzumab and 
pertuzumab[35]. This ADC is likely to make its way to the early setting, because ongoing clinical trials are 
comparing it to adjuvant T-DM1 in post-neoadjuvant residual disease and another trial is exploring it as 
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Table 3. New generation anti-HER2 ADCs main trials in HER2-positive populationin progress

ADC Characteristics Main trials in MBC Design Available 
results

Trastuzumab 
deruxtecan 
T-DXd

Payload: exatecan 
derivative 
DAR: 7,7  
Linker: cleavable  
Bystander effect: yes 

DESTINY-Breast 02  
Phase 3: HER2+ MBC previously treated 
with T-DM1  
NCT03523585  

T-DXd vs. TPC (Capecitabine + 
trastuzumab or lapatinib)  

Results 
pending 

DESTINY-Breast 09  
Phase 3: HER2+ previously untreated 
MBC 
NCT04784715

T-DXd + placebo vs. T-DXd + 
pertuzumab vs. Taxane + trastuzumab + 
pertuzumab 

Recruiting 

DESTINY-Breast 05  
Phase 3: HER2+ early disease. Residual 
invasive disease after neoadjuvant 
treatment with a taxane + trastuzumab 
NCT04622319

T-DXd vs. T-DM1 Recruiting 

DESTINY-Breast 11  
Phase 3: HER2+ early disease neoadjuvant 
treatment 
NCT05113251

T-DXd vs. T-DXd - Taxane + 
trastuzumab + pertuzumab (THP) vs. 
dose dense AC - THP

Recruiting 

Trastuzumab 
duocarmazine  
SYD985 

Payload: vc-seco-DUBA  
DAR: 2.8  
Linker: cleavable valine-
citruline  
Bystander effect: yes 

BYON5667.002  
Phase I/II  
NCT04983238 

SYD985+BYON5667(eye-
drops)/placebo to reduce ocular toxicity

Results 
pending 

ARX788 Payload: dolastatin 
monomethyl auristatin F 
 
Linker: non-cleavable 
AS269  
DAR: 1.9  
Bystander effect: no

ACE-Breast-03 
Phase 2: HER2+ MBC resistant/refractory 
to T-DM1, and/or T-DXd, and/or 
Tucatinib 
NCT04829604 

ARX788 Recruiting 

RC48-ADC Payload: monomethyl 
auristatin E 
DAR: 4 Linker: cleavable 
valine-citruline  
Bystander effect: no 

Phase 2/3: HER2 + MBC with/without 
liver metastases 
NCT03500380 

RC48-ADC vs. capecitabine + lapatinib Recruiting 

ZW49 Payload: N-acyl 
sulfonamide auristatin 
DAR: 2 
Linker: cleavable 
Bystander effect: NA 

Phase 1: HER2 expressing MBC  
NCT03821233 

ZW49 Recruiting 

MEDI4276 Payload: tubulysin-
based microtubule 
inhibitor  
Linker: cleavable 
DAR: 4 
Bystander effect: yes

Phase 1/2[41]: HER2 expressing breast or 
gastric/stomach cancers 
NCT02576548 

MEDI4276 Completed 

ADC: Antibody-drug conjugate; DAR: drug-to-antibody ratio; MBC: metastatic breast cancer; TPC: treatment of physician’s choice; NA: non 
available.

initial neoadjuvant treatment alone or in sequence with paclitaxel, trastuzumab and pertuzumab (THP) 
compared with the sequential standard scheme of anthracycline-cyclophosphamide followed by THP[36,37]. 
Special attention and monitoring of potential T-DX-related ILD is being applied in these early disease trials, 
with clinical awareness and periodical imaging testing to rule out this potential severe toxicity.

Trastuzumab duocarmazine 
Trastuzumab duocarmazine (SYD985) is another second-generation ADC that is composed of an antibody 
backbone with the same amino acidic sequence as trastuzumab with a cleavable linker to the vc-seco-DUBA 
payload, a potent duocarmacyn analog with a DAR of 2.8:1. The cytotoxic payload is an alkylant agent that 
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binds to the minor groove of DNA and exhibits activity in both dividing and non-dividing cells. The linker 
is cleaved by proteases of the lysosome after endocytosis and by proteases such as cathepsin B that are found 
extracellularly; thus, there is a bystander killer effect[38]. Preclinical studies that compared SYD985 with 
T-DM1 demonstrated encouraging activity of SYD985 in HER2-positive and HER2 low expression models, 
prompting exploration of SYD985 in a phase I trial in breast cancer and other HER2-expressing 
histologies[39]. In breast cancer dose-expansion cohorts, 33% of patients with HER2-positive breast cancer 
achieved objective partial responses; additionally, 28% of patients with HER2-low, hormone receptor-
positive breast cancer and 40% with HER2-low, hormone receptor-negative breast cancer also showed 
objective partial response. The most common treatment-related adverse events were fatigue, conjunctivitis, 
and dry eye; most patients had at least one ocular adverse event[40]. The drug went directly into the TULIP 
trial, a phase III trial in a HER2-positive metastatic patient population that compared 2:1 SYD985 with the 
treatment of physician’s choice (TPC) based on predefined standard options of a combination of 
chemotherapy and trastuzumab or lapatinib. Patients with two or more previous lines in the metastatic 
setting or with previous T-DM1 were included; patients had a median of four prior therapies. The primary 
endpoint of the study was centrally reviewed median PFS, which was 7.0 months for the SYD985 group and 
4.9 months for the TPC group, with a statistically significant HR of 0.64 and no benefit in terms of OS in the 
first analysis. No significant differences were observed in ORR or health-related quality of life (HRQoL). 
The most frequently reported adverse events for SYD985 were conjunctivitis (38.2%), keratitis (38.2%) and 
fatigue (33.3%). Approximately 7.6% of patients treated with SYD985 showed ILD/pneumonitis, including 
two fatal events[41]. Ocular toxicity from this ADC may potentially be permanent, so it is crucial to treat it 
and find strategies to mitigate it.

ARX788
In addition to the two anti-HER2 ADCs described above, other ADCs are in the earlier phase of 
development, such as ARX788. This new generation ADC has a site-specific anti-HER2 antibody with an 
amino acid sequence different from that of trastuzumab; it uses a nonnatural amino acid-enabled 
conjugation technology and a non-cleavable Amberstatin (AS269) drug-linker, a highly potent tubulin 
inhibitor with a DAR of 1.9:1. Preclinical data demonstrated activity in HER2-high and HER2-low 
expression cell lines and xenograft and patient-derived xenograft models of breast and gastric cancer, 
motivating clinical development in these patient populations[42]. The phase I trial ACE-Breast-01 examined 
the use of ARX788 in HER2-positive metastatic breast cancer patients whose disease was resistant or 
refractory to HER2-targeted agents. The results showed a disease control of 100% and a median PFS of 
17 months in the 29 patients treated at therapeutic doses who had been heavily pretreated in the advanced 
setting. However, there was some uncertainty about the anti-HER2 therapies to which this population 
would have been previously exposed. The safety profile was also favorable, with most adverse events being 
G1-G2; no dose-limiting toxicities were found and no drug-related deaths were reported. Since the 
cytotoxic payload of ARX788 is not a substrate of common efflux transporters, this is probably not a 
mechanism of resistance[43]. The phase 2 trial ACE-Breast-03 is ongoing and includes patients whose disease 
is resistant or refractory to T-DM1 and/or T-DXd and/or tucatinib-containing regimens[44].

RC48-ADC
RC48-ADC is a HER2-targeting ADC with a cleavable linker and a potent microtubule inhibitor payload 
MMAE with bystander killing effect in tumor cells. The DAR for this ADC is 4:1. Pooled results from two 
phase I studies in HER2-positive and HER2-low patients showed that among 70 HER2-positive patients, the 
ORR ranged from 22.2%-42.9% and the median PFS was 4-6.3 months for the different dosing levels. The 
most frequent G3 and above adverse events were decreased neutrophil count, increased GGT and fatigue[45]. 
This ADC is currently in various clinical trials including a phase II/III for HER2-positive patients that is 
comparing RC48-ADC with capecitabine and lapatinib[46]. As the field is moving forward, there are new 
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generation TKIs that are improving the results obtained with lapatinib, hence capecitabine and lapatinib 
might no longer be considered an optimal control arm in future clinical trials[47,48].

ZW49 and MEDI4276
Other new generation ADCs include zanidatamab zovodotin (ZW49), which contains a biparatopic 
antibody to optimize binding to target tumor cells. This ADC consists of the antibody ZW25 (zanidatamab) 
that binds to the same epitopes of the HER2 receptor as trastuzumab and pertuzumab and a cleavable linker 
to an aurastatine payload, with a DAR of 2:1. Preclinical data demonstrated antitumor activity in low and 
high HER2-expressing breast cancer cell lines and PDX models[49]. A phase I trial is currently ongoing in 
patients with locally advanced or metastatic HER2-expressing cancers; additional cohorts are being 
recruited[50]. Preliminary results have suggested promising efficacy in various types of HER2-positive 
tumors. In eight breast cancer patients with a median of six prior therapies treated at the cohort expansion 
recommended dose, the ORR was 13%. Toxicity analysis revealed two cases of G2 keratitis lasting more than 
14 days; approximately 43% of patients exhibited keratitis, but all events decreased to G1 or eventually 
resolved. There were no ILD events or deaths related to treatment[51].

Another new generation ADC is MEDI4276, a biparatopic tetravalent antibody targeting two epitopes of the 
HER2 ecto-domain that has site-specific conjugation to a tubulysin-based microtubule inhibitor payload. 
Results from a phase I trial in advanced breast and gastric cancer demonstrated clinical activity, but also 
alteration of liver function tests and gastrointestinal toxicity[52].

ZW49 and MEDI4276 are representative examples of ADCs currently in clinical development for HER2-
positive and HER2-low expressing populations, but there are many other ADCs. In the following years, new 
ADCs targeting HER2 will be developed. While ADCs are demonstrating unprecedented response rates and 
improvements in PFS that will likely translate in a clinically significant increase in OS, there is an important 
need to discover the mechanisms underlying the resistance that eventually develop as patients progress. A 
better understanding of the mechanisms underlying primary and acquired resistance will help inform the 
development of treatment strategies for patients. Knowledge of the presence of cross-resistance to payloads 
in different ADCs would help predict the absence of clinical benefit in a patient, thus avoiding unnecessary 
toxicity.

Combining ADCs
The combination of ADCs with other agents is a potential strategy to overcome or delay resistance and is 
being explored in clinical trials. The combination of ADCs with targeted agents is the most widely used 
approach, especially with TKIs and immune checkpoint inhibitors. Theoretically, these agents could 
enhance antitumor activity by targeting the intracellular domain of the HER2 receptor and trespassing the 
blood-brain-barrier (in the case of TKIs) or triggering innate and adaptive immunity (in the case of anti-
PDL1 agents). Determining whether this combination strategy leads to improvement in efficacy without 
significantly increasing toxicity is critical.

Activity beyond HER2-positive: How low can we go
Research has demonstrated that a higher expression of HER2 corresponds with a greater clinical benefit. 
HER2 positivity has generally been defined by immunohistochemistry (IHC) and in situ hybridazation 
(ISH) and used to predict the clinical benefit of anti-HER2 therapies. Notably, the new generation ADCs are 
also demonstrating significant activity in vitro and clinical benefit in patients considered HER2-negative, 
redefining a so-called HER2-low population that would include tumors with IHC HER2 1+ and HER2 2+ 
with ISH negative. The threshold of HER2 expression from which a patient might benefit from these agents 
has not yet been clearly determined. Recent results from the phase II DAISY trial demonstrated activity of 
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T-DXd in heavily pretreated patients with different levels of HER2 expression. Notably, clinical activity was 
observed in the cohort that included patients with HER2-null tumors (IHC0+)[53]. These results suggest that 
the levels of HER2 expression needed for ADC to exert clinical activity might vary depending on the 
properties of the different linkers and payloads. The DAISY trial was designed to address the mechanisms of 
action and resistance to T-DXd. The results indicated that HER2 levels were significantly associated with 
efficacy, with a median PFS of 11 months for HER2-positive patients compared with 4 months for HER2-
null patients. A high percentage and spatial distribution of HER2 IHC0+ cells was associated with a non-
response to T-DXd. Approximately 65% of patients progressing to T-DXd had a decrease in HER2 
expression compared with baseline levels[54]. There was a difference in the transcriptomic response to 
T-DXd depending on HER2 levels. No recurrent baseline driver mutations were identified as predictors of 
primary resistance, but 6% of patients presented an ERBB2 hemizygous deletion that might be associated 
with upfront resistance. SLX4 gene mutations were found in 20% of biopsies tested at progression, 
suggesting that SLX4 may be involved in a potential mechanism of acquired resistance[55].

Results from the phase 3 randomized study DESTINY-breast04 were reported in ASCO 2022 for the HER2-
low population that accounts approximately for at least 50% of all metastatic breast cancer cases[25]. Patients 
with HR-positive tumors with one or two previous lines of therapy were included and randomized at 2:1 to 
receive T-DXd or TPC. There was a significant difference in PFS (the primary endpoint) of 10.1 months vs. 
5.4 months, in favor of T-DXd, with a HR of 0.51. Furthermore, there was also a significant advantage in OS 
(23.9 months vs. 17.5 months) with a HR of 0.64. There was a similar benefit for the smaller exploratory 
subgroup of HR-negative patients included in the trial. These results led to FDA approval of T-DXd as the 
first ADC for treatment for a HER2-low population.

Brain metastases
As the survival of HER2-positive advanced cancer patients increases, the risk of the development of brain 
metastasis also increases. The activity of ADCs for patients with locally treated brain metastasis has been 
demonstrated in clinical trials for anti-HER2 ADCs, but there is not a wide representation of this 
population because of the restrictive inclusion criteria. Exploring how these agents perform in patients with 
non-treated or active brain disease is critical to design the best therapeutic sequence. Data from the phase 
IIIb single-arm KAMILLA clinical trial demonstrated the activity of T-DM1 in patients with brain 
metastases even in the absence of previous local treatment, challenging the hypothesis that larger molecules 
such as ADCs might not be capable of crossing a non-disrupted blood-brain barrier[56]. Preliminary data 
from DEBBRAH and TUXEDO trials with T-DXd were designed to address this question and demonstrated 
responses in patients with active brain metastases, both untreated patients and those progressing after 
previous local treatment[57,58]. The ongoing DESTINY-Breast12 trial is enrolling up to 250 patients with 
either active or stable brain metastases and should shed further light on the role of T-DXd in patients with 
CNS disease[59].

Mitigating toxicity
While current data on the potential effects of ADCs are encouraging, there is still room for improvement in 
terms of efficacy and toxicity. The toxicity profiles are different among ADCs depending on the payload 
used and the properties of the linkers that are cleavable under specific conditions. A better understanding of 
the toxicity profile of these agents is required to develop strategies to mitigate the most frequent adverse 
events along with adverse effects that are rare but might be severe. Identifying the mechanisms and risk 
factors that favor the occurrence of ILD is important to prevent ILD. A very strong research effort is 
ongoing, but so far, the most efficacious approach is an early diagnosis through radiological imaging and 
the identification of respiratory symptoms to enable treatment and initiate ILD management following 
available guidelines. There is also a need to understand the underlying causes of the eye toxicity that can be 
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found with these agents. In the case of SYD985, activation of the payload in the conjunctive tissue initially 
produces xerophthalmia, which may evolve into different ocular alterations including keratitis. One possible 
strategy for avoiding these ocular side effects is already under investigation in a clinical trial that is 
investigating SYD985 and eye drops specifically developed to inactivate the payload in the eye[60].

CONCLUSIONS
The new ADCs are rapidly changing the paradigm of treatment of HER2-positive advanced breast cancer 
patients and expanding the population that can benefit from them even in patients previously considered 
HER2-negative that have been defined as HER2-low.The results demonstrating the level of PFS achieved 
even in heavily pretreated populations indicate that these agents will improve survival. The proportion of 
HER2-positive metastatic patients that remain in a long-term response that could be considered potentially 
cured increases as new therapies are being developed, especially with the availability of these new generation 
ADCs. However, because a considerable number of patients will still eventually show disease progression, 
there is a need to continue developing more effective therapeutic options. A better understanding of the 
mechanisms of resistance to these agents is required to develop new strategies to overcome resistance as 
well as to define the best therapeutic sequence for each patient. Toxicity is still an issue and there is a need 
for better comprehension of the mechanisms and factors contributing to toxicity to develop mitigating 
strategies, especially with the implementation of these ADCs in the early stage disease as neo/adjuvant 
therapies.
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