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Abstract
Ferroptosis is an iron-dependent cell death characterized by increased intracellular lipid peroxidation. Inducing 
ferroptosis has shown significant potential in eliminating various malignancies. However, the effectiveness of 
ferroptosis-based treatments is hampered by the intrinsic or acquired resistance of some tumors. In this review, we 
delineate the known mechanisms that regulate ferroptosis sensitivity and summarize the therapeutic application of 
ferroptosis inducers in cancer. Additionally, we discuss the roles of diverse signaling pathways that contribute to 
ferroptosis resistance in cancer cells, including the glutathione (GSH) and coenzyme Q (CoQ) pathways, NFE2-like 
bZIP transcription factor 2 (NRF2) antioxidant response, and lipid and iron metabolism. This emerging knowledge 
may serve as a foundation for developing novel anticancer strategies to overcome ferroptosis resistance.
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INTRODUCTION
Ferroptosis is a type of cell death distinct from apoptosis that depends on the presence of redox-active 
iron[1]. Unlike other forms of cell death, ferroptosis has unique features including accumulation of 
intracellular free iron, activation of pro-oxidative enzymes, altered mitochondrial morphology, and 

https://creativecommons.org/licenses/by/4.0/
https://www.oaepublish.com/cdr
https://orcid.org/0000-0003-3668-4830
https://dx.doi.org/10.20517/cdr.2024.127
http://crossmark.crossref.org/dialog/?doi=10.20517/cdr.2024.127&domain=pdf


Page 2 of Wang et al. Cancer Drug Resist 2024;7:47 https://dx.doi.org/10.20517/cdr.2024.12724

remodeling of polyunsaturated fatty acid (PUFA)-containing lipid[2-4]. These events lead to elevated levels of 
lipid peroxidation, which, when sufficiently accumulated, become lethal to cells. Consequently, ferroptosis 
is tightly controlled by iron metabolism, oxidative stress, and lipid metabolism[5]. This process plays a 
critical role in tumor suppression and can be triggered in various disease conditions[6]. Therefore, there is 
great interest in uncovering the regulatory mechanisms of ferroptosis.

In recent years, applying ferroptosis to combat cancer has emerged as a focal point in etiological research 
and therapeutic development. Several tumor suppressors (e.g., p53 and Par-4) execute their tumor 
suppressive function in part by triggering ferroptosis[7,8], suggesting that ferroptosis acts as a natural 
mechanism for tumor suppression. Notably, mesenchymal and dedifferentiated malignant cells, which 
frequently resist apoptotic cell death and conventional treatments, exhibit significant susceptibility to 
ferroptosis[9,10]. Consequently, targeting ferroptosis is considered a promising strategy for treating refractory 
tumors[11]. Additionally, ferroptosis-based interventions have demonstrated efficacy in overcoming 
resistance to traditional therapies and enhancing the effects of radiotherapy and immunotherapy[12,13]. 
However, cancer cells can develop various strategies to evade ferroptotic cell death, as discussed in this 
review [Figure 1]. Thus, a comprehensive understanding of the mechanisms underlying ferroptosis 
resistance in cancer may guide the development of effective cancer treatments.

In this review, we outline the fundamental molecular mechanisms underlying ferroptosis and summarize 
the application of various ferroptosis inducers in cancer treatment. In addition, we place particular 
emphasis on the crucial role of various signaling pathways in modulating ferroptosis resistance in cancer.

MOLECULAR MECHANISMS OF FERROPTOSIS
Ferroptosis is caused by lipid peroxidation, a process in which free radicals react with carbon-carbon double 
bonds of lipids, leading to cell damage and death [Figure 2]. This oxidative process is closely linked to the 
dysregulation of antioxidant defenses that safeguard cells against lipid peroxidation. Additionally, it involves 
the accumulation of free iron, which produces reactive oxygen species (ROS) that exacerbate lipid 
peroxidation.

Iron metabolism
Iron is essential to living organisms and plays a key role in various physiological processes, such as oxygen 
transport and enzyme catalysis[14]. Due to its ability to accept and provide electrons, iron cycles between Fe2+ 
and Fe3+ forms, allowing many non-heme- and heme-containing enzymes [e.g., Lipoxygenases (LOXs)] to 
function properly. The redox cycling ability of iron makes it versatile and widely used in numerous catalytic 
reactions, such as Fenton reaction. This process involves the reduction of hydrogen peroxide (H2O2) by 
Fe²+, producing hydroxyl radicals (•OH). These highly reactive radicals can attack PUFA in cellular 
membranes, initiating lipid peroxidation to induce ferroptosis[15]. Interestingly, the aging pigment lipofuscin 
can capture iron ions, which in turn promotes ferroptosis by generating ROS[16]. Consequently, iron 
chelators can potentially be used to modulate ferroptosis in diseases where it plays a pathogenic role[1]. In 
tumor cells, the availability of iron is tightly controlled at both the systemic and cellular levels to modulate 
ferroptosis[17]. The iron-responsive element binding protein 2 (IREB2) is a key regulator of iron homeostasis 
during ferroptosis by translationally regulating the expression of genes involved in iron metabolism[1]. The 
regulation of ferroptosis in cancer cells critically depends on the balance between transferrin receptor 
(TFRC)-mediated iron uptake, ferroportin-driven iron export, and ferritin-based iron storage[18-20]. As such, 
autophagy-mediated ferritin degradation (ferritinophagy) can lead to excessive free iron, ultimately 
triggering ferroptosis in cancer cells[20-22].
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Figure 1. An overview of ferroptosis induction and ferroptosis resistance in cancer therapy. SLC7A11: Solute carrier family 7 member 11; 
GPX4: glutathione peroxidase 4; GSH: glutathione; NRF2: NFE2-like bZIP transcription factor 2; NFE2: nuclear factor, erythroid 2; CoQ: 
ubiquinone.

Lipid peroxidation
Lipid peroxides are produced by chemical reactions between lipids and oxygen. Peroxides formed on 
PUFAs within membrane phospholipids and their reactive aldehyde metabolites are thought to drive 
ferroptosis[23-25]. As a result, membranes with elevated PUFA-PL levels are particularly susceptible to 
peroxidation. Acyl-CoA synthetase long-chain family member 4 (ACSL4) acts as a key driver of 
ferroptosis[23,24]. The contribution of ACSL4 to ferroptosis relies on its capability to link PUFA (e.g., 
arachidonic acid and adrenoic acid) with coenzyme A (CoA) to form PUFA-CoA, which can be re-
esterified in phospholipids by various Lysophosphatidylcholine acyltransferase (LPCAT) enzymes[26]. 
Lysophosphatidylcholine acyltransferase 3 (LPCAT3) promotes the induction of ferroptosis, while 
lysophosphatidylcholine acyltransferase 1 (LPCAT1) triggers ferroptosis evasion in cancer cells[24,27]. 
Notably, ACSL4 expression correlates with sensitivity to ferroptosis inducers in triple-negative breast cancer 
(TNBC), clear cell kidney cancer, and drug-resistant mesenchymal cancer cells[9,23,28]. Additionally, the 
phospholipid remodeling capability of ACSL4 is further amplified by phosphoenolpyruvate carboxykinase 2 
(PCK2)- and protein kinase CβII (PKCβII)-mediated phosphorylation modification[29,30]. In contrast, acyl-
CoA synthetase long-chain family member 3 (ACSL3) can either promote or inhibit ferroptotic cell death in 
a context-dependent manner[31,32].

LOXs are iron-dependent dioxygenases that directly oxidize PUFA within biological membranes[33]. The 
ferroptosis-inducing role of LOXs is supported by the observation that pharmacological inhibition or 
genetic depletion of LOXs suppresses ferroptosis in cancer cells in vitro[34,35]. Despite this, the deletion of 
15-lipoxygenase (15-LOX) fails to prevent glutathione peroxidase 4 (GPX4) knockout-induced ferroptosis 
in mouse models of acute kidney injury[36]. This could be attributed to compensatory mechanisms between 
different LOX enzymes or other lipid peroxidizing enzymes. For instance, cytochrome P450 oxidoreductase 
(POR) is also involved in the initiation of lipid peroxidation in multiple cancer lineages, potentially 



Page 4 of Wang et al. Cancer Drug Resist 2024;7:47 https://dx.doi.org/10.20517/cdr.2024.12724

Figure 2. Molecular mechanisms of ferroptosis. Ferroptosis is an iron-dependent cell death characterized by increased lipid peroxidation. 
Ferroptosis involves an imbalance in the lipid peroxidation and antioxidant systems. IREB2, TFRC, and NCOA4-mediated ferritinophagy 
promote ferroptosis by increasing Fe2+ in cells, whereas ferroportin-mediated iron export inhibits ferroptosis. Subsequently, Fe2+ 
generates ROS through Fenton reaction. Furthermore, ACSL4, LPCAT3, LOXs, and POR pathways facilitate the peroxidation of PUFA, 
which is required for oxidative damage in ferroptosis. Meanwhile, PKCβII and PCK2 promote the phosphorylation of ACSL4, leading to 
enhanced phospholipid remodeling capability of ACSL4. Several antioxidant defense systems such as the SLC7A11-GSH-GPX4 and 
FSP1/DHODH-CoQ pathways play crucial roles in counteracting lipid peroxidation. Moreover, SCD and LPCAT1 inhibit ferroptosis by 
promoting MUFA or SFA-phospholipids synthesis. SFA: Saturated fatty acids; PE: phosphatidylethanolamine; SLC7A11: solute carrier 
family 7 member 11; TFRC: transferrin receptor; FSP1: ferroptosis suppressor protein-1; CKB: creatine kinase B; IREB2: iron-responsive 
element binding protein 2; DHODH: dihydroorotate dehydrogenase; GSH: glutathione; GPX4: glutathione peroxidase 4; ROS: reactive 
oxygen species; MUFA: monounsaturated fatty acid; PCK2: phosphoenolpyruvate carboxykinase 2; PKCβII: protein kinase CβII; ACSL4: 
acyl-CoA synthetase long-chain family member 4; POR: P450 oxidoreductase; LOXs: lipoxygenases; SCD: stearoyl-CoA desaturase; 
LPCAT3: lysophosphatidylcholine acyltransferase 3; LPCAT1: lysophosphatidylcholine acyltransferase 1; CoA: coenzyme A; CoQH2: 
dihydrouquinone; CoQ: ubiquinone.

compensating for the role of LOXs[37].

Antioxidant defenses
GPX4 is a unique member of the GPX protein family, distinguished by its ability to reduce phospholipid 
hydroperoxide to phospholipid alcohol[38]. The genetic or pharmacological inhibition of GPX4 triggers 
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excessive lipid peroxidation and potent ferroptosis in vitro and in vivo[36,39]. GPX4 exists in three isoforms 
with distinct subcellular localizations: cytoplasm, mitochondria, and nucleus. Both cytoplasmic and 
mitochondrial GPX4 likely play crucial roles in protecting against ferroptosis within their respective 
subcellular compartments, whereas the function of nuclear isoform remains to be further explored[40]. 
Furthermore, creatine kinase B (CKB)-mediated phosphorylation of GPX4 at Ser104 abrogates GPX4 
degradation through chaperone-mediated autophagy, while the binding of copper ions to GPX4’s Cys107/
148 facilitates its autophagic degradation[41,42]. However, whether CKB inhibition or copper supplementation 
can overcome ferroptosis resistance remains to be further investigated.

Tumor cells acquire cystine primarily through the system Xc-, in which cystine is subsequently reduced to 
cysteine in the cytoplasm[43]. Reduced glutathione (GSH), synthesized from cysteine, is an essential cofactor 
for the enzymatic activity of GPX4. Solute carrier family 7 member 11 (SLC7A11, also known as xCT) is the 
active transporter subunit of the system Xc-. The expression of SLC7A11 is frequently elevated in cancer 
cells and tissues, enabling cancer cells to increase intracellular GSH levels and counteract ferroptosis[44]. 
Accordingly, genetic or pharmacologic inhibition of SLC7A11 leads to GSH depletion, GPX4 inhibition, 
and ferroptosis in many types of cancer[1,7,45]. Thus, the SLC7A11-GSH-GPX4 axis is considered to be the 
major pathway in ferroptosis defense. However, some cancer cells can survive even after GPX4 inactivation, 
suggesting the existence of alternative mechanisms that confer resistance to ferroptosis[9].

Ferroptosis suppressor protein-1 (FSP1), encoded by AIF family member 2 (AIFM2) gene, protects against 
ferroptosis through a mechanism independent of GPX4[46,47]. FSP1’s localization to the plasma membrane is 
necessary for its role in ferroptosis inhibition[47]. Functioning as an NAD(P)H-dependent oxidoreductase, 
FSP1 catalyzes the conversion of coenzyme Q (CoQ) to reduced coenzyme Q (CoQH2), which traps lipid 
peroxidation free radicals to inhibit ferroptosis[48]. Similarly, dihydroorotate dehydrogenase (DHODH), an 
enzyme involved in pyrimidine metabolism, can also reduce CoQ to CoQH2 in mitochondria[40]. Upon 
GPX4 inactivation, DHODH scavenges mitochondrial lipid peroxidation and safeguards cells from 
ferroptosis[40]. Given its central role in ferroptotic processes, understanding the collaborative mechanisms of 
the CoQ pathway across different components could reveal new therapeutic strategies for managing 
ferroptosis resistance in cancer cells.

FERROPTOSIS INDUCERS FOR CANCER THERAPY
Recent studies have highlighted the advantages of ferroptosis induction in cancer treatment, notably in 
eradicating aggressive malignancies that are resistant to conventional therapies[12,49]. Various agents capable 
of triggering ferroptosis predominantly target the SLC7A11-GSH-GPX4 pathway, leading to excessive lipid 
peroxidation in cancer cells. In the following sections, we will introduce several common categories of 
ferroptosis inducers utilized in cancer treatment, including SLC7A11 and GPX4 inhibitors, as well as the 
repurposing of clinical drugs as ferroptosis inducers [Table 1].

SLC7A11 inhibitors
The inhibition of SLC7A11 induces the depletion of intracellular GSH, which in turn disrupts the 
antioxidant capacity of cells and decreases the enzyme activity of GPX4[1]. Consequently, SLC7A11 
inhibitors cause excessive lipid peroxidation and ferroptosis in various cancer cells. Notably, certain types of 
cancer, such as Kirsten rat sarcoma viral oncogene (KRAS)-mutant lung adenocarcinomas and pancreatic 
cancer, are highly sensitive to the intervention targeting SLC7A11[50,51]. Erastin, a classic ferroptosis inducer, 
directly binds and inhibits the activity of SLC7A11, thereby inducing ferroptosis in cancer cells[1,52]. 
Although erastin exhibits excellent in vitro anticancer activity, it has low oral bioavailability due to poor 
water solubility[53]. Subsequently, an erastin derivative called imidazole ketone erastin (IKE) has been 
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Table 1. Ferroptosis inducers for cancer therapy

Inducers Mechanism/target Tumor type Phase Refs.

Erastin SLC7A11 inhibition Fibrosarcoma Preclinical [1,52]

IKE SLC7A11 inhibition Breast cancer Preclinical [53]

RSL3 GPX4 inhibition Colorectal cancer Preclinical [39]

ML162 GPX4 inhibition Fibrosarcoma Preclinical [55,56]

ML210 GPX4 inhibition Pancreatic cancer, melanoma Preclinical [57]

Bufotalin GPX4 degradation NSCLC Preclinical [60]

DMOCPTL GPX4 degradation TNBC Preclinical [61]

N6F11 GPX4 degradation Pancreatic cancer Preclinical [59]

PdPT GPX4 degradation NSCLC Preclinical [62]

Cu2+ GPX4 degradation Pancreatic cancer Preclinical [42]

FIN56 GPX4 degradation Fibrosarcoma Preclinical [63-65]

dGPX4 GPX4 degradation Fibrosarcoma Preclinical [66]

GDC-11 GPX4 degradation Fibrosarcoma Preclinical [67]

ZX703 GPX4 degradation Fibrosarcoma Preclinical [68]

PDTACs GPX4 degradation NSCLC Preclinical [69]

Sulfasalazine SLC7A11 inhibition Colorectal cancer, esophageal cancer, TNBC Approved antibiotics [71-73]

Sorafenib SLC7A11 inhibition hepatocellular carcinoma Approved anticancer drug [75]

Cisplatin GSH depletion NSCLC, colorectal cancer Approved anticancer drug [78]

Artemisinins ROS induction Head and neck cancer, hepatocellular carcinoma, glioblastoma, lung 
cancer

Approved anti-malarial 
drugs

[82-86]

SLC7A11: Solute carrier family 7 member 11; GPX4: glutathione peroxidase 4; GSH: glutathione; ROS: reactive oxygen species; NSCLC: non-small 
cell lung cancer; TNBC: triple-negative breast cancer.

developed, which shows improved water solubility and potency in animal models[53]. Moreover, other 
studies have identified several SLC7A11 inhibitors through high-throughput virtual screening, but the 
specificity of these agents in inducing ferroptosis requires further validation[54].

GPX4 inhibitors
Certain small-molecule agents, including RSL3, ML162, and ML210, can target the nucleophilic active sites 
of GPX4 to trigger ferroptosis in cancer cells. RSL3, initially recognized as a compound selectively lethal to 
oncogenic RAS-expressing cells, was later identified as a GPX4 inhibitor[39]. The effectiveness of RSL3 relies 
on its chloroacetamide moiety, which targets the nucleophilic selenocysteine residue on GPX4, thereby 
inhibiting GPX4 activity[39]. Similarly, ML162 has an activated alkyl chloride that inhibits GPX4 activity by 
covalently binding to Sec46 and Cys66 of GPX4[55,56]. However, ML210 is a covalent GPX4 inhibitor with a 
functional nitroisoxazole moiety, thus operating through a mechanism distinct from RSL3 and ML162[57]. As 
a prodrug, ML210 transforms within cells into the corresponding α-nitroketoxime JKE-1674, which 
specifically binds to GPX4[57]. While RSL3 and ML162 suppress tumor growth and decrease GPX4 
expression in 3D spheroid tumor models, ML210 is ineffective in this context[58]. Furthermore, although 
these GPX4 inhibitors exhibit strong antitumor effects in vitro, there is limited evidence for their antitumor 
efficacy in vivo.

GPX4 protein degraders can also serve as ferroptosis inducers for cancer treatment. Several compounds, 
such as bufotalin, DMOCPTL, N6F11, and PdPT, trigger ferroptosis by inducing proteasome-mediated 
degradation of GPX4 in pancreatic, lung, and TNBC cells in vitro and in vivo[59-62]. Copper ions increase the 
autophagic degradation of GPX4 by directly binding to Cys107/148 of GPX4 protein, leading to ferroptosis 
in pancreatic cancer cells[42]. FIN56, a ferroptosis-inducing agent, functions via its oxime and piperidine and 
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promotes GPX4 degradation through either proteasome or autophagy pathways in cancer cells, depending 
on the cellular context[63-65]. In addition, targeted protein degradation by proteolysis targeting chimeras 
(PROTACs) is a novel therapeutic strategy for inducing ferroptosis in cancer cells. PROTAC-based GPX4 
degraders (e.g., dGPX4, GDC-11, and ZX703) are usually composed of a GPX4 inhibitor (such as ML162 or 
ML210), pomalidomide, and a linking moiety[66-68]. The warhead of ML162 or ML210 can bind to GPX4 
protein, and promalidomide can recruit the ubiquitin E3 ligase. However, the in vivo application of 
PROTAC-based GPX4 degraders is limited by their poor water solubility and low stability[66]. Furthermore, 
photodegradation-targeting chimeras (PDTACs)-based GPX4 degrader contains the light-sensitive 
component verteporfin, which produces ROS upon light exposure, and possesses the potential to induce 
ferroptosis[69]. PDTAC-induced GPX4 degradation, which occurs after light exposure, does not require 
intracellular degradation machineries such as proteasomes and lysosomes[69]. However, the factors 
determining whether GPX4 is destructed by ubiquitin-proteasome system or autophagy remains largely 
unclear.

Repurposing clinical drugs as ferroptosis inducers
Several clinically used drugs, such as sulfasalazine, sorafenib, cisplatin, and artemisinins, have demonstrated 
ferroptosis-inducing properties. Originally used to treat inflammatory bowel diseases and rheumatoid 
arthritis, sulfasalazine has also been investigated for its potential to act as a ferroptosis inducer[70]. It has been 
reported to induce ferroptosis by repressing SLC7A11 in various cancer cells, including colorectal cancer, 
esophageal cancer, and TNBC[71-73]. Sorafenib, a multi-kinase inhibitor used for advanced cancers, is thought 
to induce ferroptosis by targeting SLC7A11[74]. However, recent research reveals that sorafenib is ineffective 
at inducing ferroptosis in various cancer cell lines[75], highlighting the need for strategies to improve its 
specificity for ferroptosis induction. In line with this insight, JB3, a sorafenib derivative, was designed and 
showed high oral bioavailability and ferroptosis-inducing ability in xenograft models[76]. Platinum 
compounds are widely used anticancer drugs and trigger cancer cell death primarily by triggering DNA 
damage[77]. Cisplatin has been shown to induce ferroptosis by depleting intracellular GSH in several types of 
cancer cells, including non-small cell lung cancer (NSCLC) and colorectal cancer[78]. Accordingly, the 
combination of cisplatin with erastin offers a potential therapeutic approach for overcoming tumor 
resistance to cisplatin[79,80]. Artemisinins, extracted from Artemisia annua, have well-known anti-malarial 
effects and promising antitumor activities[81]. Artemisinins have been shown to trigger ferroptosis in head 
and neck cancer, lung cancer, hepatocellular carcinoma, and glioblastoma cells[82-86]. Mechanistically, 
artemisinins elevate intracellular Fe2+ through both ferritinophagy-dependent and -independent 
mechanisms, thereby promoting lipid peroxidation and inducing ferroptosis [87]. Collectively, these findings 
suggest a potential therapeutic avenue for utilizing ferroptosis-inducing drugs in cancer treatment.

Gene editing technology and RNA-based therapies also hold considerable promise for promoting 
ferroptosis in cancer cells, thus advancing anticancer strategies. For instance, using small interfering RNAs 
(siRNAs) or short hairpin RNAs (shRNA) to downregulate GPX4 or SLC7A11 could sensitize tumor cells to 
ferroptosis and inhibit tumor growth[1,39]. Similarly, anti-miRs and miRNA mimics could modulate the 
expression of ferroptosis-associated genes, which could facilitate targeted induction of ferroptosis in cancer 
cells[88]. In addition, combining RNA-based therapies with ferroptosis inducers could present a promising 
approach to cancer treatment.

SIGNALING INVOLVED IN FERROPTOSIS RESISTANCE IN CANCER
Despite the potential of ferroptosis in cancer treatment, some cancer cells exhibit resistance to ferroptosis-
inducing agents. Deciphering the mechanisms underlying ferroptosis resistance is critical for enhancing the 
efficacy of ferroptosis-based therapies. Below, we will introduce the mechanisms of ferroptosis resistance 
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from several perspectives, including the activation of the GSH pathway, the CoQ pathway, and NFE2-like 
bZIP transcription factor 2 (NRF2) antioxidant response, as well as the alterations in lipid and iron 
metabolism [Table 2].

Activation of the GSH pathway
The GSH-SLC7A11-GPX4 axis serves as the primary defense against ferroptosis and is regulated at multiple 
levels through diverse mechanisms [Figure 3].

Lipid peroxidation is normally suppressed to a large extent by GPX4, which requires GSH as a key 
cofactor[1,39]. The dysregulation of cystine or GSH metabolism may contribute to ferroptosis resistance in 
cancer cells. Gamma-glutamyltransferase 1 (GGT1) facilitates the conversion of extracellular GSH into 
cysteinyl-glycine, which is further degraded into cysteine. Notably, GGT1 decreases the susceptibility of 
glioblastoma cells to ferroptosis triggered by cystine deprivation, particularly under conditions of high cell 
density[89]. Therefore, the combination of GGT1 inhibitors with ferroptosis inducers holds significant 
potential as a promising therapeutic strategy for glioblastoma[89]. In addition, cancer-associated fibroblasts 
participate in pancreatic cancer tumorigenesis by secreting cysteine, which confers cancer resistance to 
ferroptosis[90]. In cancer-associated fibroblasts, cystathionine beta-synthase (CBS)-dependent 
transsulfuration pathway supports cysteine synthesis, thereby inducing ferroptosis resistance in pancreatic 
cancer[90].

Emerging insights indicate that SLC7A11 may serve as a pivotal factor of failure in ferroptosis induction. 
SLC7A11 expression is higher in oxaliplatin-resistant colorectal cancer cells compared to those sensitive to 
oxaliplatin[91]. This resistance correlates with the reduced levels of butyrate, the most prevalent microbial 
fermentation product in the colon, commonly observed in colorectal cancer patients[91]. Mechanistically, 
butyrate inhibits SLC7A11 expression and GSH synthesis by inducing the expression of the transcription 
factor c-Fos[91]. Therefore, combining butyrate with oxaliplatin may be an effective way to reduce ferroptosis 
resistance[91]. SLC7A11 can be activated by the transcriptional factor SRY-box transcription factor 2 (SOX2) 
and the splicing factor 3b subunit 1 (SF3B1) in lung cancer cells[92,93]. In human lung cancer tissues, the 
overexpression of SOX2 and SF3B1 enhances cell resistance to ferroptosis and correlates positively with 
SLC7A11 expression[92,93]. Moreover, SLC7A11 is essential for the mechanistic target of rapamycin complex 
1 (mTORC1)-mediated ferroptosis resistance. Aberrantly activated mTORC1 drives resistance to ferroptosis 
by promoting the transcription of SLC7A11 through stimulation of the endoplasmic reticulum stress-
interleukin 6 (IL-6)- signal transducer and activator of transcription 3 (STAT3) pathway[94]. Similarly, the 
overexpression of protein disulfide isomerase family A member 4 (PDIA4) in the endoplasmic reticulum 
enhances the expression of the transcription factor activating transcription factor 4 (ATF4), which promotes 
the transcriptional expression of SLC7A11, thereby promoting ferroptosis resistance in renal cell 
carcinoma[95].

The epigenetic modulation of SLC7A11 proteins has also been connected to ferroptosis resistance. For 
instance, 5-methylcytosine (m5C) and N6-methyladenosine (m6A) modifications have been identified to 
upregulate SLC7A11 mRNA in cancer cells, leading to ferroptosis resistance. Specifically, the m5C 
methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) catalyzes the m5C modification of 
SLC7A11 mRNA, thereby enhancing its stability in endometrial cancer[96]. In addition, the m6A 
methyltransferase methyltransferase-like protein 3 (METTL3)-dependent m6A modification increases 
SLC7A11 mRNA stability, thus inhibiting ferroptosis in hepatoblastoma[97]. Further progress in the 
understanding of how epigenetic mechanisms influence SLC7A11 expression may potentially identify novel 
therapeutic targets for cancer cells that are resistant to ferroptosis.
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Table 2. Modulators of ferroptosis resistance in cancer

Genes Effects on 
ferroptosis Model Mechanism Refs.

GSH pathway

ZRANB1 Pro-ferroptosis Renal cancer Enhances SLC7A11 degradation [99]

GGT1 Anti-ferroptosis Glioblastoma Increases cysteine [89]

ZDHHC8 Anti-ferroptosis Glioblastoma Enhances SLC7A11 stabilization [100]

USP20 Anti-ferroptosis Hepatocellular carcinoma Enhances SLC7A11 stabilization [101]

CBS Anti-ferroptosis Pancreatic cancer Enhances cysteine synthesis [126]

NEDD4L Pro-ferroptosis NSCLC Enhances GPX4 degradation [102]

STK33 Anti-ferroptosis Pancreatic cancer Inhibits GPX4 degradation [103]

HER2 Anti-ferroptosis Breast cancer Enhances GPX4 expression [104]

c-Fos Pro-ferroptosis Colorectal cancer Decreases SLC7A11 expression [91]

SF3B1 Anti-ferroptosis Lung cancer Enhances SLC7A11 expression [93]

SOX2 Anti-ferroptosis Lung cancer Enhances SLC7A11 expression [92]

ATF4 Anti-ferroptosis Renal cell carcinoma Enhances SLC7A11 expression [95]

NSUN2 Anti-ferroptosis Endometrial cancer Enhances SLC7A11 stabilization [96]

METTL3 Anti-ferroptosis Hepatoblastoma Enhances SLC7A11 mRNA stabilization [97]

mTORC1 Anti-ferroptosis Laryngeal squamous cell carcinoma Enhances SLC7A11 expression [94]

TCF4 Anti-ferroptosis Gastric cancer Enhances GPX4 expression [105]

NeuroD1 Anti-ferroptosis Hepatocellular carcinoma Enhances GPX4 expression [106]

CoQ pathway

CEBPB Anti-ferroptosis Pancreatic cancer Enhances FSP1 mRNA stabilization [109]

ALDH1A3 Anti-ferroptosis Colorectal cancer Enhances CoQ synthesis [115]

POLQ Anti-ferroptosis Gastric cancer Enhances DHODH expression [112]

PRR11 Anti-ferroptosis Gliomas Enhances the stabilization of DHODH [113]

NRF2 Anti-ferroptosis Lung cancers Enhances FSP1 expression [108]

TRIM21 Anti-ferroptosis Hepatocellular carcinoma, pancreatic 
cancer

Enhances FSP1 plasma membrane translocation [110]

ACSL1 Anti-ferroptosis Ovarian cancer Decreases FSP1 degradation [111]

NRF2 antioxidant response

Src Anti-ferroptosis Glioblastoma Enhances NRF2 activity [121]

ATF3 Anti-ferroptosis Gastric carcinoma Enhances NRF2 activity [128]

CYBB Anti-ferroptosis Mesenchymal glioblastoma Enhances NRF2 activity [127]

CBS Anti-ferroptosis Ovarian cancer Acts as NRF2 target gene, enhances cysteine 
synthesis

[126]

SLC7A11 Anti-ferroptosis Renal cell carcinoma Acts as NRF2 target gene, enhances GSH 
synthesis

[120]

DPP9 Anti-ferroptosis Clear cell renal cell carcinoma Increases NRF2 stabilization [120]

ABCC5 Anti-ferroptosis Hepatocellular carcinoma Acts as NRF2 target gene, decreases ROS [124]

MT1G Anti-ferroptosis Hepatocellular carcinoma Acts as NRF2 target gene, decreases ROS [125]

NSUN2 Anti-ferroptosis NSCLC Enhances NRF2 expression [122]

Lipid metabolism

SCD5 Anti-ferroptosis NSCLC Enhances de novo MUFA synthesis [134]

SCD1 Anti-ferroptosis Colorectal cancer, melanoma Enhances de novo MUFA synthesis [131,133]

SLC27A4 Anti-ferroptosis Hepatocellular carcinoma Enhances uptake of MUFA [135]

ACSM1/3 Anti-ferroptosis Prostate cancer Enhances fatty acid oxidation [137]

PDK4 Anti-ferroptosis Pancreatic cancer Hinders pyruvate oxidation and fatty acid 
synthesis

[136]

15-LOX Pro-ferroptosis Cervical cancer Enhances lipid synthesis [143]

B7H3 Anti-ferroptosis Colorectal cancer Decreases cholesterol metabolism [141]

27HC Anti-ferroptosis Breast cancer Decreases cholesterol metabolism [140]
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Iron metabolism

circRAPGEF5 Anti-ferroptosis Endometrial cancer Decreases iron uptake [150]

TRIM33 Pro-ferroptosis Hepatocellular carcinoma Decreases TFRC stabilization [151]

METTL16 Anti-ferroptosis Hepatocellular carcinoma Enhances LTF stabilization [152]

DUSP4 Anti-ferroptosis Hepatocellular carcinoma Enhances FTH and FTL expression [156]

SOX13 Anti-ferroptosis Gastric cancer Decreases mitochondrial ROS [154]

RBCK1 Anti-ferroptosis Pancreatic cancer Decreases mitochondrial ROS [155]

TRPML1 Anti-ferroptosis Breast cancer, NSCLC Decreases intracellular iron [159]

PROM2 Anti-ferroptosis Bladder cancer, breast cancer, lung 
cancer

Enhances iron export [146-149]

SLC7A11: Solute carrier family 7 member 11; GPX4: glutathione peroxidase 4; GSH: glutathione; ROS: reactive oxygen species; NSCLC: non-small 
cell lung cancer; TNBC: triple-negative breast cancer; FTH: ferritin heavy chain; FTL: ferritin light chain; LTF: lactotransferrin; TFRC: transferrin 
receptor; MUFA: monounsaturated fatty acid; NRF2: NFE2-like bZIP transcription factor 2; NFE2: nuclear factor, erythroid 2; FSP1: ferroptosis 
suppressor protein-1; DHODH: dihydroorotate dehydrogenase; CBS: cystathionine beta-synthase.

In addition to mRNA levels, elevated SLC7A11 protein stability likewise results in ferroptosis tolerance. The 
ubiquitin-proteasome system has essential roles in maintaining protein stability and has been implicated in 
the process of ferroptosis[98]. Loss of zinc finger RANBP2-type containing 1 (ZRANB1), an E3 ubiquitin 
ligase responsible for SLC7A11 protein degradation, renders renal cancer cells resistant to ferroptosis[99]. In 
glioblastoma, the S-palmitoylated modification of SLC7A11 is essential for its protein stabilization. 
Specifically, the palmitoyl transferase zinc finger DHHC-type palmitoyltransferase 8 (ZDHHC8) catalyzes 
S-palmitoylation of SLC7A11 at Cys327, thus increasing the deubiquitination of SLC7A11[100]. Consequently, 
ZDHHC8-mediated SLC7A11 stabilization fosters ferroptosis resistance during glioblastoma 
tumorigenesis[100]. Similarly, the deubiquitinase ubiquitin-specific peptidase 20 (USP20) stabilizes SLC7A11 
via removing K48-specific ubiquitination of SLC7A11 protein at Lys30/37[101]. Thus, high expression of 
USP20 is associated with poor prognosis in hepatocellular carcinoma and contributes to oxaliplatin and 
ferroptosis resistance of hepatocellular carcinoma cells[101].

Elevated expression of GPX4, which leads to increased lipid peroxidation detoxification capacity, is 
regarded as a key factor for ferroptosis resistance. In NSCLC cells, ferroptosis is implicated in etoposide-
induced cell death. Lactate, a glycolytic metabolite, induces ferroptosis resistance by upregulating GPX4, 
leading to insensitivity to etoposide therapy[102]. Mechanistically, lactate inhibits the ubiquitination of GPX4 
and enhances its stability through activation of the E3 ubiquitin ligase NEDD4 like E3 ubiquitin protein 
ligase (NEDD4L), thereby triggering ferroptosis and etoposide resistance[102]. Resistance to ferroptosis may 
also impact the efficacy of gemcitabine, which is a first-line chemotherapy drug for pancreatic cancer 
treatment[103]. The long non-coding RNA MACC1 antisense RNA 1 (MACC1-AS1) promotes the expression 
of serine/threonine kinase 33 (STK33) protein kinase, which inhibits GPX4 degradation, therefore 
counteracting the cytotoxic effect of gemcitabine[103]. GPX4 upregulation induced by the activation of erb-b2 
receptor tyrosine kinase 2 (HER2 or ERBB2) pathway may contribute to ferroptosis resistance in luminal 
breast cancer cell lines[104]. In contrast, neratinib, an irreversible HER2 inhibitor, effectively reverses 
ferroptosis-resistant luminal breast cancer[104]. Moreover, the combination of neratinib with GPX4 inhibitors 
promotes ferroptosis by increasing the generation of mitochondria ROS and lipid peroxidation[104]. The 
transcription factor 4 (TCF4) and neuronal differentiation 1 (NeuroD1) can directly stimulate GPX4 
transcription, thus inducing ferroptosis resistance in gastric cancer and hepatocellular carcinoma, 
respectively[105,106]. These findings suggest the development of clinical therapeutic strategies targeting the 
GSH pathway aimed at overcoming chemotherapy resistance in tumors.
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Figure 3. Ferroptosis resistance induced by the activation of the GSH pathway. SLC7A11-GSH-GPX4 axis is regulated at the 
transcriptional, epigenetic, and post-transcriptional levels. The protein expression or activity of SLC7A11 is regulated by ZRANB1, 
ZDHHC8, USP20, c-FOS, PRMT1, SF3B1, ATF4, NSUN2, IGF2BP1, STAT3, and SOX2. In addition, GPX4 is regulated by NEDD4L, STK33, 
NeuroD1, and TCF4. OU749, a GGT1 inhibitor. SLC7A11: Solute carrier family 7 member 11; GPX4: glutathione peroxidase 4; GSH: 
glutathione; CBS: cystathionine beta-synthase; GGT1: gamma-glutamyltransferase 1; STAT3: signal transducer and activator of 
transcription 3; IL-6: interleukin 6; ZRANB1: zinc finger RANBP2-type containing 1; ZDHHC8: zinc finger DHHC-type 
palmitoyltransferase 8; USP20: ubiquitin-specific peptidase 20; SF3B1: splicing factor 3b subunit 1; ATF4: activating transcription factor 
4; NSUN2: NOP2/Sun RNA methyltransferase 2; SOX2: SRY-box transcription factor 2; NEDD4L: NEDD4 like E3 ubiquitin protein 
ligase; STK33: serine/threonine kinase 33; TCF4: transcription factor 4; NeuroD1: neuronal differentiation 1; METTL3: 
methyltransferase-like protein 3; PDIA4: protein disulfide isomerase family A member 4; PRMT1: protein arginine methyltransferase 1.

Activation of the CoQ pathway
CoQ is a key electron carrier in the ETC and also an integral component of the antioxidant system. FSP1 
and DHODH can reduce CoQ to CoQH2, a lipophilic antioxidant[40,46], thereby conferring resistance to 
ferroptosis in tumors [Figure 4].
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Figure 4. Ferroptosis resistance induced by the activation of the CoQ pathway. FSP1- or DHODH-mediated generation of CoQH2 
functions as a key component in cellular antioxidant systems, contributing to ferroptosis resistance in cancer cells. Brequinar, a dual 
inhibitor of FSP1 and DHODH; Novobiocin, a POLQ inhibitor. FSP1: Ferroptosis suppressor protein-1; DHODH: dihydroorotate 
dehydrogenase. POLQ: polymerase theta; NRF2: NFE2-like bZIP transcription factor 2; NFE2: nuclear factor, erythroid 2; ACSL1: acyl-
CoA synthetase long-chain family member 1; AHR: aryl hydrocarbon receptor; ALDH1A3: aldehyde dehydrogenase 1 family member A3; 
TRIM21: tripartite motif-containing 21; KEAP1: kelch-like ECH-associated protein 1; PRR11: proline-rich protein 11; CEBPB: CCAAT 
enhancer binding protein beta; PRR11: proline-rich protein 11; E2F4: E2F transcription factor 4.

FSP1 could be a critical player that mediates ferroptosis resistance in multiple tumors. In kelch-like ECH-
associated protein 1 (KEAP1)-mutant lung cancers, NRF2 has been shown to promote the transcriptional 
expression of FSP1[107,108]. Additionally, CCAAT/enhancer-binding protein beta (C/EBPB) acts as a 
transcription factor to increase the expression of LINC01133, which stabilizes FSP1 mRNA in pancreatic 
cancer cells[109]. Thus, synergistically targeting of FSP1 and NRF2 may offer a maximal antitumor strategy 
for inducing ferroptosis in KEAP1-mutant tumors[108]. Furthermore, post-translational modifications, such 
as ubiquitination and N-myristoylation, modulate FSP1 activity and stability. For instance, the E3 ubiquitin 
ligase tripartite motif-containing 21 (TRIM21) acts as a suppressor of ferroptosis by promoting K63 
ubiquitination and plasma membrane translocation of FSP1, making it a potential therapeutic target to 
enhance chemosensitivity in ferroptosis-resistant hepatocellular carcinoma and pancreatic cancer[110]. In 
addition, acyl-CoA synthetase long chain family member 1 (ACSL1), a regulator of fatty acid metabolism, 
inhibits the degradation of FSP1 by increasing its N-myristoylation, thereby antagonizing ferroptosis in 
ovarian cancer[111]. Therefore, the FSP1-CoQ pathway drives ferroptosis resistance and offers promising 
therapeutic targets for cancer treatment.
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Similarly to FSP1, the activation of DHODH-CoQ pathways also contributes to ferroptosis resistance. 
Polymerase theta (POLQ), a DNA polymerase, drives resistance to ferroptosis in gastric cancer cells by 
stimulating DHODH expression via the transcription factor E2F transcription factor 4 (E2F4)[112]. The 
combination of POLQ inhibitor and ferroptosis inducer has synergistic inhibitory effects on gastric cancer 
stem cells, providing a potential clinically feasible strategy for gastric cancer[112]. Furthermore, the resistance 
to ferroptosis in recurrent gliomas is predominantly driven by proline-rich protein 11 (PRR11), which 
maintains DHODH protein stability[113]. Notably, DHODH inhibitors, such as brequinar, can also inhibit 
FSP1, potentially enhancing the sensitization of cancer cells to ferroptosis[114]. However, the precise 
mechanisms of crosstalk between FSP1 and DHODH are yet to be elucidated.

Nicotinamide adenine dinucleotide (NADH)-dependent redox balance is thought to contribute to CoQ-
mediated ferroptosis resistance phenotypes. Activation of aryl hydrocarbon receptor (AHR) induces the 
expression of aldehyde dehydrogenase 1 family member A3 (ALDH1A3), which mediates ferroptosis 
resistance via producing reduced NADH, thus increasing the synthesis of CoQ[115]. As such, gut microbial 
metabolite trans-3-indoleacrylic acid directly activates AHR to increase ferroptosis resistance in colorectal 
cancer[115]. Consistently, targeted inhibition of the mevalonate pathway disturbs the redox balance within the 
CoQ pathway, thereby overcoming ferroptosis resistance in TNBC[116]. Additionally, the CoQ pathway 
participates in the development of radioresistance and presents a potential target for reversing 
radioresistance in NSCLC[117]. In contrast, statin treatment may enhance radiotherapy-mediated ferroptosis 
by disrupting CoQ synthesis[117].

Activation of NRF2 antioxidant response
The NRF2 signaling pathway is a critical defense mechanism against ferroptosis, contributing to ferroptosis 
resistance observed in multiple types of cancer cells [Figure 5]. Under normal conditions, NRF2 is retained 
in the cytoplasm by KEAP1, preventing its nuclear translocation and activation[118]. In certain types of 
cancer, mutations in KEAP1 can disrupt this interaction, resulting in elevated NRF2 activity[118]. 
Consequently, NRF2 may inhibit ferroptosis by enhancing the cell's antioxidant defenses[119]. Upregulation 
of dipeptidyl peptidase 9 (DPP9) increases the stabilization of NRF2, thus boosting sorafenib resistance in 
clear cell renal cell carcinoma cells[120]. Similarly, activation of Src tyrosine kinase stabilizes and activates 
NRF2, resulting in enhanced resistance of glioblastoma cells to ionizing radiation-induced ferroptosis[121]. In 
addition, NSUN2, an RNA m5C methyltransferase highly expressed in NSCLC, serves as an upstream of 
NRF2. Mechanistically, NSUN2 increases the m5C modification of NRF2 mRNA, leading to enhanced 
expression of NRF2[122]. Conversely, depleting NSUN2 decreases the expression of NRF2 and increases the 
sensitivity of NSCLC cells to ferroptosis activators both in vitro and in vivo[122]. Consistently, the NRF2 
inhibitor trigonelline sensitizes chemoresistant head and neck cancer cells to ferroptosis inducers[123].

Activation of NRF2 axis in cancer cells triggers the induction of multiple anti-ferroptotic genes, including 
SLC7A11, ATP binding cassette subfamily C member 5 (ABCC5), metallothionein 1G (MT1G), FSP1, CBS, 
and superoxide dismutase 2 (SOD2). In clear cell renal cell carcinoma cells, NRF2-mediated sorafenib 
resistance is largely dependent on its transcriptional target SLC7A11[120]. Similarly, NRF2 promotes the 
expression of multidrug resistance protein ABCC5 and metallothionein MT1G, leading to ferroptosis 
inhibition and sorafenib resistance in hepatocellular carcinoma cells[124,125]. NRF2 also promotes ferroptosis 
resistance by transcriptionally upregulating the expression of FSP1 in KEAP1-mutant lung cancers[107,108]. In 
erastin-resistant ovarian cancer cells, NRF2 transcriptionally upregulates CBS, the key enzyme in 
transsulfuration-mediated cysteine biosynthesis pathway[126]. Furthermore, cytochrome b-245 beta chain 
(CYBB), a subunit of NADPH oxidase, interacts with NRF2 and promotes temozolomide resistance by 
regulating the NRF2-SOD2 axis in mesenchymal glioblastoma[127]. Compensatory antioxidant SOD2 further 
protects against cytotoxicity induced by high ROS levels during ferroptosis in these temozolomide-resistant 
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Figure 5. Ferroptosis resistance induced by the activation of NRF2 antioxidant response. NRF2 protein expression is modulated by 
CYBB, ATF3, p-SRC, DPP9, ABCC5, and NSUN2. Moreover, NRF2 promotes ferroptosis resistance by transcriptionally upregulating 
several target genes, including CBS, SLC7A11, GPX4, HOMX1, FTH, MT1G, and SOD. SLC7A11: Solute carrier family 7 member 11; GPX4: 
glutathione peroxidase 4; GSH: glutathione; CYBB: cytochrome b-245 beta chain; CBS: cystathionine beta-synthase; FTH: ferritin heavy 
chain; SOD: superoxide dismutase; ABCC5: ATP binding cassette subfamily C member 5; MT1G: metallothionein 1G; DPP9: dipeptidyl 
peptidase 9; ATF3: activating transcription factor 3; NSUN2: NOP2/Sun RNA methyltransferase 2; NRF2: NFE2-like bZIP transcription 
factor 2; NFE2: nuclear factor, erythroid 2; HOMX1: heme oxygenase 1.

cancer cells[127]. In contrast, activating transcription factor 3 (ATF3) sensitizes gastric carcinoma cells to 
cisplatin via obstructing NRF2-SLC7A11 signaling[128]. These findings support that targeting the NRF2 axis 
offers a feasible strategy to overcome ferroptosis resistance in cancer therapy.

Alteration in lipid metabolism
PUFA are structural components of cell membranes and act as substrates for lipid peroxidation. Alterations 
in lipid metabolism are closely associated with ferroptosis resistance [Figure 6]. Stearoyl-CoA desaturase 1 
(SCD1), a multifunctional enzyme involved in lipid metabolism, inhibits ferroptosis by catalyzing the 
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Figure 6. Ferroptosis resistance induced by alterations in lipid metabolism. PUFA is required for lipid peroxidation and ferroptosis, while 
the uptake and synthesis of MUFA contribute to ferroptosis resistance. Other pathways like lipid synthesis, cholesterol metabolism, and 
lipid droplet formation also determine the cancer cell sensitivity to ferroptosis. A939572 and MK-8245, SCD1 inhibitors; Betulin, a 
SREBP2 inhibitor; SB431542, a Smad2/3 inhibitor. PUFA: Polyunsaturated fatty acid; MUFA: monounsaturated fatty acid; SCD1: stearoyl-
CoA desaturase 1; SLC7A11: solute carrier family 7 member 11; TIGAR: TP53-induced glycolysis regulatory phosphatase; ASS1: 
argininosuccinate synthase 1; SREBP1: sterol regulatory-element-binding protein 1; PDK4: pyruvate dehydrogenase kinase 4; ACSM1/3: 
acyl-CoA synthetase medium chain family member 1/3; SLC27A4: solute carrier family 27 member 4; IL4/13: interleukin 4/13; JAK: 
Janus kinase; STAT6: signal transducer and activator of transcription 6; 15-LOX: 15-lipoxygenase; PUFA: polyunsaturated fatty acid.

desaturation of unsaturated fatty acids to increase the levels of monounsaturated fatty acid (MUFA)[129-131]. 
TP53-induced glycolysis regulatory phosphatase (TIGAR), a p53 target gene, drives ferroptosis resistance in 
colorectal cancer by activating the ROS- AMP-activated protein kinase (AMPK)-SCD1 axis[132]. Moreover, 
SCD1 can be transcriptionally upregulated through the activation of SMAD family member 2 or 3 (Smad2/
3) triggered by the overexpression of nodal growth differentiation factor (NODAL)[131]. Consequently, 
pharmacologic or genetic inhibition of SCD1 abolishes the ferroptosis resistance in colorectal cancer and 
melanoma cells[131,133]. Another member of the SCD family, stearoyl-CoA desaturase 5 (SCD5), plays a 
crucial role in ferroptosis resistance. In NSCLC cells, argininosuccinate synthase 1 (ASS1) activates the 
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mTORC1-sterol regulatory-element-binding protein 1 (SREBP1)-SCD5 axis, promoting de novo MUFA 
synthesis and ferroptosis resistance[134]. Similarly, solute carrier family 27 member 4 (SLC27A4)-mediated 
uptake of MUFA facilitates the resistance to ferroptosis triggered by sorafenib in hepatocellular 
carcinoma[135]. Thus, targeting MUFA metabolism could be therapeutically beneficial in modulating 
ferroptosis resistance in cancer cells.

Intracellular lipid synthesis and storage are tightly regulated processes essential for normal cellular function. 
A screening using RNA interference library by targeting metabolic enzymes identified pyruvate 
dehydrogenase kinase 4 (PDK4) as an important gene involved in ferroptosis resistance[136]. PDK4 inhibits 
ferroptotic cell death by hindering pyruvate oxidation and fatty acid synthesis in human pancreatic ductal 
adenocarcinoma cells[136]. In prostate cancer, acyl-CoA synthetase medium chain family member 1 and 3 
(ACSM1 and ACSM3) regulate lipidome and promotes resistance to ferroptosis through fatty acid 
oxidation[137]. Furthermore, cell cycle arrest has an inhibitory effect on ferroptosis in cancers by promoting 
lipid droplet formation, which sequesters excess PUFA to limit lipid peroxidation[138]. In contrast, lipophagy, 
the autophagy-mediated degradation of lipid droplets, facilitates ferroptotic cell death in cancer cells[139]. It 
may be very interesting to examine the crosstalk between cell cycle arrest and lipophagy in the ferroptosis 
process.

Hypercholesterolemia and disorders of lipid metabolism are associated with ferroptosis resistance in several 
cancers. Chronic exposure to 27-hydroxycholesterol (27HC), a metabolite of cholesterol, promotes 
ferroptosis resistance in breast cancer cells, leading to enhanced tumorigenesis and metastasis[140]. 
Additionally, B7H3/CD276, an immune checkpoint molecule, has been identified as a potential regulator of 
ferroptosis resistance in colorectal cancer cells[141]. B7H3 promotes ferroptosis resistance by modulating 
sterol regulatory element binding protein 2 (SREBP2)-mediated cholesterol metabolism[141]. However, this 
effect can be counteracted by exogenous cholesterol supplementation or the use of the SREBP2 inhibitor, 
betulin[141]. These findings emphasize the importance of cholesterol metabolism in controlling ferroptosis in 
cancer cells, highlighting its potential as a therapeutic target for ferroptosis resistance.

In the tumor microenvironment, lipid peroxidation in macrophages impairs their phagocytic ability to 
eradicate ferroptotic cancer cells, thereby promoting cancer resistance to ferroptosis[142]. Moreover, 
macrophage-derived exosomes can attenuate the expression of 15-LOX to limit ferroptosis in cervical 
cancer cells[143]. Additionally, KRASG12D-containing exosomes released from ferroptotic pancreatic cancer 
cells cause macrophages to switch toward a pro-tumorigenesis M2-like phenotype by activating STAT3-
dependent fatty acid oxidation[144]. Although the function of ferroptosis in regulating tumor immunity 
requires further elucidation, continued studies on lipid metabolism regulated-tumor microenvironment 
pathways will help to find new ways to overcome ferroptosis resistance.

Alteration in iron metabolism
Although iron is crucial for various physiological processes, excess iron results in ROS production and lipid 
peroxidation, which promotes ferroptosis. Tumor cells often develop resistance to ferroptosis by 
manipulating iron metabolism [Figure 7].

Prominin 2 (PROM2) is a protein responsible for iron transport out of cells via multivesicular bodies 
(MVBs), thus inhibiting ferroptosis[145]. Overexpression of PROM2 increases metastatic potential and 
ferroptosis resistance in multiple cancers[146]. Strategies aimed at blocking PROM2 expression or function 
may enhance cancer cell sensitivity to ferroptosis induced by GPX4 inhibitors[146]. In lung cancer, activating 
transcription factor 1 (ATF1) promotes ferroptosis resistance by stabilizing PROM2 mRNA[147]. 
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Figure 7. Ferroptosis resistance induced by alterations in iron metabolism. The upregulation of ferroportin, TRPML1, PROM2, and ferritin, 
or downregulation of TFRC, decreases intracellular free iron levels, leading to ferroptosis resistance in cancer cells. In addition, activation 
of RBCK1 and SOX13 may promote ferroptosis resistance by decreasing iron-mediated mitochondrial ROS. Ferlixit, an activator of 
ferritinophagy; BIRB and SB202190, P38 inhibitors; KRIBB11, a HSF1 inhibitor. TRPML1: Transient receptor potential mucolipin 1; PROM2: 
prominin 2; RBCK1: RANBP2-type and C3HC4-type zinc finger containing 1; SOX13: SRY-box transcription factor 13; HSF1: heat shock 
transcription factor 1; ATF1: activating transcription factor 1; TFRC: transferrin receptor; RBFOX2: RNA binding fox-1 homolog 2; 
METTL16: methyltransferase methyltransferase-like protein 16; SENP3: SUMO specific peptidase 3; DUSP4: dual-specificity 
phosphatase 4; YTHDC1: YTH N6-methyladenosine RNA binding protein C1; LTF: lactotransferrin; MFN2: mitofusin 2; SCAF1: SR-related 
CTD associated factor 1.

Additionally, the lipid peroxidation product 4-hydroxynonenal (4-HNE) enhances the expression of 
PROM2 by activating heat shock transcription factor 1 (HSF1)-dependent transcription[148]. Accordingly, 
HSF1 inhibitors have been shown to restore the sensitivity of breast cancer cells to ferroptosis[148]. 
Furthermore, LncRNA RP11-89/miR-129-5P inhibits ferroptosis via PROM2-activated iron export in 
bladder cancer[149].

The iron transporter protein, TFRC, is considered the most important gene for intracellular iron uptake. 
CircRAPGEF5 binds the RNA-binding protein RNA binding fox-1 homolog 2 (RBFOX2), blocking 
RBFOX2-mediated splicing of TFRC pre-mRNA[150]. Therefore, elevated circRAPGEF5 levels decrease iron 
uptake and lipid peroxidation in endometrial cancer, leading to ferroptosis resistance[150]. Furthermore, the 
downregulation of the E3 ubiquitin ligase tripartite motif-containing 33 (TRIM33) leads to the stabilization 
of TFRC through reduced ubi quitination, thereby inhibiting ferroptosis in hepatocellular carcinoma[151]. 
Another study shows that the m6A methyltransferase methyltransferase-like protein 16 (METTL16) confers 
ferroptosis resistance in hepatocellular carcinoma[152]. Mechanistically, METTL16 catalyzes m6A 
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modification of SUMO specific peptidase 3 (SENP3) mRNA, leading to enhanced stabilization of 
lactotransferrin (LTF), which subsequently reduces free iron[152].

Ferritin, composed of the subunits ferritin heavy chain (FTH) and ferritin light chain (FTL), modulates iron 
metabolism by storing iron. FTH accelerates the growth and migration of hepatocellular carcinoma by 
conferring resistance to ferroptosis[153]. Mechanistically, FTH-reconstituted cells exhibit reduced lipid 
peroxidation, decreased mitochondrial ROS levels, and enhanced mitochondrial respiration[153]. Similarly, 
SRY-box transcription factor 13 (SOX13) and RANBP2-type and C3HC4-type zinc finger containing 1 
(RBCK1) enhance resistance to ferroptosis in gastric and pancreatic cancers by boosting mitochondrial 
respiration[154,155]. Dual-specificity phosphatase 4 (DUSP4) inhibits sorafenib-induced ferroptosis in 
hepatocellular carcinoma by activating the RNA m6A reader, YTH N6-methyladenosine RNA binding 
protein C1 (YTHDC1), leading to enhanced expression of FTH and FTL[156]. In addition, extracellular 
matrix-detached conditions can facilitate ferroptosis resistance in cancer cells by activating the NRF2-FTH 
signaling[157]. In contrast, ferlixit, an iron compound, sensitizes ovarian cancer cells to ferroptosis by 
increasing ferritinophagy[158]. In addition, lysosome facilitates ferroptosis by generating free iron ions 
through the degradation of ferritin[20,21]. However, transient receptor potential mucolipin 1 (TRPML1) 
triggers lysosomal exocytosis, which reduces intracellular Fe2+ and promotes ferroptosis resistance in AKT-
hyperactivated cancer[159]. Further investigation into the crosstalk between autophagy and ferroptosis could 
unveil novel therapeutic strategies to overcome ferroptosis resistance in cancer.

CONCLUSION AND FUTURE PROSPECTS
Targeting ferroptosis pathways in tumor cells is emerging as a promising anticancer strategy. Despite 
extensive research into the mechanism underlying ferroptosis resistance in cancer cells, many questions 
remain unanswered. For instance, can ferroptosis inducers, as novel agents of cell death, be effective 
candidates in tumor therapy? How should we prioritize and target key molecules in ferroptosis pathways? 
Moreover, how can we precisely target the regulatory modulators that involve the ferroptosis-suppressing 
axis to overcome tumor resistance?

The practical implications of ferroptosis in the context of tumor resistance herald a new dawn in therapies 
targeting its key regulators. However, specific ferroptosis inhibitors have not yet entered clinical practice, 
and much of the research on ferroptosis resistance remains confined to preclinical studies. Several factors 
may account for this dilemma. Firstly, mitigating the toxicity and off-target effects of ferroptosis inducers 
continues to be a challenge. Secondly, the limited bioavailability and specificity of certain ferroptosis 
inducers impede their translation into clinical practice. Thirdly, tumor heterogeneity and variations in gene 
expression present substantial obstacles to the efficacy of targeted compounds across different cancer types, 
thereby diminishing their clinical applicability. Consequently, more extensive screening for potential 
ferroptosis inhibitors is crucial for advancing tumor therapy.

In conclusion, better insight into how tumor cells adapt and develop drug resistance will maximize the 
efficacy of pro-ferroptosis therapies.
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