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Abstract
Aim: Data harmonization standardizes healthcare information, enhancing accessibility and interoperability, which 
is crucial for improving patient outcomes and driving medical research and innovation. It enables precise diagnoses 
and personalized treatments, and boosts AI model efficiency. However, significant challenges such as ethical 
concerns, technical barriers in the data lifecycle, AI biases, and varied regional regulations impede progress, 
underscoring the need for solutions like adopting universal standards such as HL7 FHIR, where the lack of 
generalized harmonization efforts is significant.

Methods: We propose an advanced, holistic framework that utilizes FAIR-compliant reference ontologies (based 
on the FAIRplus and FAIR CookBook criteria) to make data findable, accessible, interoperable, and reusable 
enriched with terminologies from OHDSI (Observational Health Data Sciences and Informatics) vocabularies and 
word embeddings to identify lexical and conceptual overlaps across heterogeneous data models.

Results: The proposed approach was applied to autoimmune diseases, cardiovascular diseases, and mental 
disorders using unstructured data from EU cohorts involving 7,551 patients with primary Sjogren’s Syndrome, 
25,000 patients with cardiovascular diseases, and 3,500 patients with depression and anxiety. Metadata from 
these datasets were structured into dictionaries and linked with three newly developed reference ontologies 
(ROPSS, ROCVD, and ROMD), which are accessible on GitHub. These ontologies facilitated data interoperability 
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across different systems and helped identify common terminologies with high precision within each domain.

Conclusion: Through the proposed framework, we aim to urge the adoption of data harmonization as a priority, 
emphasizing the need for global cooperation, investment in technology and infrastructure, and adherence to ethical 
data usage practices toward a more efficient and patient-centered global healthcare system.

Keywords: Data harmonization, FAIR CookBook, FAIRplus, HL7, FHIR, OHDSI, AI

INTRODUCTION
The need for data harmonization in healthcare is a multidimensional challenge with profound implications 
for the future of healthcare[1-3]. The primary objective of harmonizing medical data is to enhance patient 
outcomes. “When data from various healthcare sources are harmonized, it enables more accurate and 
comprehensive diagnoses, personalized treatment plans, and overall improved patient care”. This is because 
consistent and comparable data from different sources provide healthcare professionals with a more holistic 
view of a patient's health, leading to better-informed medical decisions. Moreover, the role of harmonized 
and FAIRified data in advancing medical research and innovation cannot be overstated. Researchers require 
large, diverse datasets to conduct robust studies. “Harmonized data facilitate the amalgamation and analysis 
of information from diverse sources, thereby accelerating the discovery of new treatments and healthcare 
technologies”. It also ensures that the findings of such research are more representative and widely 
applicable. Moreover, harmonized data can facilitate collaborative international research efforts to address 
global health challenges. The ability to analyze data from global regions offers invaluable insights into the 
discovery of effective treatment strategies. According to Figure 1, the major challenges in data 
harmonization include: (i) ethical and privacy concerns; (ii) data sharing and interoperability; (iii) data 
preparation; (iv) international standards and cooperation; (v) biases during AI modeling, and (vi) global 
health implications.

The integration of FAIR (Findability, Accessibility, Interoperability, and Reusability)-compliant reference 
ontologies with Observational Health Data Sciences and Informatics (OHDSI) vocabularies can significantly 
enhance medical data harmonization, addressing interoperability, consistency, and usability gaps. The FAIR 
principles ensure that data are well-documented, structured for both human and computational use, and 
efficiently integrated across different systems. OHDSI’s vocabularies can enhance these principles by 
providing a standardized framework that facilitates data integration from diverse healthcare systems. 
Standardization of data representation is another critical advantage. Utilizing FAIR-compliant ontologies 
and OHDSI vocabularies enables the mapping of diverse healthcare data to a unified set of terms and 
definitions, reducing ambiguity and enhancing data accuracy. These ontologies can ensure consistent data 
modeling across various sources, which is crucial for effective data aggregation. They also promote scalable 
data integration through semantic enrichment, which enhances querying and data analysis capabilities. This 
integration, in turn, enhances data quality and usability. Ontologies facilitate data validation by enforcing 
adherence to predefined relationships and constraints, ensuring data integrity, quality, and reusability, thus 
fostering efficiency in research and reducing redundancies in data collection, which is particularly valuable 
in healthcare.

The regulatory landscape significantly impacts data harmonization efforts. Regulations, such as the Health 
Insurance Portability and Accountability Act (HIPAA)[4] in the United States or the General Data Protection 
Regulation (GDPR)[5] in the European Union, define how patient data can be collected, stored, shared, and 
used. Achieving compliance with these regulations is complex and poses barriers to harmonizing data 
across different regions. HIPAA primarily focuses on the privacy and security protections of personal health 
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Figure 1. Challenges in data harmonization.

information in the United States, setting standards for how such data should be handled to ensure data 
confidentiality and integrity. It outlines specific conditions under which protected health information (PHI) 
can be used or disclosed, mandating physical, administrative, and technical safeguards. This affects the 
architecture and security features of data management systems used in harmonization, necessitating 
features such as data encryption, secure access controls, and audit capabilities to comply with HIPAA’s 
strict safeguards. GDPR, on the other hand, emphasizes the protection of personal data and the privacy of 
EU citizens. It introduces comprehensive rights for data subjects, such as the right to access, rectify, and 
erase their data, which influences how data are collected, stored, and utilized in harmonization processes. 
GDPR also requires explicit consent for data processing activities, impacting how consent is captured and 
managed in data integration projects. Additionally, it imposes stringent conditions on the transfer of 
personal data outside the EU, affecting global data harmonization efforts by requiring compliance with 
specific legal frameworks before data can be transferred internationally. Both HIPAA and GDPR establish a 
framework that ensures data are handled responsibly and ethically, helping to establish trust among 
stakeholders, which is essential for successful data harmonization initiatives. However, their stringent 
requirements also pose challenges, including compliance costs and operational complexities.

Another critical challenge lies in the technical barriers that are introduced during data sharing, including 
data standardization and interoperability. The first major technical obstacle is data interoperability. Medical 
data are stored in different formats, creating significant challenges for seamless data exchange and 
integration. Developing and maintaining universal standards that facilitate global data sharing requires 
extensive coordination among a myriad of stakeholders, alongside continuous technological updates. 
Another substantial technical challenge is maintaining data quality and integrity. Inconsistencies, errors, 
and incomplete data can severely impact patient care and the validity of research. Implementing thorough 
data validation and cleaning processes, though crucial, is resource-intensive and technically demanding. 
Furthermore, the scalability and infrastructure required to manage the vast amounts of data generated 
globally pose their own set of challenges. Establishing the necessary infrastructure for large-scale data 
harmonization requires significant financial investment and sophisticated technological solutions, including 
the utilization of cloud computing and high-performance computing platforms. On the ethical front, patient 
privacy and data security are critical. The risk of data breaches and unauthorized access increases as data are 
shared across borders, complicating compliance with diverse and sometimes conflicting data protection 
regulations (GDPR, HIPAA). Another ethical concern is ensuring proper consent and autonomy. The 
varying cultural norms and legal frameworks around consent across different countries complicate the 
process of informing patients and obtaining their consent regarding data use. Ensuring patients are 
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well-informed and retain control over their data is critical. Additionally, there is a risk of equity and fairness 
issues. Data harmonization efforts could inadvertently overlook or underutilize data from underrepresented 
or less developed regions, potentially reinforcing existing healthcare disparities. To this end, cooperation 
between governments, healthcare organizations, researchers, and technology providers is essential to 
develop and agree upon common data standards and exchange protocols. Initiatives like the Health Level 
Seven International (HL7)[6] and the Global Alliance for Genomics and Health (GA4GH)[7] are examples of 
such efforts. “Access to a broad range of harmonized data allows AI algorithms to learn more efficiently, 
recognize patterns more accurately, and make more precise predictions”. “Harmonized data can reduce 
biases in AI models, enabling more accurate global health surveillance to enable health organizations to 
track the spread of diseases, identify emerging health threats, and coordinate effective prevention strategies”.

Various semi-automated tools have been proposed to harmonize diverse data in biobanks, clinical registries, 
and cohorts. These include the DataSHaPER[8,9], which was successfully used to align 53 epidemiological 
databases with a 36% rate of compatibility, the SORTA system[10], yielding a 97% recall rate in correlating 
5,120 entries within a single biobank, and the BiobankConnect[11], which demonstrated a 74% precision in 
integrating data across six biobanks. Semantic matching approaches were also proposed to map cohort data 
to reference model elements[12], yielding 67 different mapping scenarios to model all possible associations 
between 8 EU cohorts and a reference data model. Statistical methods like Item Response Theory (IRT) 
analysis[13] have also been applied to investigate the influence of various factors on certain items, such as 
psychiatric phenotypes, to achieve uniformity in scale. However, these methods face significant limitations 
in their applicability across different clinical areas. They rely on a semi-automated approach that 
necessitates close cooperation between clinical experts and technical professionals to establish specific 
lexical matching rules. The efficiency of these existing systems is often compromised, either by the intricate 
nature of the clinical domain being studied or by the absence of computational techniques for automated 
terminology matching.

To address these challenges, we propose a cutting-edge, holistic data harmonization approach that goes 
beyond the current state of the art. Our approach is based on the development of a “smart” 
knowledge-based strategy. This strategy utilizes FAIR-compliant reference ontologies to model the domain 
knowledge of various diseases. The ontologies are augmented with synonyms from the Natural Language 
Toolkit (NLTK)[14], and terminologies from the OHDSI Athena vocabulary[15], particularly from SNOMED-
CT (Systematized Nomenclature of Medicine-Clinical Terms)[16], RxNorm[17], LOINC (Logical Observation 
Identifiers, Names, and Codes)[18], ICD-10/11 (International Classification of Diseases)[19], ATC (Anatomical 
Therapeutic Chemical)[20], and OMOP (Observational Medical Outcomes Partnership)[21]. Word 
embeddings are calculated to further enrich these terminologies. Advanced lexical and semantic analyzers 
are applied to identify overlapping terminologies between the reference ontologies and metadata from 
diverse clinical centers. The proposed approach is built on principles from the FAIR CookBook[22] (and 
FAIRplus[23]) to yield interconnected and semantically rich data. The term “holistic” refers to the fact that 
the proposed approach can be applied to any domain of interest (any disease) as long as a reference 
ontology for that disease is available.

METHODS
Overview
The proposed framework is executed in the form of a web service through a secure, GDPR-compliant, 
federated cloud computing environment[24]. The workflow of the framework is depicted in Figure 2. It has 
been designed to support different types of unstructured data and consists of five stages, including: (i) 
metadata extraction and relational mapping stage; (ii) data modeling stage; (iii) “smart” knowledge-based 
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Figure 2. The stages of the proposed holistic approach for data harmonization.

mapping stage; and (iv) lexical and semantic analysis stage. Stage (i) is automated and uses as input a . JSON 
file which represents the input tabular dataset and automatically extracts the feature names (terminologies), 
the range values (minimum and maximum values per feature), and the data types (integer, float, string, etc.). 
Stage (ii) is manual and involves the definition of a reference ontology (i.e., a hierarchical data model) to 
represent the domain knowledge of a disease of interest using Protégé to map the features into entities 
(classes, subclasses) and to define object properties (relationships among them). This stage requires close 
collaboration between the clinical experts in the field and the technical experts to map each entity into codes 
from international data models like SNOMED-CT, RxNorm, LOINC, etc., to promote data interoperability 
following the FAIR CookBook principles. Stage (iii) is also automated and involves the definition of a large 
corpus as described in A1. Stage (iv) is automated and involves the hybrid application of lexical and 
semantic analysis, where the Levenshtein distance and the Jaro distance are used to identify lexically 
relevant features and the extracted information from the word embeddings is used to identify conceptually 
relevant features. The output of the workflow is a data harmonization report which summarizes the main 
findings of the harmonization process. At the heart of our framework lies the robust definition and 
development of HL7 compliant data models. Our approach adheres to and is inspired by the principles 
outlined in the FAIR CookBook[22] for making data FAIR, and our methodology extends these principles 
into practical application. We focus on ensuring that the resulting harmonized data are not only 
standardized but also semantically enriched and globally accessible (the first three stages in Figure 2 are 
related to data FAIRification).

Input
The proposed workflow can support a variety of unstructured tabular data which are stored in the form of 
csv, xlsx, SQL, and txt formats. Data sharing/processing agreements are distributed to the data providers to 
fulfill all necessary GDPR and HIPAA requirements for data sharing.

Functionalities/stages
Metadata extraction and relational mapping stage
Useful metadata are extracted from the input raw data, including feature names, range values, and data 
types. This information is stored in the form of a JSON (JavaScript Object Notation) structure. Relational 
modeling is then applied to transform the JSON structure into an XML (Extensible Markup Language) 
format for the application of the data modeling stage.
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Data modeling stage
A reference ontology is constructed for the domain of interest to encapsulate the disease’s knowledge using 
the Protégé open source ontology editor[25]. This process involves a detailed mapping and modeling of 
disease-specific terminologies and concepts from the metadata extraction stage, ensuring that the ontologies 
serve as robust, accurate representations of medical knowledge. The reference ontology serves as a 
gold-standard model for enriching the medical corpus in Section "Smart" knowledge-based mapping stage 
and for the lexical and semantic analysis in Section Lexical and semantic analysis stage. According to the 
FAIR CookBook[22] criteria, we select proper identifier schemes, data standards, and data vocabularies. To 
this end, the terminologies are mapped to codes from international data models and vocabularies, including 
the SNOMED-CT[16], RxNorm[17], LOINC[18], ICD-10/11[19], ATC[20], and OMOP[21] (OMOP Extension, 
OMOP Genomic and OMOP Invest Drug vocabularies).

“Smart” knowledge-based mapping stage
To further enhance the interconnectivity of the reference ontology, we introduce a linguistic layer by 
incorporating synonyms from NLTK[14]. This integration broadens the semantic scope of the ontologies, 
allowing for more comprehensive data interpretation. We define a “smart” knowledge-based repository in 
the form of a large corpus that is built on top of the OHDSI Athena vocabulary[15] including terminologies 
from globally recognized healthcare data models. This integration ensures that our reference ontologies are 
not only detailed but also aligned with global healthcare data practices. The corpus offers the basis for the 
lexical and semantic analysis stage in Section Lexical and semantic analysis stage. A key innovative aspect of 
our methodology is the application of word embeddings using the Word2Vec language modeling 
method[26]. These embeddings are computed to augment the terminologies, adding semantic and contextual 
layers based on the CBOW (Continuous Bag of Words) architecture[27]. This augmentation yields even more 
dynamic and interpretive vocabularies, which are essential for effective data harmonization. For example, 
the terminologies “blood tests” and “hematological tests” are not lexically relevant but are conceptually the 
same. Therefore, if we calculate the word embeddings for the terminology “blood test”, we can capture all 
the conceptually relevant terminologies and thus significantly improve the precision of the data 
harmonization process.

Lexical and semantic analysis stage
Moving beyond the conventional lexical analysis, we propose a hybrid semantic analysis process, utilizing a 
combination of the Levenshtein and the Jaro distances on top of extracted object properties and entity 
relations from the reference ontology[28]. This analytical phase is critical in identifying and mapping lexical 
and conceptual overlaps between our reference ontologies and the terminologies from various clinical 
centers. Through the examination of the object properties, entity relationships are extracted and word 
embeddings are calculated for each entity and included in the lexical analysis to further reduce information 
loss.

Output
The output of the proposed approach is a data harmonization report which summarizes the matched 
terminologies between the reference ontology and the input set of terminologies along with the level of 
lexical or conceptual overlap and the standardized value ranges according to the predefined value ranges in 
the reference ontology.

RESULTS
The proposed approach was applied in three different domains, including the: (i) autoimmune diseases, 
using unstructured data (clinical, laboratory tests, medical conditions, demographic, therapies) from 21 EU 
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cohorts with 7,551 patients who have been diagnosed with primary Sjogren’s Syndrome (pSS)[29]; (ii) 
cardiovascular diseases (CVD), using unstructured data (clinical, genomics, laboratory tests, medical 
conditions, demographic) from 7 EU cohorts with 25,000 patients who were diagnosed with cardiovascular 
diseases[30]; and (iii) mental disorders (MD; particularly depression and anxiety), using unstructured data 
(clinical, laboratory tests, medical conditions, demographic) from three EU cohorts with 3,500 patients[30].

Our main findings are summarized in Table 1. Metadata were extracted from each unstructured raw dataset 
and were stored in dictionaries. Three reference ontologies were constructed upon clinical guidance to 
reflect the minimum requirements that describe the domain knowledge for each case (i.e., pSS, CVD, MD). 
We refer to those ontologies as ROPSS, ROCVD, and ROMD, respectively. The ontologies are open (the 
ROCVD and ROMD can be found under the following GitHub link: https://github.com/vpz4/TO_AITION; 
the ROPSS is located in the following GitHub link: https://github.com/vpz4/PSS-Ontology) and are 
expressed into RDF (Resource Description Framework)/OWL (Web Ontology Language) formats to 
facilitate interoperability between different systems and applications.

Synonyms and word embeddings were calculated for the terminologies per reference ontology, yielding 
three large corpora, namely CPSS, CCVD, and COMD. The lexical and semantic analyzers were applied to 
identify overlapping terminologies between CPSS, CCVD, COMD, and the extracted metadata per cohort. 
Our analysis revealed a set of: (i) 45 common terminologies with 93.75% precision across the 21 EU cohorts 
in pSS; (ii) 62 common terminologies with 87.32% precision across the 7 EU cohorts in CVD; and (iii) 12 
common terminologies with 85.71% precision across the 3 EU cohorts in MD.

CONCLUSIONS AND FUTURE DIRECTIONS
The proposed framework’s compliance with the FAIR CookBook[22] (and FAIRplus[23]) criteria is 
comprehensive. To facilitate data access and retrieval, it shares and stores data in a secure, GDPR/HIPAA-
compliant cloud computing environment, which requires data sharing/processing agreements for access. In 
modeling the domain, it utilizes metadata extraction, relational mapping, and data modeling stages, 
employing identifiers from widely recognized HL7 data models such as SNOMED-CT, LOINC, OMOP, 
Rx-Norm, and ICD-10/11 for constructing reference ontologies. The OHDSI Athena vocabulary also 
incorporates HL7-related terminologies. The framework addresses identifier mapping to make the data 
models interoperable. It applies data standards by reusing, developing, applying, and validating HL7 
standards. For the selection of data vocabularies, the framework emphasizes the selection, annotation, and 
management based on the OHDSI Athena. For data interoperability, it focuses on identifier mapping, 
vocabulary alignment, and data model mapping based on HL7 FHIR-based data models. Data hosting is 
executed in a secure, GDPR compliant, federated database management environment within the cloud, 
accessible via proper data processing agreements.

According to Table 2, although the DataSHaPER framework[8,9] offers a data model for mapping biobank 
data, it faces limitations in diverse clinical domains and relies heavily on expert cooperation. Although the 
SORTA system[10] is notable for its high recall rate in a single biobank, it is limited to specific biobank 
mapping scenarios. The BiobankConnect software[11] provides a customized solution to overcome biobank 
data complexities that are limited to a single biobank. Semantic matching[13] is useful but requires close 
cooperation between clinical and technical experts. IRT analysis[13] requires context-specific mapping to 
remove influences of covariates for data standardization. The proposed framework builds on FAIR 
CookBook (and FAIRplus) principles by utilizing the OHDSI Athena vocabulary to create a “smart” 
knowledge-based repository, yielding overlapping terminologies with more than 85% precision across three 
different clinical domains. However, this framework faces challenges in implementation complexity and 
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Table 1. Data harmonization results

Domain Reference 
ontology

Number of 
patients

Number of entities 
(terminologies)

Final set of 
terminologies Precision(%)

AD ROPSS 7,551 35 (150) 48 45/48 (93.75%)

CVD ROCVD 25,000 10 (792) 71 62/71 (87.32%)

MD ROMD 3,800 9 (34) 14 12/14 (85.71%)

Table 2. Comparison of the proposed framework with similar ones

Study Key points Advantages Disadvantages

[8,9] 36% compatibility rate in 
aligning 53 epidemiological 
databases

A comprehensive data model for 
mapping the domain knowledge of 
complex biobank data

[10] 97% recall rate in correlating 
5,120 entries within a single 
biobank

Proven effectiveness in specific 
mapping scenarios across biobanks

[11] 74% precision in integrating 
data across six biobanks

A customized solution that is fine-
tuned to the needs and 
complexities of biobank data

[12] Mapped cohort data to 
reference model elements for 
eight EU cohorts

Data modeling is based on 
terminologies from HL7 data 
models

[13] Models the influence of 
various factors on psychiatric 
phenotypes

Particularly effective in scenarios 
where detailed, context-specific 
mapping and analysis are required

Significant limitations in different clinical domains, require close 
cooperation between clinical and technical experts, detailed 
mapping of terminologies to ontologies, absence of computational 
techniques for fully automated matching

Current Terminologies with more than 
85% precision across three 
different clinical domains

Builds on FAIR CookBook and 
FAIRplus principles, introduces 
linguistic layers based on word 
embeddings

Increased complexity of implementation, more real-world cases 
to increase the generalizability of the framework

needs more real-world applications to enhance its generalizability. In future work, we plan to include 
functionalities to reduce bias and enhance cross-lingual capabilities to ensure that medical data are more 
universally usable, contributing to equitable healthcare delivery across different linguistic and regional 
boundaries[31]. As the healthcare sector progresses, straightforward strategies like the proposed one are 
essential in addressing today’s challenges.
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