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Review

Murine double minute 2, a potential p53-independent 
regulator of liver cancer metastasis
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ABSTRACT
Hepatocellular carcinoma (HCC) has emerged as one of the most commonly diagnosed forms of human cancer; yet, the 
mechanisms underlying HCC progression remain unclear. Unlike other cancers, systematic chemotherapy is not effective 
for HCC patients, while surgical resection and liver transplantation are the most viable treatment options. Thus, identifying 
factors or pathways that suppress HCC progression would be crucial for advancing treatment strategies for HCC. The murine 
double minute 2 (MDM2)-p53 pathway is impaired in most of the cancer types, including HCC, and MDM2 is overexpressed 
in approximately 30% of HCC. Overexpression of MDM2 is reported to be well correlated with metastasis, drug resistance, 
and poor prognosis of multiple cancer types, including HCC. Importantly, these correlations are observed even when p53 is 
mutated. Indeed, p53-independent functions of overexpressed MDM2 in cancer progression have been suitably demonstrated. 
In this review article, we summarize potential effectors of MDM2 that promote or suppress cancer metastasis and specifically 
discuss the p53-independent roles of MDM2 in liver cancer metastasis from clinical as well as biological perspectives.
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INTRODUCTION

Liver cancer is the 5th most frequently diagnosed cancer 
worldwide in males (9th in females) and is the 2nd leading 
cause of cancer-related death in males (6th in females).[1] 
Around 80% of hepatocellular carcinoma (HCC) cases occur 
in developing countries, mainly due to the incidence 
of hepatitis B and hepatitis C infections.[2] HCC is often 
diagnosed at late stages, and the 5-year survival rate for 
metastatic HCC is less than 10% (http://www.cancer.org/
acs/groups/cid/documents/webcontent/003114-pdf.pdf).[3-5] 
Understanding the mechanisms involved in the regulation 
of HCC metastasis and discovering methods or compounds 
to suppress metastasis would be highly beneficial for HCC 
patients.[6]

Metastasis is a cellular process which involves multiple 

cascades including detachment of cancer cells from primary 
tumors, migration, intravasation, survival in the vasculature, 
extravasation, and colonization at a secondary site.[7] Multiple 
factors play a role in each metastatic step and the inhibition 
of any of these steps would be helpful in blocking the cancer 
spread. Although distant metastasis is not a common event 
in HCC, HCC often shows vascular invasion, intrahepatic 
colonization, and lymph node metastasis. This is most likely 
due to the dense hepatic vasculature which supports the 
intrahepatic metastasis of HCC.[8]

The murine double minute 2 (MDM2) was originally identified 
as a gene which was overexpressed in a spontaneously 
transformed mouse cell line (3T3-DM),[9] and the gene product 
was found to transform normal cells.[10] The primary function 
of MDM2 is to ubiquitinate the tumor suppressor p53 for 
inducing its degradation. Hence, MDM2 overexpression 
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Table 1: Metastasis promoters interacting with MDM2
Gene Roles in liver cancer 

metastasis
Binding to MDM2 Functional association with 

MDM2
References

HIF-1α Overexpression of HIF-1α is 

correlated with vascular invasion 

and poor survival in human HCC.

Endogenous binding MDM2 positively regulates 

HIF-1α expression in MEFs, 

colon cancer, and osteosarcoma 

cell lines independent of p53. 

Conversely, MDM2 is reported to 

destabilize HIF-1α by promoting 

its ubiquitination.

[32-39]

Slug Overexpression of Slug is 

associated with invasion and 

metastasis of HCC by repressing 

E-cadherin.

Endogenous binding MDM2 stabilizes Slug mRNA 

in human non-small cell lung 

carcinoma and colon cancer cell 

lines.

[41-44]

MMP-9 Overexpression of MMP-9 is 

well correlated with invasion, 

metastasis, and poor prognosis in 

liver cancer.

Unknown MDM2 increases the MMP-9 

promoter activity in breast cancer 

cell lines.

[46-49,51,52]

HuR/ELAV1 HuR expression is positively 

correlated with advanced stages 

in HCC and poor outcomes in 

HCC patients.

Endogenous binding MDM2 neddylates HuR, protects 

it from degradation, and induces 

its nuclear localization in MEFs, 

mouse liver progenitor MLP29, 

colon cancer RKO, and HCC 

HepG2 cell lines.

[58,60]

HCC: hepatocellular carcinoma; MDM2: murine double minute 2; MEFs: mouse embryonic fibroblasts; HuR: Hu antigen R; HIF-1α: hypoxia-inducible factor-1-alpha; 
MMP-9: matrix metalloproteinase 9

Table 2: Metastasis suppressors interacting with MDM2
Gene Roles in liver cancer 

metastasis
Binding to MDM2 Functional association with MDM2 References

E-cadherin Reduced E-cadherin 
expression is associated 
with high tumor grade, 

vascular invasion, 
intrahepatic metastasis, 
disease progression, and 

poor outcomes.

Endogenous binding MDM2 promotes E-cadherin degradation in breast 
cancer cell lines.

[68-72]

NME2 NME2 expression is 
increased in HCC.

Endogenous binding MDM2 suppresses the ability of NME2 to negatively 
regulate cell motility in renal cell carcinoma and lung 

cancer cell lines.

[77-79]

TAp63 Role of TAp63 in HCC 
metastasis is not explored.

Endogenous binding MDM2 suppresses TAp63 activity by inhibiting its 
nuclear localization in MEFs and osteosarcoma cell 

lines. Conversely, MDM2 increases TAp63 levels 
and its transcriptional activity in osteosarcoma and 

monkey kidney fibroblast-like cell lines.

[91,92,94]

FOXO 
family

Direct association of 
FOXO proteins with HCC 

metastasis remains 
unknown.

Endogenous binding MDM2 degrades FOXO1, 3, and 4 in MEFs, breast 
cancer, and lung cancer cell lines.

[110-112]

MTBP MTBP inhibits HCC 
migration and metastasis 
in ACTN4-dependent and 
-independent manners. 

Controversially, MTBP may 
increase HCC metastasis 

by stabilizing MDM2. 

Exogenous The roles of MTBP in cancer metastasis, the 
underlying mechanisms, and functional association 

between MDM2 and MTBP remain to be further 
investigated.

[114-117,122]

MDM2: murine double minute 2; FOXO: forkhead box O; NME2: non-metastatic cells 2; MTBP: MDM2 binding protein; HCC: hepatocellular carcinoma 
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greatly contributes to tumor development through inhibition 
of p53 activity. MDM2 is also a transcriptional target of p53, 
hence forming autoregulatory negative feedback loop.[11] 

Increasing evidence, however, indicates that MDM2 also has 
p53-independent functions toward malignant progression 
when overexpressed. Approximately 10% of human cancers 
have both MDM2 overexpression and mutant p53.[12] Mice 
carrying a MDM2 transgene develop a higher percentage 
of sarcomas regardless of p53 status, as compared with 
p53-null mice.[13] Ectopic expression of MDM2 in mammary 
epithelial cells of mice, as well as in mouse embryonic 
fibroblasts (MEFs), increases aneuploidy and chromosome/
chromatid breaks regardless of p53 status.[14,15] MDM2 
interacts with different proteins and alters their activities, 
leading to malignant progression independent of p53.[11] 
Specifically, MDM2 inhibits Nijmegen breakage syndrome 
1, leading to inhibition of double-strand break repair.[16] 
MDM2 also promotes p21 degradation.[17,18] Additionally, 
MDM2 promotes cell cycle progression through activation 
of S-phase, via interaction with the retinoblastoma tumor 
suppressor protein and the transcriptional factor E2F.[19,20] 
MDM2 furthermore enhances doxorubicin resistance in 
acute lymphoblastic leukemia cells through its binding to the 
Sp1-binding site in the p65 promoter.[21] MDM2 is shown to 
bind to Sp1 and inhibit Sp1-dependent transcription.[22] Thus, 
numerous MDM2 binding partners and effectors contribute 
to its p53-independent functions.[23]

MDM2 overexpression is clinically correlated with metastasis 
of multiple cancer types including liver cancer,[24-27] but the 
underlying mechanisms remain unclear. In this review, 
we focus on p53-independent roles of MDM2 in cancer 
metastasis, specifically in liver cancer. We categorize 
effectors of MDM2 into metastasis promoters [Table 1] and 
suppressors [Table 2]. 

METASTASIS PROMOTERS

Hypoxia-inducible factor-1-alpha
Hypoxia-inducible factor-1-alpha (HIF-1α) and HIF-1β 
are a class of transcription factors that play a key role in 
regulating cellular response against hypoxia.[28] While HIF-
1β is constitutively expressed, expression of HIF-1α is 
dependent on oxygen tension. In normoxic conditions, 
it is rapidly degraded, whereas in hypoxic states, HIF-1α 
heterodimerizes with HIF-1β on hypoxia response elements 
in the promoter regions of numerous downstream target 
genes, thus promoting tumor invasion, angiogenesis, and 
metastasis.[29] For example, HIF-1α transactivates Snail1 and 
vascular endothelial growth factor (VEGF) that accelerate 
epithelial-mesenchymal transition (EMT), a crucial biologic 
process for epithelial tumors to gain metastatic potential, 
and angiogenesis, respectively, thereby enhancing invasion 
and metastasis.[30] HIF-1α is overexpressed in multiple types 
of human cancer including HCC.[31,32] Overexpression of HIF-
1α is correlated with vascular invasion and poor survival in 

human HCC.[32-35]

MDM2 directly binds to HIF-1α, and overexpression of MDM2 
results in accumulation of HIF-1α in hypoxic cells and increase 
in hypoxia-induced VEGF transcription.[36,37] Conversely, 
MDM2 is shown to degrade HIF-1α under hypoxic conditions, 
which is inhibited by phosphorylation of MDM2 at serine 
166 by AKT.[38,39] Thus, the roles of MDM2 in regulating HIF-
1α function need to be further investigated. Although both 
MDM2 and HIF-1α play roles in HCC progression, there is 
no existing study that directly shows MDM2 enhancing liver 
cancer metastasis through upregulation of HIF-1α.

Slug
Slug (also known as Snail family zinc finger 2: Snail2) is a 
member of the Snail family of transcription factors that induce 
EMT crucial for embryogenesis and cancer metastasis by 
repressing E-cadherin.[40] Slug is upregulated in many cancer 
types, including HCC, and its overexpression is associated 
with invasion and metastasis of HCC.[41-43]

MDM2 is shown to stabilize Slug mRNA in a p53-independent 
manner, while knockdown of Slug nullifies invasion of 
HCT116 p53-null colon cancer cells induced by MDM2 
overexpression.[44] However, direct evidence demonstrating 
that MDM2’s involvement in promoting HCC metastasis via 
upregulation of Slug has not yet been demonstrated.

Matrix metalloproteinase-9 
Matrix metalloproteinase 9 (MMP-9), is a type IV collagenase 
which is a group of zinc-containing endopeptidases to degrade 
structural proteins of extracellular matrix, thus playing a 
pivotal role in the metastatic process.[45] Overexpression 
of MMP-9 is well correlated with invasion, metastasis, and 
poor prognosis in liver cancer.[46-49] Correlation between the 
expression of MMP-9 and MDM2 is shown in benzopyrene-
induced lung cancer in rats, where both protein expression 
is higher in stage III and IV lung cancer tissues as compared 
with stage I and II tissues.[50] Also, in human breast cancer, 
MDM2 expression is positively correlated with that of 
MMP-9, and is also negatively correlated with disease-free 
survival.[51] Moreover, knockdown of MDM2 in pancreatic 
carcinoma SW1990HM cells results in reduced MMP-9 
protein expression,[52] and MDM2 promotes invasion of both 
MCF7 and MDA-MB-231 cell lines by increasing the MMP-9 
promoter activity.[51] Although there is definite clinical and 
functional correlation between MMP-9 and MDM2, it remains 
unclear whether MDM2 induces invasion and metastasis in 
liver cancer through upregulation of MMP-9.

Hu antigen R
Hu antigen R (HuR, also known as ELAV-like protein 1) was first 
identified in drosophila as a member of the embryonic lethal 
abnormal vision (ELAV) family RNA-binding proteins.[53,54] HuR 
binds to AU-rich elements in the 3’ untranslated region of 
target mRNAs and stabilizes them, resulting in regulation 
of cell proliferation, survival, immune response, and 
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differentiation.[55] Elevated expression of HuR is reported in 
many types of cancer.[56,57] Specifically, HuR is upregulated 
in HCC, and its expression is positively correlated with 
advanced stages of HCC, as well as poor outcomes in HCC 
patients.[58] HuR promotes proliferation and differentiation of 
hepatocytes, as well as HCC transformation.[59] Importantly, 
MDM2 neddylates HuR, protects it from degradation, and 
induces its nuclear localization in mouse liver progenitor, 
colon cancer, and HCC cell lines.[60] Although all the cell 
lines contain wild-type p53, neddylation of HuR by MDM2 
is likely to be p53-independent, which needs to be clarified 
in the future. Importantly, it also remains unknown whether 
neddylated HuR by MDM2 enhances HCC metastasis.

METASTASIS SUPPRESSORS

E-cadherin
E-cadherin is a single transmembrane glycoprotein involved 
in Ca2+-mediated cell adhesion, mobility, and proliferation of 
epithelial cells and functions as a metastasis suppressor.[61,62] 
Reduced expression of E-cadherin is correlated with high 
potential of invasion and metastasis, as well as poor 
prognosis, in many cancer types including breast,[63] gastric,[64] 
lung,[65] colorectal,[66] and pancreatic cancer.[67] Also in HCC, 
reduced E-cadherin expression is associated with high tumor 
grade, vascular invasion, intrahepatic metastasis, disease 
progression, and poor outcomes.[68-71] 

MDM2 is found to directly interact with E-cadherin and 
facilitate its degradation in a p53-independent manner.[72] 
Expression of MDM2 and E-cadherin is inversely correlated 
in breast cancer having lymph node metastasis.[72] However, 
it remains unclear whether or not MDM2 promotes HCC 
metastasis by degrading E-cadherin.

Non-metastatic cells 2
Non-metastatic cells 2 (NME2, also known as NDPK-B, 
NM23B, NM23-H2) belongs to the nonmetastatic family 
and functions as a metastasis suppressor.[73] Reduced NME2 
expression is associated with increased metastatic potential 
of oral squamous cell carcinoma, lung, ovarian, colon, and 
breast cancer.[74-76] However, NME2 expression is found to be 
increased in HCC.[77,78]

MDM2 interacts with NME2 in H1299 lung cancer and 
HEK293 embryonic kidney cell lines and also suppresses the 
ability of NME2 to negatively regulate cell motility in renal cell 
carcinoma (UOK117 and its derivative 1.27) and H1299 cell 
lines.[79] However, the role of NME2 in metastasis suppression 
of HCC and its functional association with MDM2 in HCC 
remain to be investigated.

TAp63
TAp63, along with TAp73, are tumor suppressor proteins 
that belong to the p53 family with high homology in the 
DNA binding domain and recognize the same p53 responsive 
elements.[80] TAp63 suppresses migration and metastasis 
in many human cancer types including liver cancer, thus 

functioning as a metastasis suppressor.[81-86] On the other 
hand, isoforms of p63 lacking N-terminal domain show 
oncogenic function and are overexpressed in multiple 
cancer types.[85,87,88] Mice with deletion of the p63 gene 
spontaneously develop tumors, while compound knockout 
mice for p53 and p63 show high frequency of metastasis as 
compared with p53 or p63 knockout mice.[89,90]

TAp63 weakly binds to MDM2,[91] and MDM2 is shown to 
attenuate apoptotic function of TAp63 by inhibiting its 
nuclear localization.[92] However, it is unknown whether or 
not MDM2 inhibits metastasis suppressor function of TAp63. 
Conversely, it is also reported that MDM2 competes with 
TAp63 for binding to p53R175H mutant to restore p63 activity,[93] 
and overexpression of MDM2 increases the steady-state 
level of intracellular TAp63 and enhances its transcriptional 
activity.[94] Thus, the functional relationship of MDM2 with 
TAp63 is controversial. 

Forkhead box O family
Forkhead box O (FOXO) proteins (FOXO1, 3, 4, and 6) are 
members of the forkhead family of transcription factors.[95] 
FOXO proteins have been implicated in suppression of 
tumor progression in multiple cancer types.[96-100] Expression 
of FOXO proteins is negatively correlated with migration, 
invasion, and metastasis of renal cell carcinoma,[101] lung 
cancer,[102] prostate cancer,[103] and urothelial cancer.[104] 
Importantly, FOXO3 inhibits EMT by suppressing activities 
of β-catenin in prostate cancer[103] and Twist1 in urothelial 
cancer,[104] while FOXO4 functions as a metastasis-suppressor 
through counteracting the PI3K/AKT signal pathway in 
prostate cancer[105] and inhibiting EMT in lung cancer.[106] 
Although reduced expression of FOXO proteins is correlated 
with hepatocarcinogenesis and poor survival of HCC patients, 
direct association of FOXO proteins with HCC metastasis 
remains unknown.[107-109] MDM2 functions as an E3 ubiquitin 
ligase for FOXO1, FOXO3, and FOXO4 to promote their 
degradation.[110-112] However, it remains unsolved whether 
degradation of FOXO proteins by MDM2 accelerates cancer 
metastasis.

MDM2 binding protein
MDM2 binding protein (MTBP) was originally identified as a 
protein that binds to MDM2.[113] Although these two proteins 
interact exogenously, their endogenous interactions have not 
yet been demonstrated. Overexpression of MTBP is shown 
to suppress cell migration and metastasis of osteosarcoma 
and HCC in alpha-actinin 4 (ACTN4)-dependent and 
-independent manners.[114-116] Also, in MTBP knockout mice, 
MTBP haploinsufficiency increases metastasis of tumors 
induced in the p53 heterozygous background.[117] Clinically, 
reduced MTBP expression is associated with reduced patient 
survival with head and neck carcinoma, as well as capsular/
vascular invasion and lymph node metastasis in HCC.[116,118] 
On the other hand, increased MTBP expression is observed 
in B-cell lymphoma and triple negative breast cancer where 
it contributes to tumor progression through its interaction 
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with Myc.[119-121] In another study on human HCC, increased 
MTBP expression is shown to be associated with increase 
in MDM2 levels and metastasis, as well as poor survival of 
HCC patients, which is contrary to previously published 
studies.[122] Thus, the roles of MTBP in cancer metastasis, the 
underlying mechanisms, and functional association between 
MDM2 and MTBP need to be further clarified in the future.

CONCLUSION

Approximately 30% of human cancers have MDM2 
overexpression. Specifically, in well differentiated 
liposarcomas, MDM2 overexpression is detected in over 90% 
of the cases.[123] These observations indicate significance of 
MDM2 overexpression in cancer progression. The mechanisms 
of MDM2 overexpression or hyper-activation include MDM2 
gene amplification,[124] single nucleotide polymorphisms in the 
MDM2 promoter,[125] silencing/inhibition of MDM2 negative 
regulators,[126] phosphorylation of MDM2,[127] enhanced 
translation,[128] or other mechanisms.[129] Although the best 
characterized function of MDM2 is to inhibit p53 activity, 
an increasing body of evidence suggests that MDM2 has a 
p53-independent function. Such function is found specifically 
when MDM2 is overexpressed. MDM2 mainly exerts its p53-
independent function by interacting with its downstream 
effectors.[11] These effectors frequently play integral roles 
in cancer progression including cancer metastasis and drug 
resistance. Indeed, MDM2 overexpression is implicated 
in cancer metastasis through enhancing EMT, activation/
upregulation of other oncoproteins, and suppression of 
tumor suppressors or metastasis suppressors. However, there 
is scarce evidence showing direct involvement of MDM2 
in invasion and metastasis of HCC. It is thus imperative to 
have future studies that could appropriately demonstrate 
the direct role of overexpressed MDM2 in promoting HCC 
metastasis.
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