
Yang et al. Ageing Neur Dis 2024;4:19
DOI: 10.20517/and.2024.28

Ageing and 
Neurodegenerative 

Diseases

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.oaepublish.com/and

Open AccessOriginal Article

Blood-based sex-differential DNA methylation in 
Alzheimer’s disease
Tianmi Yang, Chunyu Li, Qianqian Wei, Yangfan Cheng, Yi Xiao, Huifang Shang*

Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center 
for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.

*Correspondence to: Prof. Huifang Shang, Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases
Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu
610041, Sichuan, China, E-mail: hfshang2002@126.com

How to cite this article: Yang T, Li C, Wei Q, Cheng Y, Xiao Y, Shang H. Blood-based sex-differential DNA methylation in 
Alzheimer’s disease. Ageing Neur Dis 2024;4:19. https://dx.doi.org/10.20517/and.2024.28

Received: 26 Sep 2024   First Decision: 31 Oct 2024   Revised: 15 Nov 2024  Accepted: 4 Dec 2024   Published: 13 Dec 2024

Academic Editor: Weidong Le   Copy Editor: Pei-Yun Wang   Production Editor: Pei-Yun Wang

Abstract
Aim: We aim to explore the blood-based sex-differential DNA methylation profiles in patients with Alzheimer’s 
disease (AD).

Methods: The same analytical pipeline and meta-analysis procedure were applied to 254 patients with AD and 261 
matched healthy controls (HC) from four blood-based datasets to identify sex-differentially methylated positions 
(sex-DMPs) and their biological functions. We further reviewed brain-based sex-DMPs previously reported in AD 
and intersected with blood-based sex-DMPs.

Results: We identified 134 sex-DMPs in AD, 88 were unique to AD, and 46 were shared with HC. Eleven novel sex-
DMPs and 28 sex-DMPs consistent across blood and brain were recognized for the first time. Differentially 
methylated genes, such as COL25A1, MSUT2, ELAVL4, SLC17A7, EPHA4, and PPP2CB, were closely related to the 
pathogenesis of AD. In addition, immune-related processes were enriched in the enrichment analysis.

Conclusion: Sex-differential DNA methylation in blood provides potential biomarkers for AD pathogenesis, and 
also points to potential drug targets for precision medicine.
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INTRODUCTION
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the leading cause of dementia in 
older adults. AD is characterized by a gradual decline in memory, behavioral, and social skills, significantly 
impacting daily life and functioning. With the global population aging, the socioeconomic burden of AD is 
escalating sharply[1,2]. Notably, pronounced sex differences are evident in AD risk, prevalence, and clinical 
presentation[3,4]. Women face a higher risk of developing AD, and more women than men are affected by 
dementia, with an estimated 27.0 million women compared to 16.8 million men living with dementia in 
2016 (age-standardized)[2]. Clinical manifestations also vary substantially between males and females, 
particularly regarding neuropsychiatric symptoms[3,4]. However, the molecular mechanisms underlying these 
sex differences in AD remain largely unknown.

DNA methylation is an important form of epigenetic modification, which plays a key role in determining 
genomic structure and function, regulating gene expression and cell differentiation without altering the 
DNA sequence[5]. Environmental factors throughout life can drive DNA methylation changes, some of 
which exhibit sex-specific patterns[6-9]. Sex differences in DNA methylation have gained attention across 
various life stages, from newborns to the elderly, as well as in diseases such as cancers, psychiatric disorders, 
and neurodegenerative diseases[6-13]. Studies regarding sex-related differential methylation in AD have 
primarily focused on brain tissue[12,13], while peripheral blood has received relatively little attention, despite 
the tissue-specific nature of DNA methylation[14-16]. One study approached this gap by using sex-stratified 
and methylation-by-sex interaction analyses to detect DNA methylation differences in peripheral blood 
from AD patients, though it did not directly compare male and female AD patients[17].

Therefore, further elucidating blood-based, sex-differential DNA methylation will enhance our 
understanding of sex differences in AD. Additionally, integrated analyses of sex-related DNA methylation 
patterns across both brain and blood tissues in AD patients may reveal valuable epigenetic biomarkers, 
offering insights into the disease’s progression and potential therapeutic targets.

METHODS
Study cohorts
To systematically explore blood-based sex-differential DNA methylation profiles in AD, we obtained data 
from 254 patients with AD and 261 healthy controls (HC) from three independent datasets: the Australian 
Imaging, Biomarker & Lifestyle (AIBL) cohort (GSE153712, the Nabais dataset containing 161 AD 
patients)[18], the AddNeuroMed cohort (GSE144858, the Lunnon dataset containing 93 AD patients and 96 
HC)[19], and the third cohort was previously described by Li et al. (GSE53740, containing 165 HC)[20]. 
Patients with AD were diagnosed according to the NINCDS-ADRDA criteria[21]. Age and sex for AD and 
HC were matched individually.

Data pre-processing
DNA methylation in the peripheral blood of all participants was measured using the Infinium Human 
Methylation 450K Bead-Chip, except for the AIBL cohort[18], where the Infinium Human Methylation EPIC 
(850K) Bead-Chip was applied. We used the R package ChAMP[22] (version 2.21.1) to process the β-value 
matrix for each dataset separately. Probes with a β value of 0 were replaced with 1.00 × 10-6, and probes with 
missing β values were imputed using the k-nearest neighbor algorithm by impute.knn function in impute 
package[23]. Quality control (QC) was performed using the champ.filter function[24]. Probes meeting the 
following criteria were removed: (1) probes with detection P < 0.01 in one or more samples; (2) probes with 
< 3 beads in at least 5% of samples per probe; (3) non-CpG probes as identified by Chen et al.[25]; (4) probes 
located close to single nucleotide polymorphism (SNP) (an SNP with minor allele frequency ≥ 0.01 was 
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present in the last five base pairs of the probe); (5) multi-hit probes as identified by Zhou et al.[24]; (6) probes 
located on X and Y chromosomes. The number of probes filtered at each QC step is listed in Supplementary 
Table 1. We then applied the β-mixture quantile normalization (BMIQ) method[26] to normalize the β values 
of type 1 and type 2 design probes within the Illumina arrays. A quantile-quantile (QQ) plot was generated 
and the genomic inflation factor (λ) was estimated for each dataset using the R qqman package[27].

Sex-differentially methylated positions and regions
The remaining probe data were compared between males and females to identify sex-differentially 
methylated positions (sex-DMPs) using the limma package[28], as implemented in the champ.DMP function. 
A multiple-testing adjustment was performed using the Benjamini-Hochberg false discovery rate (FDR) 
method[29]. We selected probes with FDR under a threshold of 0.1 (adjusted P value < 0.10) for further meta-
analysis, given the different platforms (450K and 850K microarrays) of the two AD datasets. Differentially 
methylated regions (DMRs) were extended segments of the genome that showed quantitative alterations in 
DNA methylation levels between the two groups. Sex-DMRs were detected by applying the Bumphunter 
algorithm[30] implemented in the champ.DMR function, which clustered the groups containing more than 
seven continuous probes as DMR (FDR < 0.05).

Meta-analysis
Sample size weighted meta-analysis for common DMPs across individual AD cohorts was conducted in 
METAL, converting the direction of effect and adjusting the P value into a signed Z-score[31]. The same 
meta-analysis procedure was performed for HC. To further characterize the results, we then intersected the 
meta-analysis outcomes of AD and HC to identify the unique sex-DMPs in AD and the shared sex-DMPs in 
both AD and HC.

Gene set enrichment analysis
Before enrichment analysis was performed, significant DMPs in the meta-analysis were annotated 
according to their locations with respect to genes (TSS1500, TSS200, 5’UTR, 1stExon, body, 3’UTR, and 
i n t e r g e n i c )  o r  C p G  i s l a n d s  ( i s l a n d ,  s h o r e ,  s h e l f ,  a n d  o p e n  s e a ) ,  u s i n g  t h e  
IlluminaHumanMethylation450kanno.ilmn12.hg19 package. Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis was conducted for these differentially methylated genes using the KOBAS-i 
(http://kobas.cbi.pku.edu.cn/, and a mirror site is available at http://bioinfo.org/kobas)[32], an intelligent 
version with novel machine learning-based method for gene set enrichment analysis (GSEA). Following the 
recommendations in the GSEA User Guide[33], terms with an FDR of less than 0.25 are considered 
statistically significant to avoid overlooking potentially interesting results. The Jaccard similarity index and 
the Infomap algorithm implemented in KOBAS-i were used to visualize the output terms[32].

Comparison to previous brain tissue-based sex-DMPs
Recent studies have suggested sex-specific differences in DNA methylation in the brain tissues of patients 
with AD. Pellegrini et al. identified 77 sex-dependent DMPs consistent across four brain regions (frontal 
cortex, temporal cortex, entorhinal cortex, and cerebellum)[13]. Additionally, Zhang et al. found that 381 
CpGs in females and 76 CpGs in males were significantly associated with the AD Braak stage by analyzing 
more than 1,000 postmortem prefrontal cortex brain samples[12]. To assess the consistency of sex-DMPs in 
the brain and peripheral blood, we intersected blood-based DMPs identified in our meta-analysis and brain-
based DMPs reported by Pellegrini et al. and Zhang et al.[12,13].

RESULTS
Study cohort characteristics
The characteristics of participants from the four datasets are presented in Supplementary Table 2. Our 
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Figure 1. Overview of the study design. AD: Alzheimer’s disease; HC: healthy controls.

meta-analysis included 254 AD patients [153 females, 101 males; mean age 74.7 years with a standard 
deviation (SD) of 6.9 years] and 261 matched HC (161 females, 100 males; mean age 70.1 years with an SD 
of 8.1 years). The overview of study design is shown in Figure 1.

Sex-DMPs and regions
After data pre-processing, QC and normalization of DNA methylation, the number of autosomal probes 
used for analyses in each dataset ranged from 262K to 384K, except for the AIBL cohort (EPIC array), for 
which 747K probes passed QC [Supplementary Table 1]. No evident inflation of the test statistics was 
observed in the AD datasets [Figure 2]. Significant sex-DMPs at FDR < 0.10 identified in the individual 
dataset are shown in Supplementary Tables 3-6 and Figure 3A. A total of 216 sex-DMPs were common to 
both HC datasets, and 134 sex-DMPs were common to both AD datasets. A Venn diagram of the DMPs 
obtained from the four datasets is shown in Figure 3A.

Six sex-DMRs were significant in both AD datasets, but not in any HC dataset [Supplementary Table 7, 
Supplementary Figures 1-6]. The average number of CpGs per DMR was 7.7 ± 0.5. Six genes (PM20D1, 
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Figure 2. QQ plots of observed and expected distributions of P-values for each dataset. λ is the genomic inflation factor. QQ: Quantile-
quantile.

LOC441666, AURKC, PCDHGA4, H2AFJ, CLDN9) were mapped to the above six sex-DMRs. Among these, 
PCDHGA4 and H2AFJ were hypermethylated in males compared to females, and the remaining four genes 
were hypomethylated in males compared to females. We found no CpGs overlapped between 134 sex-
DMPs and six sex-DMRs in AD, suggesting complementary evidence from DMPs and DMRs for sex-
associated differences in DNA methylation in AD.

Meta-analysis
To prioritize unique sex-DMPs in AD, we conducted meta-analysis for AD and HC, respectively. For the 
convenience of classification, we defined the DMP with higher methylation levels in males than in females 
as “hypermethylated” and “hypomethylated” otherwise. Our meta-analysis identified 216 sex-DMPs [44 
(20.4%) hypermethylated and 172 (79.6%) hypomethylated] in HC [Supplementary Table 8] and 134 sex-
DMPs [40 (29.9%) hypermethylated and 94 (70.1%) hypomethylated] in AD [Supplementary Table 9]. 
Compared with HC, 88 sex-DMPs were unique in AD (defined as AD-sex-DMPs), whereas 46 sex-DMPs 
were shared in both AD and HC (defined as AD-HC-sex-DMPs) [Supplementary Table 10].
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Figure 3. Discovery and annotation of sex-DMPs in AD. (A) Venn diagram of sex-DMPs obtained by four datasets; (B) Annotation in 
gene features (TSS1500, TSS200, 5’UTR, 1stExon, body, 3’UTR, intergenic) and CpG features (island, shore, shelf, open sea) of 134 sex-
DMPs identified in AD meta-analysis. AD: Alzheimer’s disease; sex-DMPs: sex-differentially methylated positions; HC: healthy controls.

With annotation, the AD-sex-DMPs were mapped to 52 genes that contained 12 (23.1%) hypermethylated 
and 40 (76.9%) hypomethylated genes [Supplementary Table 9]. The AD-HC-sex-DMPs were mapped to 28 
genes: 9 (32.1%) were hypermethylated, and 19 (67.9%) were hypomethylated, which also showed a similar 
pattern of lower rates of hypermethylated genes in males than in females. In terms of gene features, the 
hypermethylated CpGs in males were enriched in intergenic regions, gene body, and TSS200 but under-
represented in 3’UTR, and the hypomethylated CpGs were enriched in intergenic regions, TSS1500, and 
gene body [Figure 3B and Supplementary Table 9]. Regarding CpG features, both hypermethylated and 
hypomethylated CpGs were overrepresented in CpG island and shore [Figure 3B and Supplementary Table 
9]. Similar distribution characteristics were observed in the AD-sex-DMPs and AD-HC-sex-DMPs 
[Supplementary Figures 7 and 8].

Specifically, 11 novel CpGs (cg18355337, hypomethylated, P = 5.08 × 10-5; cg24592500, hypomethylated, P = 
1.25 × 10-4; cg22364668, hypermethylated, P = 1.60 × 10-4; cg19653417, hypomethylated, P = 4.63 × 10-4; 
cg17394530, hypomethylated, P = 5.84 × 10-4; cg05697849, hypermethylated, P = 0.002; cg19893929, 
hypermethylated, P = 0.004; cg12873476, hypomethylated, P = 0.006; cg12964741, hypermethylated, P = 
0.006; cg07592361, hypermethylated, P = 0.008; cg13772414, hypermethylated, P = 0.015) with sex specificity 
were identified for the first time [Table 1], based on trait records in the epigenome-wide association studies 
(EWAS) Atlas (https://ngdc.cncb.ac.cn/ewas/atlas), an updated public EWAS knowledgebase covering more 
than 617 018 high-quality EWAS associations[34]. The other 91.8% of CpGs (77/88 in AD-sex-DMPs and 46/
46 in AD-HC-sex-DMPs) [Supplementary Table 10] were consistently replicated in direction with previous 
sex-related EWAS results of health population[6-9,35]. Impressively, among genes mapped to these 11 novel 
CpGs, ELAVL4, SLC17A7, and EPHA4 were all hypermethylated in males and were closely related to AD 
based on search records in the PubMed [Alzheimer’s disease (All Fields) AND “Gene Name” (All Fields)]. 
The details are developed in the discussion section.

Enrichment and pathway analysis implicates immune-related processes
To investigate the potential biological pathways enriched with significant sex-differentially methylated genes 
unique to AD, KEGG pathway enrichment analysis was conducted. For 52 genes mapped from 88 AD-sex-
DMPs, we identified 53 significant terms (at FDR < 0.25[33]), which were grouped into six clusters based on 
the correlation among gene sets [Figure 4 and Supplementary Table 11]. The immune-related cluster 
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Table 1. Eleven novel AD-sex-DMPs

CpG Chr Position Gene Gene features CpG features Direction P value

cg18355337 19 55549722 GP6 TSS200 Opensea -- 5.08E-05

cg24592500 1 2863801 IGR Opensea -- 0.0001248

cg22364668 19 49944826 SLC17A7 TSS200 Shore ++ 0.0001598

cg19653417 12 132654924 IGR Shore -- 0.0004633

cg17394530 6 106434623 IGR Shore -- 0.0005838

cg05697849 1 50513766 ELAVL4 1stExon Island ++ 0.00232

cg19893929 2 16105823 IGR Opensea ++ 0.004802

cg12873476 8 142402728 IGR Shore -- 0.005545

cg12964741 18 77160221 NFATC1 Body Island ++ 0.006405

cg07592361 2 241496830 ANKMY1 5’UTR Island ++ 0.00872

cg13772414 2 222383060 EPHA4 Body Opensea ++ 0.01497

For each CpG, annotations include the location of the CpG based on hg19/GRCh37 genomic annotation (chr, position), Illumina gene annotations, 
gene features, and CpG features. The sample size weighted meta-analysis results include the direction of effect, where CpGs that are 
hypermethylated in males have positive values, and their associated P-value. AD: Alzheimer’s disease; sex-DMPs: sex-differentially methylated 
positions.

Figure 4. cirFunMap visualization of KEGG pathway enrichment analysis for 52 genes mapped from 88 AD-sex-DMPs. (A) The circular 
network view (the node color represents different clusters and the node size represents six levels of P-value) showed the immune-
related cluster (cluster 5) was enriched and independent from the other clusters; (B) The barplot of the P-value for terms in different 
clusters. AD: Alzheimer’s disease; sex-DMPs: sex-differentially methylated positions; KEGG: Encyclopedia of Genes and Genomes.

(cluster 5) was independent of the other clusters [Figure 4] and contained multiple aspects of immunity, 
such as inflammatory bowel disease (P = 0.062, FDR = 0.187), B cell receptor signaling pathway (P = 0.077, 
FDR = 0.187), Th1 and Th2 cell differentiation (P = 0.086, FDR = 0.187), T cell receptor signaling pathway 
(P = 0.096, FDR = 0.187), Th17 cell differentiation (P = 0.099, FDR = 0.187), and natural killer cell-mediated 
cytotoxicity (P = 0.120, FDR = 0.187) [Supplementary Table 11]. These immune pathways were mainly 
contributed by the NFATC1 gene (cg12964741, hypermethylated in males), whose proteins belong to the 
transcription factor family and play a central role in inducible gene transcription during the immune 
response[36]. Consistent enrichment patterns of immune-related processes were replicated in genes with 
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hypermethylated levels in male patients [Supplementary Table 12 and Supplementary Figure 9] but were 
absent in hypomethylated genes [Supplementary Table 13 and Supplementary Figure 10]. In addition, the 
PPP2CB gene (cg26631144, hypomethylated in males) accounted for terms such as hippo signaling pathway 
(P = 0.010, FDR = 0.187) and autophagy (P = 0.031, FDR = 0.187) in the cluster 4 [Figure 4 and 
Supplementary Table 11]. The above evidence implies that genes with sex-dependent methylation patterns 
might be involved in different biological functions in AD, especially immune-related processes.

Comparison to previous brain tissue-based sex-DMPs
We intersected the 134 blood-based sex-DMPs of AD in our meta-analysis and the 77 brain-based sex-
dependent DMPs of AD reported by Pellegrini et al.[13], identifying 28 common probes with the same sex-
independent direction of changes (hyper or hypomethylated) across the blood and brain [Table 2]. Among 
these, 14 were classified as the AD-sex-DMPs, and the other 14 were classified as the AD-HC-sex-DMPs 
[Supplementary Table 10]. A locus at cg22266749, which mapped to the TSS200 of the COL25A1 gene, was 
significantly hypermethylated in male AD compared to females, in both the blood and brain. COL25A1 
(collagen XXV alpha 1) gene encodes a secreted collagenous protein, a type II transmembrane protein 
specifically expressed in neurons[37]. The proteolytic fragment of this encoded protein, called the collagenous 
Alzheimer amyloid plaque component, was found to colocalize with amyloid beta (Aβ) in AD patients[37,38] 
and promote amyloid plaque formation in transgenic mice[39]. Another important AD-specific sex-DMP, 
cg22794378, hypomethylated in both the blood and brain of male patients compared with females, is located 
in the promoter of gene ZC3H14 (also known as MSUT2), which is considered a promising drug target for 
prevention of tau pathology in AD and other tauopathies[40,41]. MSUT2 was involved in determining 
susceptibility to pathological tau, and loss of MSUT2 decreased tau aggregation and protected against 
neurodegeneration in mouse brain[40,41]. Recently, the sex differences in plasma p-tau181 levels have been 
examined in patients with AD[42]. Together, these results revealed that crucial genes such as COL25A1 and 
MSUT2 involved in the formation and regulation of Aβ pathology or tau pathology of AD, exhibited sex-
dependent methylation patterns consistent across the brain and blood. However, further systematic 
investigation is recommended to perceive the regulation of gene expression and pathogenesis in AD by 
DNA methylation and whether the methylation levels in the brain can be surrogate from blood.

There was no overlap between our 134 sex-DMPs and 457 sex-stratified CpGs of the brain reported by 
Zhang et al.[12] The former was DMPs between male and female patients, while the latter offered AD Braak 
stage-associated differentially methylated CpGs in male and female patients, respectively. Not surprisingly, 
no overlapped DMPs were identified due to the focus on different aspects of sex on AD and the use of 
different analysis methods.

DISCUSSION
Blood-based epigenetic biomarkers for AD have gained significant attention in recent years[43-45]. Although 
sex differences have been of interest in AD-related studies, they have often been overlooked as key factors 
influencing patient responses to treatments in clinical trials, typically treated as covariates or subgroups[46]. 
In this study, we utilized DNA methylation datasets of AD and HC to identify sex-differential DNA 
methylation profiles in AD, using a three-step approach. Overall, 88 AD-sex-DMPs and 46 AD-HC-sex-
DMPs were identified. Of these, 91.8% had been previously reported in healthy populations[6-9,35], while 11 
were identified for the first time in AD. Notably, 28 sex-DMPs showed consistent methylation patterns 
across both brain and blood. Our findings highlight specific genes, genomic regions, and immune-related 
processes with sex-differential DNA methylation, which may serve as potential modifiers of AD 
progression.
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Table 2. Twenty-eight sex-DMPs exhibiting consistent methylation changes in both blood and brain

CpG Chr Position Gene Gene features CpG features Direction P value

cg23719534 15 101099284 IGR Island -- 1.13E-110

cg22345911 17 80231263 CSNK1D 5’UTR Island -- 2.80E-33

cg13346869 8 37605517 LOC728024 Body Opensea -- 1.59E-28

cg22266749 4 110223959 COL25A1 TSS200 Island ++ 7.06E-25

cg23001456 17 2615074 KIAA0664 TSS200 Island -- 7.30E-20

cg22794378 14 89029563 ZC3H14 TSS200 Island -- 4.28E-18

cg15817705 1 209406063 IGR Shore ++ 1.57E-15

cg27645294 17 21795257 IGR Opensea -- 1.14E-14

cg10546176 5 34929404 DNAJC21 TSS1500 Island -- 1.52E-11

cg05020125 8 37605552 LOC728024 TSS200 Opensea -- 9.52E-10

cg26516287 7 12629275 SCIN Body Opensea -- 3.88E-08

cg17561891 7 86849173 C7orf23 TSS200 Island -- 2.41E-07

cg22105158 19 3480672 C19orf77 TSS200 Shore ++ 1.51E-05

cg19311244 4 77341912 IGR Shore -- 0.0002931

cg04946709 16 59789030 LOC644649 Body Island ++ 1.19E-85

cg05100634 18 45457604 SMAD2 TSS200 Island -- 1.16E-72

cg06710937 13 23489940 IGR Island -- 9.23E-53

cg09971754 16 89557657 ANKRD11 TSS1500 Island ++ 1.23E-32

cg09725915 2 70369583 IGR Island -- 5.02E-28

cg14030268 10 119135296 PDZD8 TSS1500 Island -- 1.58E-22

cg03894796 8 144361315 IGR Island ++ 5.37E-12

cg15148078 19 3480561 C19orf77 TSS200 Shore ++ 6.01E-07

cg02530860 8 144371537 IGR Island ++ 7.30E-07

cg11841231 2 205543309 PARD3B Body Opensea ++ 1.01E-06

cg06666376 19 3480596 C19orf77 TSS200 Shore ++ 1.25E-05

cg11174255 4 1513259 IGR Shore ++ 0.0002916

cg11565911 12 72233249 TBC1D15 TSS1500 Shore -- 0.007048

cg07645761 16 2892518 TMPRSS8 Body Shore ++ 0.01495

For each CpG, annotations include the location of the CpG based on hg19/GRCh37 genomic annotation (chr, position), Illumina gene annotations, 
gene features, and CpG features. The sample size weighted meta-analysis results include the direction of effect, where CpGs that are 
hypermethylated in males have positive values, and their associated P-value. AD: Alzheimer’s disease; sex-DMPs: sex-differentially methylated 
positions.

To minimize the influence of age on DNA methylation[7], we included age-matched controls to identify sex-
differential methylation patterns in AD. We observed higher methylation levels in females than in males, 
both in AD (70.1%) and in HC (79.6%), consistent with prior blood-based studies in the healthy 
population[7,8]. Similarly, higher methylation levels in females (73%) were noted in brain tissues of AD 
patients[13]. These findings underscore the substantial sex differences in DNA methylation observed in both 
blood and brain, highlighting the need for further investigations and emphasizing the importance of 
considering sex differences in future research designs and analyses.

In addition to corroborating previous findings of sex-related differences in DNA methylation, our meta-
analysis identified several novel sex-differential methylated genes in AD. For example, ELAVL4 (cg05697849 
at gene promoter, hypermethylated in males), which encodes a neuronal-specific RNA binding protein 
involved in neural development and glutamate regulation, was linked to AD pathogenesis[47,48]. ELAVL4 has 
also been implicated in accelerating tau pathology and glutamatergic neuron maturation through aberrant 
splicing[49]. Furthermore, the expression of the ELAVL4 gene was different between males and females in the 
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brain tissue of AD patients[47]. Another notable gene, SLC17A7/VGLUT1 (cg22364668 at gene promoter, 
hypermethylated in males), regulates synaptic glutamate transport and long-term potentiation[50,51], and 
interacts with the Aβ precursor[52]. EPHA4 (cg13772414 at gene body, hypermethylated in males) modulates 
Aβ production[53,54], with its downregulation leading to increased Aβ and BACE1 expression[54]. PPP2CB 
(cg26631144 at gene promoter, hypomethylated in males), encoding the protein phosphatase 2A catalytic 
subunit, has been identified as a key protein in the protective effect of apolipoprotein E ɛ2 against AD[55]. 
These findings are promising; however, further investigation is needed to elucidate the functional roles of 
these methylated genes in AD progression. It is also essential to determine whether these novel DMPs can 
serve as biomarkers for early diagnosis or prognosis in AD. Additionally, analyzing the relationship between 
DNA methylation changes and gene expression will help better understand the clinical relevance of these 
epigenetic modifications.

These sex-differential methylations may reveal molecular mechanisms underlying sex disparities in AD. 
Our enrichment analysis highlighted immune processes modified by DNA methylation showed sex 
differences. Many studies have strongly implicated a critical role played by immune dysregulation and 
neuroinflammation in the pathogenesis of AD[56]. In fact, evidence from clinical[57] and basic[58] studies also 
supports sex-specific differences contributing to this complexity. A gene expression meta-analysis revealed 
consistent immune signatures in the blood and brain in female AD patients but was absent in males[57]. 
Longitudinal studies showed that compared with male 5xFAD mice, female 5xFAD mice displayed an 
earlier and more robust induction of multiple inflammatory mediators such as CXCL10, CCL2, IL-1β, and 
TNFα[58]. These findings underscore the need for integrating omics analyses to better understand sex 
differences in AD[46].

Our results, which compare blood-brain methylation and previous cross-tissue DNA methylation 
analyses[16,17], indicated that DNA methylation changes are not entirely consistent between blood and brain 
tissue. Considering the tissue-specific nature of DNA methylation, future studies simultaneously analyzing 
blood and brain tissue methylation changes will help to comprehensively evaluate the potential of blood-
based DNA methylation as an AD biomarker, and uncover the association of DNA methylation alterations 
between blood and brain tissue in AD.

This study has several limitations. First, although we applied the same analytical pipeline and meta-analysis 
procedure for matched AD and HC groups, we were unable to fully adjust for potential confounders, such 
as lifestyle factors and chronic diseases (e.g., diabetes), which may affect DNA methylation patterns. 
Therefore, our findings should be interpreted with caution. Validation in future studies with larger sample 
sizes and more rigorous control for these confounders is needed. Second, insufficient clinical data (disease 
duration and degree of dementia at the time of blood collection) of patients with AD were extracted, 
impeding further interpretation of the results. Third, DNA methylation exhibits racial differences[59,60], and 
our study primarily included subjects from Caucasian populations, which may introduce racial bias and 
limit the generalizability of the findings to other populations, such as Asians. Future studies should aim to 
include more diverse populations to validate and broaden the applicability of our findings. Fourth, the lack 
of a non-AD dementia control group limits our ability to distinguish whether the identified sex-DMPs are 
specific to AD or may be associated with other forms of dementia. We recognize that including non-AD 
dementia controls in future studies would help clarify whether these methylation patterns are uniquely 
associated with AD or are more broadly linked to dementia pathology.

In conclusion, our findings highlight significant sex differences in blood DNA methylation in patients with 
AD and address the DNA methylation associations between blood and brain tissues. These blood-based sex-
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differential DNA methylation profiles not only provide valuable insights into the epigenetic mechanisms 
underlying sex bias in AD, but also bring new opportunities to identify potential sex-specific biomarkers 
which could help in personalized medicine for AD.
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