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Abstract
AI is revolutionizing the landscape of colorectal cancer (CRC) surgery, permeating diverse facets ranging from 
intraoperative guidance to predictive modeling of postoperative outcomes. This scoping review aims to 
comprehensively delineate the breadth of artificial intelligence (AI) applications in CRC surgery. A search of 
PubMed, Embase, and Ebsco databases up to December 2023 was conducted, with registration in the international 
prospective register of systematic reviews (PROSPERO) (CRD42024502107). Sixty-two studies meeting stringent 
inclusion criteria were scrutinized, encompassing AI utilization in CRC surgery or the development of AI-driven 
tools for colorectal surgical practice. Five principal domains of AI application emerged: (i) Intraoperative guidance, 
leveraging real-time navigation, indocyanine green (ICG) angiography, and hyperspectral imaging (HSI) to enhance 
surgical precision; (ii) Image segmentation, facilitating phase recognition, tools recognition, and anatomical 
identification to optimize surgical visualization; (iii) Training and performance assessment, enabling objective 
evaluation and enhancement of surgical skills through AI-driven simulations and feedback mechanisms; (iv) 
Prediction of surgical complications, encompassing prognostication of anastomotic leakage (AL) or stricture, 
stoma requirements, and prediction of low anterior resection syndrome (LARS) and short-term postoperative 
complications; (v) Utilization of electronic health records (EHRs), harnessing AI algorithms to streamline data 
analysis and inform decision-making processes. This review underscores the paradigm-shifting impact of AI in CRC 
surgery, transcending conventional boundaries and catalyzing advancements across diverse surgical domains. 
Although many applications are still experimental, as AI continues to evolve, it promises to transform surgical 
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surgeons to remain at the vanguard of surgical innovation and deliver superior outcomes for CRC patients.

Keywords: Artificial intelligence, machine learning, colorectal cancer, colorectal surgery

INTRODUCTION
In recent years, the global landscape of artificial intelligence (AI) has witnessed rapid growth[1]. Driven by 
breakthroughs in sequencing technologies and computational methods, AI has emerged as a powerful tool 
for improving precision and accuracy in various fields. In the medical field, AI applications have 
proliferated, revolutionizing diagnostic imaging analysis, pathology interpretation, disease prognosis 
prediction, complication prevention, and competency assessment[2]. In addition, AI has been used to 
improve the quality of medical care.

Machine learning (ML), an important subfield of AI, encompasses a variety of data-driven techniques. 
These algorithms use historical data to gain knowledge and make predictions. Over time, they self-improve, 
increasing the accuracy of their predictions as they encounter more information[3]. ML can be broadly 
categorized into three groups. In supervised learning, algorithms trained on labeled data sets map input to 
output, enabling predictions to be made on unseen data. Common examples include logistic regression 
(LR), support vector machines (SVMs), and neural networks. In unsupervised learning, algorithms operate 
on unlabeled data and discover patterns and relationships without explicit guidance. Techniques such as k-
means clustering, hierarchical clustering, and principal component analysis (PCA) fall into this category. 
Finally, in reinforcement learning, agents learn to make decisions by interacting with an environment and 
receiving rewards or punishments based on their actions. The goal is to optimize the cumulative rewards 
over time. Notable reinforcement learning algorithms include Q-learning, deep Q-networks (DQN), and 
policy gradient methods[4].

Deep learning (DL), a subset of ML, focuses on training artificial neural networks (ANNs) without explicit 
programming. Inspired by the structure of the human brain, DL mimics the neural connections that 
facilitate experiential learning[5]. In ANNs, interconnected layers of nodes (neurons) form the backbone of 
DL. Information flows through each layer, enabling hierarchical representations of data. In terms of Depth 
and Abstraction, DL’s depth enables automatic feature extraction at different levels of abstraction. It mirrors 
how humans learn from complex data. Finally, in Backpropagation, DL models adjust weights and biases 
during training based on predicted versus actual results. Accuracy gradually improves, enabling precise 
predictions.

ML and DL methodologies have been used for some time, but there is a significant lack of confidence and 
familiarity in healthcare. Among the numerous possible applications, ML and DL techniques can be applied 
to large clinical datasets for the development of robust models. The learning methods offer tremendous 
potential to enhance medical research and clinical care. There are many areas that may benefit from the 
application of ML techniques in the medical field, such as diagnosis, management, and outcome 
prediction[6,7].

Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide and the second leading 
cause of cancer death[8]. AI-guided care can play a pivotal role in clinical practice to improve strategies for 
screening, diagnosis, and treatment of patients with CRC[9]. These include increasing the effectiveness of 
screening, and improving the accuracy of diagnostic tools like colonoscopies by reducing rates of missed 
adenomas[10]. It also improves the performance of radiologic diagnosis[11]. Recently, there has been an 

practice, optimize outcomes, and revolutionize patient care. Embracing AI technologies is imperative for colorectal 



Celotto et al. Art Int Surg 2024;4:348-63 https://dx.doi.org/10.20517/ais.2024.26                                                         Page 350

exponential increase in publications regarding the use of AI in the surgical treatment of CRC. The aim of 
the current study was to review the currently available literature on the applications of AI in the surgical 
treatment of CRC patients, including all ML and DL methods that offer the colorectal surgeon a tool to 
improve clinical practice.

METHODS
This study was conducted in accordance with the preferred reporting items for systematic reviews and 
meta-analysis (PRISMA) statement[12]. The scoping review was conducted using the preferred reporting 
items for systematic reviews and meta-analyses extension for scoping reviews (PRISMA-ScR) guidelines for 
reporting[13]. The study protocol was registered on the international prospective register of systematic 
reviews (PROSPERO, registration number CRD42024502107) on 25 January 2024.

Inclusion/exclusion criteria
Inclusion criteria were established using the Patient, Concept, Context (PCC) criteria following the Joanna 
Briggs Institute methodology for scoping reviews[14]. All papers that used AI as a tool to analyze data specific 
to CRC surgery were included. Articles that used AI as a direct application to design the approach or 
perform surgery were included. The following study designs were considered: randomized controlled trials, 
controlled clinical trials, observational studies (retrospective and prospective), cohort studies, population-
based studies, cross-sectional studies, and case-control studies.

Exclusion criteria were nonsurgical articles, reviews, books and book chapters, conference proceedings, and 
editorials. Articles related to the diagnostic pathway such as screening, endoscopy, and other nonsurgical 
areas were excluded. Articles in languages other than English were excluded.

Search strategy, study selection and data collection
A review of the published literature until 15 December 2023 was performed in the following databases: 
PubMed, Embase, and Ebsco. The keywords (including synonyms or equivalent terms) used included 
“artificial intelligence”, “machine learning”, “neural network”, “deep learning”, “computer vision”, “natural 
language” and “colorectal cancer”, “rectal cancer”, “colon cancer”, “CRC” in combination with Boolean 
operators (AND, OR).

Articles were screened according to the previously described inclusion criteria, and two reviewers 
independently screened the literature according to the predefined strategy described above. Covidence 
(Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia) was used to 
remove duplicates. Two reviewers (F.C. and S.F.) independently screened the titles and abstracts and cross-
checked the results of the studies. Disagreements were resolved by a third reviewer (G.S.). Each reviewer 
extracted the following data variables: title and reference details (first author, journal, year). During the 
review process, both reviewers independently recorded data in separate databases. To mitigate selection 
bias, a comparison was conducted at the end. Additionally, manuscripts related to AI applications in 
colorectal surgery were categorized into five distinct groups based on their primary focus. [i.e., 
Intraoperative guidance, Image segmentation, Training and performance assessment, Surgical 
complications prediction, Electronic Health Record (EHR)].

An overview of the study’s methodology is provided in Figure 1.

RESULTS
The search identified 5,787 studies, of which 1,264 were automatically removed from Covidence (Covidence 
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Figure 1. Overview of study selection.

systematic review software, Veritas Health Innovation, Melbourne, Australia) as they were automatically 
identified as duplicates. Eighty-nine articles were selected for full-text evaluation, and 27 were excluded 
based on the above exclusion criteria. Finally, 62 studies were included.

The application of AI to the surgical treatment of CRC or the analysis of surgery and its outcomes revealed 
five primary themes.

Intraoperative guidance
AI-based image recognition has rapidly advanced, nearing human-level capabilities, particularly in 
minimally invasive surgery (MIS), encompassing both laparoscopic and robotic approaches, to aid surgeons 
in intraoperative decision making and navigation. In several areas, the use of image-guided surgery has 
demonstrated significant benefits. For example, in liver surgery during hepatectomy for liver tumors, 
guidance systems can be used to allow the surgeon to see the tumor and its relationship to major intra-
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parenchymal vascular structures in real time. Similarly, in spine surgery, real-time image-guided procedures 
have been shown to provide significant benefits in terms of safety and outcomes.

Seven studies were identified, focusing on real-time navigation, indocyanine green (ICG) angiography, and 
hyperspectral imaging (HSI) [Table 1] during colorectal surgeries.

Real-time navigation
Several models employing DL algorithms demonstrated high detection rates (ranging from 66% to 100%) 
for identifying nerve structures during sigmoid and anterior rectal resections[15-17] Kitaguchi et al. and 
Kojima et al. additionally observed that the models outpaced surgeons in nerve identification in over 50% of 
cases[15,16].

ICG-angiography
The application of AI in fluorescence laparoscopic systems for intraoperative angiography using ICG 
enables the prediction of hypoperfusion-related complications, such as anastomotic leakage (AL)[18]. Park 
et al. developed an AI-based real-time analysis of microcirculation system employing ANNs to interpret 
fluorescence curves, achieving an F1 score of 0.75 in discriminating well-vascularized from poorly 
vascularized intestinal tissue[18].

HSI
HSI offers contrast-free optical imaging, enabling quantitative assessment of physiological tissue parameters 
and visualization of anatomical structures. In colorectal surgery, HSI provides valuable insights into tissue 
composition, oxygenation levels, and metabolic activity, aiding in precise interventions and complication 
mitigation.

The included papers utilize operative and specimen images taken outside of the surgical piece, and thus, the 
application of these models is usable intraoperatively.

Okamoto et al. proposed a convolutional neural network (CNN)-based model to differentiate colic and 
mesocolic tissues from retroperitoneal tissues in pigs, achieving high sensitivity (86.0% ± 16.0%) and F1 
score (0.90 ± 0.11) for colon-mesocolon discrimination[19]. Moreover, several studies utilized ML algorithms 
for HSI image analysis, achieving > 90% sensitivity and > 80% specificity in discriminating pathological from 
healthy tissue in colon specimens[20,21], showcasing the potential for real-time hyperspectral technology 
integration during colorectal surgery. The use of the HSI can also be aimed at evaluating the resected 
surgical specimen after extraction, in order to check whether the resection margin can be adequate, as has 
been effectively demonstrated in several publications. Jansen-Winkeln et al. developed a multi-layer 
perceptron (MLP) model to differentiate CRC from healthy mucosa and adenomas with an accuracy of 
94%[22]. Several models have been developed with the same objective, all with excellent results in 
discriminating between healthy and malignant colon tissue[23-25].

Image segmentation
Semantic segmentation, a groundbreaking image recognition methodology grounded in pixel-level 
classification, stands as a transformative force in the realm of surgical applications. Its implications span the 
entire spectrum of clinical processes, including diagnosis, intervention planning, and computer-assisted 
surgery. However, despite its immense potential, the application of semantic segmentation for organ 
delineation using intraoperative video presents unique challenges, primarily stemming from the demands of 
manual annotation and the intricacies of deploying sophisticated automatic segmentation algorithms.
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Table 1. Intraoperative guidance

Group Authors Year Model Objectives

Real-time navigation Kitaguchi et al.[15] 2023 ANN Ureter and nerves identification

Real-time navigation Kojima et al.[16] 2023 CNN Nerves identification

Real-time navigation Ryu et al.[17] 2023 DL Nerves identification

ICG angiography Park et al.[18] 2020 ANN Microcirculation assessment

HSI Okamoto et al.[19] 2022 CNN Fat tissue discrimination

HSI Beaulieu et al.[20] 2018 SVM Pathologic tissue identification

HSI Manni et al.[21] 2020 CNN Pathologic tissue identification

HSI Jansen-Winkeln et al.[22] 2021 ANN Pathologic tissue identification

HSI Collins et al.[23] 2022 CNN Pathologic tissue identification

HSI Baltussen et al.[24] 2019 SVM Pathologic tissue identification

HSI Tkachenko et al.[25] 2023 CNN Pathologic tissue identification

ANN: Artificial neural network; CNN: convolutional neural network; DL: deep learning; ICG: indocyanine green; HSI: hyperspectral imaging; SVM: 
support vector machine.

In the surgical field, semantic segmentation becomes a guiding light for surgeons. By facilitating the real-
time identification and delineation of organs and structures, it assists in preoperative planning and 
intraoperative decision making. This not only enhances surgical precision but also contributes to the overall 
safety and efficacy of procedures.

Several studies have been identified that have used image segmentation with different objectives: 
segmentation of entire surgeries with the aim of classifying different stages, or segmentation of specific steps 
with the aim of creating an algorithm for recognizing anatomical structures (e.g., blood vessels) and 
dissection planes [Table 2].

Phases recognition
Automated recognition of surgical steps through image segmentation serves multiple purposes, aiding in 
accurately identifying and localizing different anatomical structures within the surgical field, enhancing 
understanding of the surgical site, and improving decision making throughout various stages of the 
intervention. Several algorithms have been developed for automatic stage detection in colorectal surgery. 
Jalal et al. and Kitaguchi et al. developed CNN-based DL models for automatic recognition of laparoscopic 
sigmoid resection phases, achieving overall accuracy rates of 91.9% and 89.4% for extracorporeal action and 
irrigation recognition, respectively[26,27]. Moreover, Kitaguchi et al. devised CNN-based models for video 
segmentation of transanal total mesorectal excision (TaTME), achieving overall accuracies of 93.2% for 
main surgical steps and 76.7% for sub-steps[28,29]. Kolbinger et al. trained ML models to recognize phases of 
robotic rectal resection, with their best-performing model achieving a dice similarity coefficient of 0.82 and 
an accuracy of 0.84[30].

Tools recognition
Automatic recognition of surgical instruments offers several benefits, including standardization of surgical 
technique, facilitating instrument management in operating rooms, and enabling automatic storage. 
Kitaguchi et al. developed CNN-based models for automatically recognizing surgical instruments 
commonly used in laparoscopic colorectal surgery, achieving mean average precision rates exceeding 
90%[31,32]. In 2021, Maier-Hein et al. published the Heidelberg Colorectal (HeiCo) dataset based on images 
from 30 videos of colorectal surgery for laparoscopic instrument recognition[33].



Celotto et al. Art Int Surg 2024;4:348-63 https://dx.doi.org/10.20517/ais.2024.26                                                         Page 354

Table 2. Image segmentation

Group Authors Year Model Objectives

Phases recognition Jalal et al.[26] 2018 CNN; HMM Sigmoid resection segmentation

Phases recognition Kitaguchi et al.[27] 2020 CNN Sigmoid resection segmentation

Phases recognition Kitaguchi et al.[28] 2022 CNN TaTME segmentation

Phases recognition Kitaguchi et al.[29] 2021 CNN TaTME segmentation

Phases recognition Kolbinger et al.[30] 2023 CNN Robotic rectal resection segmentation

Phases and tools recognition Kitaguchi et al.[31] 2020 CNN Colorectal resection segmentation

Tools recognition Kitaguchi et al.[32] 2022 CNN Instrument identification

Tools recognition Maier-Hein et al.[33] 2021 CNN Instrument identification

Anatomy identification Ryu et al.[34] 2023 DL Vessels recognition

Anatomy identification Igaki et al.[35] 2022 DL Mesorectal plain identification

Anatomy identification Kitaguchi et al.[36] 2022 CNN Vessels recognition

CNN: Convolutional neural network; HMM: hidden Markov model; TaTME: transanal total mesorectal excision; DL: deep learning.

Anatomy identification
Ryu et al. constructed a DL model to automatically recognize major blood vessels during right 
hemicolectomy with central vascular ligation, achieving DSC scores of 0.78 for the superior mesenteric vein, 
0.55 for the ileocolic artery, and 0.54 for the ileocolic vein[34]. Igaki et al. developed a DL model to identify 
the correct plane for mesorectal dissection during laparoscopic total mesorectal excision (TME), achieving a 
DSC of 0.84[35]. Additionally, Kitaguchi et al. developed a DL model to identify the inferior mesenteric artery 
during sigmoid resection, achieving a mean DSC of 0.798 and demonstrating potential for real-time surgical 
use[36].

Training and performance assessment
The segmentation of surgical videos can also be used for educational purposes and evaluation purposes. 
After the surgery, segmented images can be used for postoperative assessment, allowing surgeons to review 
the outcomes and identify any issues that may require further attention or intervention. The automatic 
indexing of documented procedures can be useful for educational purposes, analysis of complications, 
consultations, patient briefs, and treatment planning.

Image segmentation aids in the creation of realistic 3D models and simulations for training purposes. 
Surgeons and surgical trainees can practice and enhance their skills in a simulated environment, improving 
their understanding of the different stages of surgical procedures [Table 3].

Ryu et al. successfully applied the DL-Eureka model developed by Kumazu et al. for real-time surgical 
training, demonstrating the safe performance of TME with nerve identification and preservation[37,38]. 
Kitaguchi et al. developed an automatic skill assessment system for purse-string suture in TaTME using a 
DL-based approach[39]. Moreover, Igaki et al., Kitaguchi et al., and Kolbinger et al. devised DL models based 
on intraoperative videos of laparoscopic colorectal surgery for automatic surgical skill assessment[40-42]. 
Igaki’s model[40] exhibited favorable performance compared to the endoscopic surgical skill qualification 
system (ESSQS), achieving sensitivity and specificity exceeding 80% and 90%, respectively. Sasaki et al. 
developed a model for laparoscopic tissue handling evaluation using intraoperative videos of laparoscopic 
colorectal surgery[43]. They trained a ML model to classify pixel RGB values into blood and non-blood, 
achieving an overall accuracy of 85.7%.
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Table 3. Training and performance

Group Authors Year Model Objectives

Training and performance Ryu et al.[37] 2023 DL Real-time training for TME

Training and performance Kitaguchi et al.[39] 2023 CNN Purse-string suture in TaTME

Training and performance Igaki et al.[40] 2023 CNN Assess surgical skill

Training and performance Kitaguchi et al.[41] 2021 CNN Assess surgical skill

Training and performance Kolbinger et al.[42] 2023 CNN Assess surgical skill

Training and performance Sasaki et al.[43] 2023 LR Tissue handling evaluation

DL: Deep learning; TME: total mesorectal excision; CNN: convolutional neural network; TaTME: transanal total mesorectal excision; LR: logistic 
regression.

Surgical complications prediction
A total of 34 articles employing AI to predict surgical complications following colorectal surgery were 
identified.

Anastomotic complications
AL stands as one of the most common and serious complications following CRC surgery, with reported 
incidences ranging from 3% to 21%[44]. AL significantly impacts patient outcomes, often necessitating 
prolonged hospital stays, re-operation, and increased mortality rates. Despite efforts to identify risk factors 
for AL[45], predicting its occurrence remains challenging. Various models, including random forest 
classifiers[46], regression models[47,48], and ANN-based models[49], have been developed to predict AL risk 
factors and occurrence. Risk factors identified include tumor distance from the anal verge, T4 stage tumors, 
male sex, preoperative stenosis, preoperative anemia, massive blood loss, diabetes, hypertension, 
neoadjuvant radiotherapy, and surgeon volume. Models developed by Adams et al., Shao et al., Baker et al., 
and Sammour et al. demonstrated efficacy in predicting AL occurrence[50-53].

Non-malignant anastomotic stenosis following rectal cancer surgery presents a significant concern, with 
incidences ranging from 2% to 19%[54,55]. Su et al. developed ML models, with random forest exhibiting 
superior discriminatory and predictive efficacy for predicting anastomotic stenosis[56]. Prophylactic 
ileostomy, operative time, and AL were found to significantly influence the model [Table 4].

Ostomy prediction after rectal surgery
Temporary or permanent ostomy creation following TME for rectal cancer remains a vital consideration to 
prevent AL. Shao et al. employed SVM models to predict the need for a temporary ileostomy, while Liu 
et al. and Kuo et al. identified risk factors using various ML models to predict the necessity for definitive 
stoma formation after rectal cancer surgery[57-59] [Table 5].

Low anterior resection syndrome
Up to 40% of patients may experience low anterior resection syndrome (LARS) following rectal surgery, 
adversely impacting quality of life[60]. LR models[61,62] and random forest models[63] have been utilized to 
predict LARS risk factors, including length of distal rectum, AL, neoadjuvant therapy, presence of diverting 
stoma, and type of surgery [Table 6].

Early complications after colorectal surgery
Studies investigating AI models for predicting early complications after colorectal surgery encompass a 
range of algorithms, including LR, neural networks, and random forest classifiers[64-70]. These models, 
developed by various researchers, utilize clinical risk factors to comprehensively predict postoperative 
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AL: Anastomotic leakage; RF: random forest; AV: anal verge; CRT: chemoradiotherapy; LR: logistic regression; RT: radiotherapy; ANN: artificial 
neural network; CRP: C-reactive protein; POD: postoperative day; PLT: platelet; TD: transverse diameter of abdominal cavity; APD: anterior to 
posterior diameter of abdominal cavity; VFA: visceral fat area; ML: machine learning; DT: decision tree.

SVM: Support vector machine; XGBoost: eXtreme Gradient Boosting; LightGBM: light gradient-boosting machine; ASA: American Society of 
Anesthesiologists; CEA: carcinoembryonic antigen.

LARS: Low anterior resection syndrome; RF: random forest; LR: logistic regression, SVM: support vector machines, DT: decision tree; AL: 
anastomotic leakage; ANN: artificial neural network, BMI: body mass index.

complication rates. Identified risk factors include surgical site infection[71,72], length of stay, readmissions, 
mortality[73], textbook outcome[74], and conversion from MIS to open surgery[75]. These findings underscore 
the potential of AI models in predicting surgical complications following colorectal surgery, aiding 
clinicians in risk assessment and patient management [Table 7].

Table 4. Anastomotic complication prediction

Complication 
prediction Authors Year Model Risk factors

AL Wen et al.[46] 2021 RF Distance from AV, male sex, preoperative stenosis, anemia, blood loss, diabetes, Neoadj 
CRT, surgeon volume

AL Shen et al.[47] 2023 LR Hypertension, cT4 stage, intraoperative blood loss > 100 mL, operating time > 160 min, and 
tumor location

AL Arezzo et al.[48] 2019 LR Male sex, short-course neoadjuvant RT, T4 tumor, blood transfusion, and tumor distance

AL Mazaki et al.[49] 2021 ANN pT4, double-row circular stapler

AL Adams et al.[50] 2014 ANN Main predictors were CRP on POD 4-5, PLT count on POD 1-5, preoperative hemoglobin

AL Shao et al.[51] 2022 RF Transverse diameter of abdominal cavity (TD), anterior to posterior diameter of abdominal 
cavity (APD) and visceral fat area (VFA)

AL Baker et al.[52] 2022 ML Clostridium difficile infection

AL Sammour et al.[53] 2017 DT AL risk calculators evaluation

Non-malignant 
anastomotic 
stenosis

Su et al.[56] 2023 RF Prophylactic ileostomy, operative time, AL

Shao et al.[57] 2023 SVM Operative time, location of the tumor, preoperative albumin levels, the incidence of 
diabetes and the electrolyte disorders

Definitive ostomy Liu et al.[58] 2023 XGBoost Tumor distance from dentate line, advanced age, previous chemoradiotherapy, rectal 
stricture, diabetes, hypertension

Definitive ostomy Kuo et al.[59] 2023 DT, 
LightGBM

Distance of the lesion from the anal verge, clinical N stage, age, sex, ASA score, and 
preoperative albumin and CEA levels

Table 5. Ostomy prediction after rectal surgery

Stoma 
prediction Authors Year Model Risk factors

Temporary 
ileostomy

Table 6. LARS prediction

Complication 
prediction Authors Year Model Risk factors

LARS risk Qin et al.[61] 2023 RF, LR, SVM, DT Length of distal rectum, AL, proximal colon of neorectum 
(sigmoid/descending), and pathologic nodal stage

LARS risk Huang et al.[62] 2023 LR, SVM, DT, RF, 
ANN

Distance from the anal verge, presence of diverting stoma, exsufflation, and 
type of surgery

LARS risk Wang et al.[63] 2023 RF Anastomotic height, neoadjuvant therapy, presence of stoma, BMI
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RF: Random forest; LR: logistic regression; ASA: American Society of Anesthesiologists; ECOG-PS: Eastern Cooperative Oncology Group - 
Performance Status; XGBoost: eXtreme Gradient Boosting; DT: decision tree; ANN: artificial neural network; SSI: surgical site infection; BMI: body 
mass index; NLR: neutrophil-to-lymphocyte ratio; CRP: C-reactive protein; SPO2: oxygen saturation; LOS: length of stay; SVM: support vector 
machine; Bi-LSTM: bidirectional long short-term memory.

EHR
AI has revolutionized the interpretation and utilization of vast amounts of data, particularly within EHRs. 
EHRs serve as a digital repository of a patient’s medical history, encompassing clinical analyses, imaging 
results, surgical records, laboratory tests, and pathology reports. They aim to enhance patient care quality 
and safety by providing a comprehensive, accessible, and accurate record for healthcare professionals. EHRs 
facilitate improved communication, coordination among healthcare providers, informed clinical decision 
making, and streamlined healthcare processes. Moreover, they offer extensive opportunities for research 
and clinical practice improvement through automated processes. The automation of EHR data analysis is 
crucial in clinical settings to distill complex data into actionable insights, thus enabling new avenues for 
research and development. Several AI models have been developed to analyze EHRs in order to identify and 
predict the occurrence of complications in patients undergoing colorectal surgery [Table 8]: Ruan et al. 
utilized a Gated Recurrent Unit with Decay based DL architectures and atemporal LR models to predict 
wound and organ space infections, superficial infections, and bleeding post-surgery[76]. Weller et al. achieved 
an AUROC of 0.86 for bleeding complications on POD2 using various ML models, including random 
forest[77]. Chen et al. designed a GBM model to predict postoperative bleeding risk, identifying risk factors 
such as anemia, hemophilia, surgery length, heart failure, and kidney disease[78]. Soguero-Ruiz et al. 
developed a Bag-of-Words and SVM-based feature selection model capable of detecting AL occurrence[79]. 
Jo et al. identified an eXtreme Gradient Boosting; (XGBoost) model to predict prolonged length of stay after 
surgery using EHR data, with main risk factors including surgeon, cooperation, albumin levels, specific 
surgeries, urinary symptoms, marital status, N stage, and urine white blood cell count[80]. Furthermore, 
Strömblad et al. developed a ML model to predict surgery duration, leading to improved accuracy in 

Wang et al.[64] 2023 RF Inflammation-related prognostic index, prognostic nutrition index, tumor location, T 
stage

Early 
complications

Lin et al.[65] 2022 LR ASA ≥ 3, ECOG-PS ≥ 2, open surgery, emergency surgery and tumor perforation

Early 
complications

Wei et al.[66] 2023 XGBoost Distance from the anus, age at diagnosis, surgery time, comorbidities

Early 
complications

Merath et al.[67] 2020 DT Best performance in prediction of stroke, wound dehiscence, cardiac arrest, progressive 
renal failure

Early 
complications 

Francis et al.[68] 2015 ANN Non-mobilization on postoperative day 1, development of ileus, and continuation of IV 
fluids beyond postoperative day 1

Early 
complications 

Manilich et al.[69] 2013 RF Readmission rates, rates of transfusions, SSI: BMI, operative time, identity of the surgeon

Myocardial 
infarction risk

Liu et al.[70] 2023 XGBoost Advanced age, preoperative and intraoperative tachycardia, BMI ≥ 25 kg/m2, history of 
smoking, NLR ≥ 3, CRP ≥ 10 mg/L, intraoperative blood transfusion, intraoperative SPO2 
< 90%, operative time ≥ 270 min, and intraoperative bleeding ≥ 100 mL

SSI Chen et al.[71] 2023 ANN SSI present at the time of surgery, operative time, oral antibiotic bowel preparation, and 
surgical approach

SSI Ohno et al.[72] 2022 ANN Length of hospital stay, blood loss, lymphocyte to monocyte ratio, and insulin use

LOS, readmission, 
mortality

Masum et al.[73] 2022 SVM, Bi-
LSTM

LOS: age, ASA, operative time. Readmission: age, laparoscopic procedure, stoma 
performed. Mortality: age, ASA, BMI

Textbook 
outcome

Ashraf 
Ganjouei et al.[74]

2024 XGBoost Surgical approach, patient age, preoperative hematocrit, preoperative oral antibiotic 
bowel preparation

Conversion risk Guidolin et al.[75] 2023 LR, RF Age, BMI, sex, diabetes, ASA class, wound class, ascites, T stage, weight loss, pneumonia

Table 7. Early complications prediction

Complication 
prediction Authors Year Model Risk factors

Early 
complications
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Table 8. EHR

Group Authors Year Model Objectives

EHR Ruan et al.[76] 2022 RNN Early diagnosis of complications

EHR Weller et al.[77] 2018 RF Early diagnosis of complications

EHR Chen et al.[78] 2018 GBM Early diagnosis of bleeding

EHR Soguero-Ruiz et al.[79] 2016 SVM AL detection in EHR

EHR Jo et al.[80] 2021 XGBoost LOS

EHR Strömblad et al.[81] 2021 ML optimizing operating room time

EHR: Electronic health record; RNN: recurrent neural network; RF: random forest; GBM: gradient boosting machine; SVM: support vector machine; 
AL: anastomotic leakage; XGBoost: eXtreme Gradient Boosting; LOS: length of stay; ML: machine learning.

predicting case duration and reduced patient waiting time for colorectal surgery[81]. These advancements 
highlight the transformative potential of AI-driven EHR analysis in enhancing patient care outcomes and 
optimizing healthcare delivery in CRC surgery.

DISCUSSION
The application of AI in colorectal surgery represents a burgeoning field with significant potential to 
augment various aspects of surgical practice. This comprehensive review highlights five major areas where 
AI is making substantial contributions, including intraoperative guidance, image segmentation, training and 
performance assessment, prediction of surgical complications, and HER analysis. AI-driven image 
recognition technologies are advancing rapidly, offering surgeons real-time navigation aids during 
colorectal procedures[81].

These innovations, such as ICG angiography and HSI, provide invaluable insights into tissue perfusion and 
anatomical structures, aiding in surgical decision making and enhancing patient safety[22,23].

Moreover, DL algorithms have demonstrated remarkable proficiency in identifying nerve structures and 
anatomical landmarks, surpassing human capabilities in certain instances[19,20].

Despite these advancements, challenges remain in integrating these technologies seamlessly into the surgical 
workflow and ensuring their reliability in diverse clinical scenarios. Semantic segmentation techniques, 
facilitated by CNNs, offer precise organ delineation and surgical phase recognition, thereby improving 
preoperative planning and intraoperative navigation[27,28]. However, the complexity of deploying automatic 
segmentation algorithms in real-world surgical settings poses significant challenges, including the need for 
extensive training data and robust validation protocols[30]. Additionally, ensuring the accuracy and reliability 
of these algorithms across different patient populations and surgical variations requires further 
investigation.

AI-driven models for surgical skill assessment and performance evaluation offer promising avenues for 
enhancing surgical training and proficiency[41]. By analyzing surgical videos and extracting relevant metrics, 
these models provide objective feedback to surgeons and trainees, facilitating targeted skill development and 
continuous improvement[40,43]. Nevertheless, the generalizability of these models to diverse surgical contexts 
and the incorporation of subjective elements, such as intraoperative decision making, present notable 
challenges[37]. Moreover, the reliance on retrospective data and the lack of standardized evaluation criteria 
limits the applicability of these models in real-time surgical settings.



Page 359                                                          Celotto et al. Art Int Surg 2024;4:348-63 https://dx.doi.org/10.20517/ais.2024.26

Predictive models leveraging AI algorithms enable early identification of surgical complications, thereby 
informing preoperative planning and optimizing patient outcomes[57]. However, the effectiveness of these 
models hinges on the availability of comprehensive and high-quality data, as well as the accurate 
identification of relevant risk factors[44]. Moreover, the interpretability of these models and the integration of 
probabilistic predictions into clinical decision making frameworks require careful consideration and 
validation in prospective clinical studies.

AI-driven analysis of EHR data holds great potential for enhancing clinical decision making, improving 
patient outcomes, and advancing research endeavors[76-81]. By automating data analysis and extracting 
actionable insights from large-scale EHR repositories, AI algorithms enable clinicians to identify patterns, 
predict outcomes, and personalize treatment strategies[77,79]. Nonetheless, challenges related to data privacy, 
interoperability, and algorithmic bias necessitate robust governance frameworks and interdisciplinary 
collaboration to mitigate risks and maximize the benefits of AI in healthcare.

The application of AI models in colorectal surgery has a number of advantages but also current limitations. 
On the one hand, AI enhances intraoperative guidance, significantly improving decision making and 
navigation during minimally invasive procedures. Techniques such as real-time navigation and ICG 
angiography have demonstrated high detection rates of critical anatomical structures, which can lead to 
safer procedures and better outcomes. HSI further enhances the surgical experience by providing detailed 
information about tissue characteristics. In addition, AI supports semantic segmentation, enabling accurate 
identification of anatomical structures and surgical steps, which can improve surgical training and 
performance evaluation[82].

In the landscape of AI applications in colorectal surgery, several limitations warrant acknowledgment.

Firstly, the inclusion criteria may have introduced selection bias, potentially overlooking relevant studies or 
emerging technologies. Additionally, the reliance on published literature may have overlooked unpublished 
studies or ongoing research initiatives, leading to incomplete coverage of the field. Furthermore, the 
heterogeneity of study designs, patient populations, and outcome measures across the included studies may 
limit the generalizability of the findings. Finally, the dynamic nature of AI technologies and the rapid 
evolution of surgical practices necessitate continuous updates and revisions to reflect the latest 
advancements and insights in the field.

Despite the encouraging outcomes reported in preliminary investigations, significant knowledge gaps 
remain that need to be addressed. Challenges persist in the deployment of AI models, necessitating rigorous 
validation and oversight to ensure accuracy, as inaccuracies in image recognition can result in severe 
complications. Moreover, the incorporation of AI into clinical workflows may require additional training 
for surgical teams, which could complicate established practices. Ethical concerns surrounding data privacy 
and the implications of using AI in patient care further complicate matters. Lastly, while AI has the 
potential to enhance efficiency, its implementation demands considerable investment in technology and 
infrastructure, which may not be attainable for all healthcare environments. Balancing these advantages and 
challenges is essential for the successful integration of AI into colorectal surgery. Many preliminary studies 
have been conducted in the realm of AI and CRC; however, the studies included in this review exhibit 
significant variability in sample size and presentation methods. This variability impedes meaningful 
comparisons across studies, particularly in models designed to predict postoperative complications. 
Consequently, this review is limited to a descriptive summary of the studied methods without a 
comprehensive evaluation of their actual clinical applicability in practice.
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Although, as mentioned above, these models are largely experimental and their clinical applicability is 
currently undefined, they certainly open the door to the future of surgery, not only in the colorectal field, 
but with a broader thought, in all branches of surgery. The integration of AI models into minimally invasive 
and, in particular, robotic surgery will make it possible to perform surgeries with increasing safety, precision 
and better results. The application of complication prediction models will improve patient selection and 
treatment management, reduce the occurrence of adverse events, and optimize resources, including 
economic ones. The training of trainee surgeons is already supported by 3D simulators and AI-modeled 
video material; in the future, augmented reality will enable further advancements in this training. In the 
more distant future, automatic real-time recognition of anatomical structures, instruments, and surgical 
steps will lay the groundwork for a future of autonomous actions in surgery.

However, we remain focused on how AI will be implemented and applied in all clinical settings, with the 
hope that it will enable an overall improvement in surgical practice in the field of CRC.

CONCLUSION
While AI holds immense promise in transforming colorectal surgery, addressing the aforementioned 
limitations and navigating the complex interplay between technological innovation, clinical practice, and 
patient care are essential for realizing its full potential. Collaborative efforts between clinicians, researchers, 
policymakers, and industry stakeholders are paramount to harnessing the benefits of AI while safeguarding 
patient safety and advancing the quality of surgical care.
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