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Abstract
The gut microbiome has received a crescendo of attention in recent years due to myriad influences on human 
pathophysiology, including cancer. Anticancer therapy research is constantly looking for new hints to improve 
response to therapy while reducing the risk of relapse. In this scenario, Bifidobacterium, which inhabits the gut 
microbial ecosystem (especially that of children) and is considered a health-associated microbe, has emerged as a 
key target to assist anticancer treatments for a better prognosis. However, some researchers have recently 
hypothesized an unfavorable role of Bifidobacterium spp. in anticancer immunochemotherapy, leading to some 
confusion in the field. This narrative review summarizes the current knowledge on the role of Bifidobacterium spp. 
in relation to anticancer treatments, discussing the pros and cons of its presence in the gut microbiome of cancer 
patients. The current intervention strategies based on the administration of probiotic strains of Bifidobacterium are 
then discussed. Finally, the need to conduct further studies, especially functional ones, is underlined to provide 
robust experimental evidence, especially on the underlying molecular mechanisms, and thus resolve the 
controversies on this microbe for the long-term success of immunochemotherapy.
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INTRODUCTION
Bifidobacterium are non-spore-forming Gram-positive bacteria with a bifurcated (“bifid”) shape, belonging 
to the Actinomycetota phylum. Since 1900, when they were first isolated from the feces of breastfed 
infants[1], about 118 species have been identified and included in the Bifidobacterium genus[2] (lpsn.dsmz.de
). Over the years, species belonging to this genus have become of increasing relevance given their beneficial 
effects on human health, so much so as to obtain the GRAS (Generally Recognized As Safe) status by the 
Food and Drug Administration (FDA) and inclusion in the QPS (Qualified Presumption of Safety) list of 
the European Food Safety Authority (EFSA), and be widely used in the food and pharmaceutical industry as 
probiotics.

Bifidobacterium can be found in several ecological niches, including the gastrointestinal tract of humans and 
other mammals, insects, and birds[3,4]. Bifidobacterium spp. are the first colonizers of the gut microbiota 
(GM) of infants, in particular of those breastfed, where they abound due to their ability to metabolize 
human milk oligosaccharides (HMOs)[5]. Later, with the cessation of breastfeeding and the introduction of 
solid foods, the near monodominance of Bifidobacterium spp. comes to an end and the GM begins to be 
colonized by other (more strictly anerobic) microorganisms, assuming a more adult-like composition[6]. In 
most adult-type GMs, Bifidobacterium still constitutes a relevant component, albeit in much lower 
proportions (mean relative abundance, 2-14%)[7]. Further decline of Bifidobacterium spp. can be observed 
with aging, along with a decrease in species diversity, which has been correlated with 
immunosenescence[8-10]. In contrast, a higher occurrence or prevalence of Bifidobacterium was found in 
centenarians (and beyond) worldwide, suggesting an association with healthy aging and longevity[10-12].

The ecological fitness of Bifidobacterium can be explained by its ability to metabolize dietary and host-
derived carbohydrates, leading to the production of short-chain fatty acids (SCFAs) with a key and 
multifactorial role in human physiology[2,13,14]. The glycobiome of Bifidobacterium is indeed one of the 
largest among other gut commensals, comprising several glycosyl hydrolases, glycosyltransferases, and 
carbohydrate esterases[15]. Additionally, certain Bifidobacterium spp. can synthesize folates and tryptophan-
derived indoles[16]. The former are involved in cell metabolism, immune development, and epigenetic 
modifications[17-19], while the latter improve the integrity of the intestinal epithelium and regulate intestinal 
mucosa immune responses as aryl hydrocarbon receptor ligands[20-22]. Bifidobacterium can also limit the 
growth of pathogens by modulating the immune system and producing antibacterial peptides (i.e., 
bacteriocins) and organic acids (i.e., lactic and acetic acids)[23]. In particular, the accumulation of organic 
acids leads to acidification of the surrounding environment, thus inhibiting the growth of low pH-sensitive 
bacteria[24,25].

All these activities underlie the beneficial effects of Bifidobacterium spp. and their use as probiotics in 
different healthcare settings[26,27]. Unsurprisingly, GM alterations (i.e., dysbiosis) often include, regardless of 
age, an underrepresentation of Bifidobacterium[28-31]. Furthermore, various studies have reported that the 
administration of Bifidobacterium spp., alone or in combination with other lactic acid bacteria (particularly 
Lactobacillus), helps to relieve the symptoms of several intestinal and extraintestinal disorders, e.g., 
inflammatory bowel disease[32], irritable bowel syndrome[33], antibiotic-associated diarrhea[34] and 
Clostridioides difficile-associated diarrhea[35], necrotizing enterocolitis[36], allergy[37], systemic lupus 
erythematosus[38], and atopic dermatitis[39].

While in the aforementioned pathological contexts, the benefits of Bifidobacterium spp. are well established, 
their role in the cancer setting is still controversial, with some evidence suggesting they may improve 
immune function and reduce postoperative complications, and more recent evidence suggesting an 
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association with immunochemoresistance and treatment failure[40] [Figure 1].

In this review, after summarizing the relationship between GM and immunochemotherapy, we discuss the 
latest research evaluating the impact of the presence of Bifidobacterium in the GM of cancer patients, as well 
as its administration in probiotic formulations on therapeutic response and key clinical outcomes. Finally, 
we stress the need to conduct further studies, especially of a functional nature, in order to move from purely 
associative observations to mechanistic glimpses, which provide robust experimental evidence on the role of 
Bifidobacterium in the anticancer immunochemotherapy landscape. The definition of this role will make it 
possible to improve current intervention strategies for truly successful precision medicine approaches.

THE RELATIONSHIP OF THE GUT MICROBIOME WITH RESPONSE TO 
IMMUNOCHEMOTHERAPY
In recent years, several studies have highlighted a bidirectional relationship between GM and 
immunochemotherapy in different types of cancer. Indeed, therapeutic efficacy was significantly reduced in 
the absence of GM, thus suggesting that commensal microbes may modulate anticancer immune responses 
through several mechanisms[40,41]. The first example of this intricate interconnection between gut microbes 
and anticancer treatment involves cyclophosphamide, an approved chemotherapeutic drug. It has been 
shown that cyclophosphamide can alter GM composition in mice and promote the translocation of specific 
Gram-positive bacteria into secondary lymphoid organs, stimulating the production of Th17 cells[42,43]. 
Indeed, germ-free mice or mice treated with broad-spectrum antibiotics showed resistance to 
cyclophosphamide-based therapies[43]. In particular, the antitumor response was associated with increased 
levels of Lactobacillus johnsonii, Enterococcus hirae and Barnesiella intestinihominis[43]. A few years later, 
elegant work by Daillere et al. revealed the mechanisms by which E. hirae and B. intestinihominis were able 
to stimulate the immune response against tumor cells[44]. The former translocated from the small intestine to 
secondary lymphoid organs and increased the intratumor CD8/Treg ratio, while the latter was 
overabundant in the colon where it promoted the infiltration of interferon-gamma (IFN-γ)-producing T 
cells into cancer lesions. Further confirming these findings, the antitumor activity of cyclophosphamide was 
restored in murine models receiving an oral gavage of E. hirae after antibiotic treatment.

GM can also modulate the efficacy of immunotherapy[45-47]. Since their development, immune checkpoint 
inhibitors have revolutionized the anticancer therapeutic landscape, positively changing the clinical 
outcomes of several cancers such as melanoma[48] and renal cell carcinoma[49], as well as malignancies 
considered non-immunogenic such as non-small-cell lung cancer (NSCLC)[50,51] or mismatch-repair-
deficient colorectal cancer (CRC)[52]. Immune checkpoint therapy targets regulatory pathways in T cells by 
removing their inhibitory signals, thereby enabling tumor-reactive T cells to unleash an effective antitumor 
response[53]. An early study in antibiotic-treated mice showed altered GM that impaired both CpG-
oligonucleotide immunotherapy and platinum-based chemotherapy. On the other hand, the reduction of 
tumor growth through the production of tumor necrosis factor alpha (TNFα) by myeloid cells and T cells 
was shown in mice not receiving antibiotics. Indeed, antibiotic treatment impaired the production of TNFα 
and other cytokines by immune cells including monocytes, macrophages, and dendritic cells, and reduced 
tumor regression[42]. Furthermore, the antitumor effect of anti-cytotoxic T-lymphocyte-associated protein 4 
(anti-CTLA-4) antibodies was associated with the presence of distinct Bacteroides species that were able to 
stimulate the T cell response against melanoma. Indeed, germ-free and antibiotic-treated mice did not 
respond to anti-CTLA-4, while when they were gavaged with Bacteroides fragilis, a restoration of the 
efficacy of the anticancer therapy was observed. The same anticancer outcomes were obtained only by 
immunizing the same murine models with B. fragilis polysaccharides, or by adoptive transfer of B. fragilis-
specific T cells. In particular, B. fragilis was associated with Th1 immune responses in lymph nodes and 
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Figure 1. Bifidobacterium and its controversial role in the response to anticancer immunochemotherapy. Bifidobacterium spp. have been 
associated with response to immunochemotherapy through stimulation and activation of effector T lymphocytes and dendritic cells. On 
the other hand, Bifidobacterium spp. have been associated with induction of Treg cells, stimulation of anti-inflammatory cytokines, and 
general immunosuppressive effects (also mediated by short-chain fatty acids – SCFAs). Furthermore, the ability of Bifidobacterium to 
produce lactate suggests a hypothetical link with the “Warburg effect”, known to promote tumor growth, thus potentially liming the 
effect of immunochemotherapy. The figure was partly generated using Servier Medical Art, provided by Servier, licensed under a 
Creative Commons Attribution 3.0 unported license and images from Flaticon resources.

dendritic cell maturation in the tumor environment, thereby reverting CTLA-4 blockade. Similar results 
were obtained in melanoma patients in whom anti-CTLA-4 efficacy was associated with T cell responses 
mediated by an overabundance of B. fragilis or Bacteroides thetaiotaomicron[48]. Fecal microbial 
transplantation from humans to murine models further confirmed that anti-CTLA-4 treatment favored the 
outgrowth of B. fragilis with all the anticancer properties discussed above. More recently, GM analysis of 
metastatic melanoma patients receiving ipilimumab, a CTLA-4-targeted immune checkpoint inhibitor, 
revealed that elevated levels of Faecalibacterium and other members of the phylum Firmicutes were 
associated with not only longer survival but also reduced occurrence of ipilimumab-induced colitis[54]. 
Similarly, programmed cell death protein 1 (PD-1) is one of the inhibitory receptors that downregulate 
effector functions and suppress the immune response leading to non-activation of the immune cascade 
against tumors. Immunotherapy against PD-1 allowed to achieve tumor regression in a subset of 
cancers[55-59]. As for GM, studies in renal and lung cancers showed that non-responders were characterized 
by reduced levels of Akkermansia muciniphila, which promoted the recruitment of activated T lymphocytes 
into the tumor microenvironment via the IL-12 pathway[47]. A recent study confirmed the relevance of 
Akkermansia as a prognostic factor for NSCLC patients treated with immune checkpoint inhibitors[60]. 
Specifically, the authors found that baseline relative abundance of Akkermansia was linked to therapeutic 
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advantages, namely increased objective response rates and overall survival. Furthermore, the intestinal 
residence of Akkermansia was found to be a proxy for the richness of the gut ecosystem, which is generally 
related to more favorable outcomes. Finally, two studies in melanoma patients have identified other 
commensal microbes potentiating the antitumor effects of PD-1 blockade in responders[45,46]. Notably, 
responders exhibited greater interindividual diversity (which suggests retention of one’s GM fingerprint or 
uniqueness) and higher levels of Faecalibacterium and other health-associated Ruminococcaceae members, 
which were involved in enhanced antigen presentation and T cell function in the tumor 
microenvironment[45]. For a list of bacteria other than Bifidobacterium that have been suggested to date to 
play a role in the success (or failure) of immunochemotherapy, please consult the relevant literature (e.g., 
Table 1 from Gupta et al. 2021[61], including pathogenic and non-pathogenic bacteria mediating cancer 
immunotherapy, and Tang et al. 2022[62], who also discussed engineered bacteria with enhanced tumor 
tropism, significant immunomodulation and improved safety profile, for enhanced therapeutic outcomes in 
different cancer models).

BIFIDOBACTERIUM AND THE IMMUNOCHEMOTHERAPY LANDSCAPE
In this context, Bifidobacterium deserves special attention as it has been directly involved in the response to 
immunochemotherapy[63,64]. For example, in 2015, Sivan et al. compared antitumor T lymphocyte responses 
in murine models purchased from two different facilities[65], namely Jackson Laboratory (JAX) and Taconic 
Farms (TAC) mice. Compared to TAC mice, JAX mice developed adequate antitumor immunity. 
Interestingly, the mice also differed in GM composition, with Bifidobacterium being overabundant in JAX 
mice. After induction of melanoma in both murine models, JAX mice exhibited reduced tumor cell growth 
and enhanced T cell-mediated immune surveillance. Overabundance of Bifidobacterium, particularly species 
B. breve, B. longum and B. adolescentis, was positively associated with the antitumor response mediated by 
activation of T cell effectors. Furthermore, oral administration of B. breve and B. longum to mice with 
Bifidobacterium depletion was sufficient to reduce natural melanoma growth alone and, in association with 
immunotherapy (anti-PD-L1), to restore specific antitumor T cell responses and almost abolish tumor 
outgrowth. Increased dendritic cell function leading to T cell activation in the tumor microenvironment was 
shown in mice receiving B. breve or B. longum, compared to germ-free mice or mice natively without 
Bifidobacterium in the GM. These findings were validated in a cohort of patients with metastatic melanoma, 
where metagenomic sequencing revealed pre-treatment enrichment of B. longum, along with A. 
muciniphila, Collinsella aerofaciens, and Enterococcus faecium, in those who responded to anti-PD-L1 
immunotherapy[46]. Furthermore, fecal microbiota transplantation into germ-free mice with responder GM 
led to the restoration of anti-PD-L1 treatment efficacy. A study by Rong et al. suggested that 
Bifidobacterium may potentiate the antitumor immune response by promoting the long-term survival of 
CD8+ T cells as memory cells and thus stimulating the immune response in some immunotherapy 
treatments[66]. In another recent study, it was demonstrated that Bifidobacterium strains induce potent CD8+ 
T cell-mediated antitumor immunity in animal models, thus enhancing the treatment with immune 
checkpoint inhibitors[67]. Interestingly, several years earlier, Li et al. suggested a direct role of 
Bifidobacterium spp. at the tumor site[68], by demonstrating their translocation from the gastrointestinal tract 
into the bloodstream and selective accumulation in tumors, due to their ability to survive in the hypoxic, 
nutrient-rich environment created by tumor cells[69]. Furthermore, the potential of B. adolescentis as a highly 
specific vector for the transport of anticancer genes to a target tumor has been demonstrated. In murine 
models subcutaneously implanted with liver cancer cells, intravenous injection of B. adolescentis previously 
transformed to express a gene encoding the antiangiogenic protein endostatin resulted in germination and 
proliferation of microbes within the tumor bed, but not in non-malignant tissues. In addition, intratumoral 
expression of endostatin and thus inhibition of tumor growth were observed.
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Table 1. Clinical trials registered in the last two years on ClinicalTrials.gov (as accessed in March 2023) involving the use of 
Bifidobacterium spp. as adjuvant therapy in cancer patients. Search terms included “cancer” or “tumor” in combination with “
Bifidobacterium”

Title Status Results Condition Intervention Location URL

Safety and Efficacy of 
Bifidobacterium Therapy in 
Patients With Advanced 
Liver Cancer Receiving 
Immunotherapy

Recruiting Not 
available

Advanced 
Hepatocellular 
Carcinoma

Bifidobacterium 
bifidum oral 
product

China https://clinicaltrials.gov/ct2/show/NCT05620004

Clinical Study on BIFICO 
Accelerating Postoperative 
Liver Function Recovery in 
Patients With 
Hepatocellular Carcinoma

Completed Not 
available

Hepatocellular 
Carcinoma

BIFICO (
Bifidobacterium
-based 
product)

China https://clinicaltrials.gov/ct2/show/NCT05178524

Lactobacillus 
Bifidobacterium V9 
(Kex02) Improving the 
Efficacy of Carilizumab 
Combined With Platinum 
in Non-small Cell Lung 
Cancer Patients

Recruiting Not 
available

Non-Small Cell 
Lung Cancer

Bifidobacterium 
and 
Lactobacillus; 
Placebo

China https://clinicaltrials.gov/ct2/show/NCT05094167

Effect of Live Combined 
Bifidobacterium, 
Lactobacillus and 
Enterococcus Capsules on 
Oral Mucositis in 
NasopharyngealCarcinoma 
Patients Receiving 
Radiotherapy

Unknown 
status

Not 
available

Oral mucositis 
in 
Nasopharyngeal 
Carcinoma

Lactobacillus, 
Bifidobacterium 
and 
Enterococcus

China https://clinicaltrials.gov/ct2/show/NCT03112837

On the other hand, evidence is also accumulating on a not entirely favorable role of Bifidobacterium in the 
response to immunochemotherapy. For example, Bifidobacterium were found to be overabundant in the 
GM of platinum-resistant patients treated for epithelial ovarian cancer[70]. As speculated by the authors, the 
lactate produced by these microbes as part of their metabolism could fuel the “Warburg effect” (i.e., the 
production of lactate by aerobic glycolysis)[71,72]. Increased lactate production is frequently observed in 
tumor cells, where it promotes angiogenesis, tumor growth, inflammation, metastasis, epithelial-
mesenchymal transition and immune evasion. The hypothesis put forward by the authors is therefore that 
Bifidobacterium, and potentially other lactic acid bacteria, are capable of interfering with the lactate cycle, 
increasing its local and systemic bioavailability and thus influencing tumor progression, as well as the 
efficacy of chemotherapy. While fascinating, it should be noted that these speculations are based on the 
detection of increased proportions of Bifidobacterium and other potential lactate producers (and predicted 
lactate production pathways) while decreased proportions of lactate utilizers in platinum-resistant vs. 
platinum-sensitive patients, without direct measurement of lactate levels (and its isoforms). In this regard, 
the lactate levels typically produced in the intestine are much lower than those obtained at the tumor site by 
the Warburg effect[72], further underlining the need to verify the proposed link. Furthermore, it cannot be 
ruled out that GM alterations in potential lactate producers/utilizers are only a side effect of chemotherapy, 
in combination with other host factors, with no direct role in treatment response. However, there is 
previous evidence that similarly demonstrated an increase in lactic acid bacteria, including Bifidobacterium, 
in patients with gastrointestinal cancer, and suggested a role for them in influencing tumor development, 
also through exogenous lactate supply[73]. Once again, these are purely associative observations, which 
makes proof of concept mandatory, especially in extra-intestinal cancers.

In support of the latter speculations, it should be mentioned that Bifidobacterium has a known anti-
inflammatory role, mediated by the production of SCFAs and induction of Treg cells and IL-10, so it is not 
entirely unreasonable to doubt its ability to promote antitumor immune responses. Perhaps the 
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discriminating factor, as the studies commented above suggest, is the use of immune vs. chemotherapy 
protocols. In the context of immunotherapy, we hypothesize that Bifidobacterium-induced Treg cells in the 
intestine might migrate into the tumor microenvironment and promote tumor cell evasion mechanisms 
from immunosurveillance. In this regard, in a very elegant and recent study in murine models, Fidelle et al. 
revealed that enterotropic T cells can actually relocate to distant tumors and impair the therapeutic efficacy 
of immune checkpoint inhibitors[74]. Notably, such a relocation was favored by gut dysbiosis-induced 
downregulation of the expression of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) on 
intestinal endothelial cells, which usually helps retain an immunosuppressive set of T cells (Treg17 cells) 
within the gut, through interaction with integrin 47. Disruption of MAdCAM-1-47 interaction triggered the 
migration of Treg17 cells from the ileal lamina propria and gut-associated lymphoid tissues to distant 
tumors and tumor-draining lymph nodes, where they impaired the therapeutic efficacy of immune 
checkpoint inhibitors by producing immunosuppressive molecules such as IL-10, CD39 and CD73. 
Moreover, the tumor microenvironment was found to be associated with metabolic reprogramming of 
tumor-infiltrating Treg cells, which increases their reliance on fatty acid (instead of glucose) metabolism, 
further contributing to the Warburg effect[75]. However, the process of Treg cell migration to tumor sites and 
the interaction of migrated immune cells with cancer cells (including factors driving their metabolic 
behavior) are highly complex processes not yet fully understood. More evidence is needed to better 
elucidate the role of gut-primed Tregs in cancer immunosurveillance and whether/how Bifidobacterium (or 
other GM components) is involved in this intricate picture.

GUT MICROBIOME-BASED ANTICANCER INTERVENTION STRATEGIES INVOLVING 
BIFIDOBACTERIUM  SPP
The results of clinical and preclinical studies investigating the functional roles of Bifidobacterium spp. in the 
cancer setting have so far been sadly inconclusive. However, the use of Bifidobacterium as a probiotic, alone 
or in combination with Lactobacillus spp., has led to numerous benefits in multiple pathological contexts[76]. 
With specific regard to cancer, the intake of Bifidobacterium spp. conferred protection against CRC 
development in mice[77] and improved immune function in CRC patients[78]. Furthermore, Bifidobacterium 
mitigated the secondary effects of surgery and chemotherapy in patients with CRC, as well as in those 
undergoing colectomy or resection of liver metastases[79,80]. In particular, B. breve reduced post-
chemotherapy GM dysbiosis and limited the development of infections in a pediatric cohort[81]. In contrast, 
another study focused on head and neck cancer patients treated with a cocktail of Bifidobacterium spp. and 
Lactobacillus spp. showed no improvement in patients’ clinical outcomes (i.e., inflammatory markers and 
gut permeability)[82]. However, it should be mentioned that these conflicting results may be partly explained 
by interindividual variations in GM and host genomes. Indeed, several studies confirmed that the intestinal 
colonization and functionality of probiotics are strongly influenced by the individual GM, the host gene 
expression profile, and other exogenous factors[83-85].

Notwithstanding the above, a number of clinical trials have been planned (some of which are still ongoing) 
to examine the therapeutic potential of Bifidobacterium interventions in cancer patients. A list of clinical 
studies registered in the previous two years is shown in Table 1. In an ongoing interventional randomized 
study of 30 participants with advanced liver cancer receiving immunotherapy, Xie et al. are profiling the 
GM of patients receiving or not a cocktail of lactic acid bacteria, including Bifidobacterium spp. 
(NCT05620004). Another interventional randomized clinical trial was designed to evaluate the impact of 
oral administration of Lactobacillus and Bifidobacterium on 46 participants with NSCLC on the efficacy of 
immunochemotherapy (NCT05094167). Other ongoing studies are investigating the role of Bifidobacterium 
in improving the conditions of patients before and after cancer removal surgery, by mitigating therapy-
related side effects[86,87]. Furthermore, in a randomized controlled clinical trial of 180 patients with 
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hepatocellular carcinoma (NCT05178524), investigators used Bifidobacterium-rich BIFICO as an 
intervention strategy to sustain medication in the perioperative period of hepatectomy and observed 
postoperative liver functionality recovery. The first published research on this project revealed that the GM 
profile influenced the rate at which liver function recovered after hepatectomy, and, again, Bifidobacterium 
was a major player. In an interventional randomized clinical trial (NCT03112837), investigators evaluated 
the impact of combined live capsules of Bifidobacterium, Lactobacillus and Enterococcus in patients with 
nasopharyngeal carcinoma. In particular, the aim of this study was to determine whether GM modulation 
reduced the severity of radiation-induced mucositis in patients receiving radical dose radiotherapy. Indeed, 
radiation-induced mucositis is an acute mucosal reaction of patients undergoing head and neck 
radiotherapy, which leads to dose-limiting and debilitating side effects.

CONCLUSIONS AND FUTURE TRENDS
GM has now taken a leading role in research focused on maintaining host well-being, including the success 
of anticancer therapies. In this scenario, several works have linked Bifidobacterium to improved response to 
immunochemotherapy. However, its well-known anti-inflammatory and immunosuppressive properties 
and its recent association with platinum resistance do not allow definitive conclusions to be drawn. 
Nevertheless, some clinical trials are already underway involving the intake of Bifidobacterium directly in 
cancer patients. It goes without saying that further studies in large cohorts are needed to fill the many 
knowledge gaps and provide robust experimental evidence. Such studies should possibly be conducted with 
different omics approaches (including metabolomics) and animal models to finally go beyond simple 
associations and uncover the underlying molecular mechanisms. Only the achievement of such a goal will 
truly allow precision strategies to be implemented. In the near future, it is possible to foresee not only that 
Bifidobacteriuml strains will be rationally used to induce certain anticancer effects in a given context, but 
that they will eventually be engineered to either boost or hinder some functionalities instrumental to the 
success of immunochemotherapy protocols. Not least, it is possible to envisage the use of Bifidobacterium-
derived postbiotics[88] to specifically confer beneficial effects by directly using the molecular actors involved. 
This could be particularly relevant in the case of cancer patients, often immunocompromised and with an 
increased risk of infections and sepsis.
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