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Abstract
As global demand for clean energy increases, fuel cells have emerged as a key technology for sustainable power 
generation. Anion exchange membrane (AEM) fuel cells offer a more economical and environmentally friendly 
alternative to the popular proton exchange membrane (PEM) fuel cells, which rely on fluorinated polymers and also 
use expensive platinum group catalysts. However, designing high-performance AEMs is challenging because of the 
need to balance conflicting material properties. In this study, we employ machine learning to accelerate the design 
of fluorine-free copolymers for AEMs, focusing on known monomer chemistries. By training models on AEM data 
from the literature, we predicted key properties, namely, hydroxide ion conductivity, water uptake (WU), and 
swelling ratio (SR). Screening 11 million novel copolymer candidates using predictive models and heuristic filters, 
we identified more than 400 promising fluorine-free copolymer candidates with predicted OH- conductivity greater 
than 100 mS/cm, WU below 35 wt%, and SR below 50%. This computational approach to AEM design could 
contribute to developing more efficient and sustainable AEM fuel cells for various energy applications.

Keywords: Anion exchange membrane, fuel cells, anion conductivity, water uptake, swelling, materials informatics, 
high-throughput polymer design
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INTRODUCTION
Fuel cells have emerged as a promising solution to the global energy crisis. A large body of prior research 
has focused on advances in proton exchange membrane (PEM) fuel cells[1,2]; however, several factors hinder 
their widespread adoption. Fluorinated polymers and platinum catalysts used in PEMs to prevent corrosion 
are costly and environmentally harmful[1,3,4], and effective water and carbon monoxide management is also 
crucial to avoid rapid degradation of performance[1,5,6].

Over the past two decades, anion exchange membrane (AEM) fuel cells have emerged as promising 
alternatives to PEM fuel cells. AEMs utilize hydroxide ions for ion transport and thus operate in an alkaline 
environment, which offers several advantages over the acidic environments present in PEMs, as illustrated 
in Figure 1A. Notably, because AEMs operate in alkaline environments, expensive fluorinated polymers and 
other acid-tolerant materials are no longer required, potentially leading to significant reductions in material 
costs compared to traditional PEMs. Figure 1B shows the chemical structures of Nafion and Sustanion, the 
leading PEM and AEM materials, respectively. Although the prospect of non-fluorinated membranes is 
exciting, AEMs face major challenges, including low ionic conductivity, limited chemical/alkaline stability, 
and mechanical integrity issues. These limitations stem primarily from the conduction of anions - which 
have inherently lower diffusion constants compared to protons - and excessive water adsorption and 
swelling[1,3].

The United States Department of Energy has set ambitious goals for AEM performance over the next five 
years, namely: hydroxide conductivity of at least 100 mS/cm, swelling ratio (SR) of no more than 50%, 
durability of 25,000 h with no more than 10% loss in current density, and a cost no greater than $40/kW. 
These goals were identified with the hope of designing polymers that can outperform PEMs in energy 
generation capability and long-term stability without the need for halogenated backbones or functional 
groups, with fluorine being the most commonly used halogen to impose ionic conductivity and chemical 
stability[4,7].

One solution to increase conductivity is to enhance the ion exchange capacity (IEC), defined as the total 
number of active sites responsible for ion exchange in the polymer electrolyte membrane (reported in units 
of meq/g). However, this often leads to mechanical instability due to excessive water uptake (WU)-induced 
swelling, and chemical instability due to the elimination of charged groups under alkaline 
environments[2,3,8]. AEMs are also prone to rapid chemical and mechanical degradation[6,9]. A common 
approach for increasing stability is the addition of fluorinated groups, but there is a strong push to move 
away from fluorinated polymers amid environmental health concerns[3,5-7]. The primary challenge is thus to 
develop an AEM that combines high ionic conductivity with strong mechanical and chemical stability 
across a range of temperatures and humidities without the use of fluorinated chemistries, replicating the 
benefits of PEMs while significantly reducing the cost and environmental impact of using fluorinated 
polymers. Achieving this balance has proven extremely difficult due to conflicting property requirements. 
We wish to maximize hydroxide conductivity while limiting the WU and SR, but as indicated in Figure 2, 
there exists a positive correlation between these properties of interest, making this a non-trivial task. 
Additionally, because of its high alkaline stability, fluorine is present in ~25% of the top-performing 
candidates (OH- conductivity ≥ 100 mS/cm) that were found in the literature. This highlights the difficulty 
of designing state-of-the-art polymers for AEMs that contain no fluorine.

AEM performance is intricately linked to several factors, including WU, SR, temperature, relative humidity 
(RH), and IEC. RH, expressed as a percentage, measures the level of environmental humidity. WU and SR, 
both known to correlate with anion conductivity and mechanical stability, are frequently reported alongside 
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Figure 1. Overview of the design and benefits of AEMs compared to PEMs. (A) Schematic of an AEM fuel cell, highlighting key 
advantages over PEMs, such as reduced cost and the elimination of fluorinated polymers; (B) Chemical structures of Nafion (the most 
commonly used PEM material) and Sustanion (a representative AEM material), demonstrate the shift away from fluorine-based 
chemistry; (C) Workflow of the AI-driven design process for novel AEMs, including target property identification, data curation, ML 
model training, candidate generation, screening, and optimization based on active learning. AEMs: Anion exchange membranes; PEMs: 
proton exchange membranes; ML: machine learning.

or instead of direct mechanical properties. WU is defined as the amount of water a polymer sample can 
absorb at full saturation, expressed as a weight percentage of the dry polymer as in:

Similarly, SR refers to the increase in volume of a polymer sample when it transitions from a dry state to full 
saturation (i.e., 100% RH or liquid water conditions), expressed as a percentage of the initial dry volume as 
in:

Anion conductivity, WU, and SR are evaluated across various temperatures, RH levels, and IEC values. 
Some studies also investigate membrane properties before and after immersion in solvents of varying 
concentrations over several days. This time-dependent behavior is crucial for understanding the long-term 
stability of AEMs. However, due to data limitations, this aspect will be addressed in future research. 
Conductivity in AEMs follows an Arrhenius relationship, with the natural log of conductivity showing a 
decreasing linear trend with the inverse of temperature[10-12] while WU and SR show a linear relationship 

(1)

(2)
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Figure 2. Top: Distribution of the observed data for each of the target properties (OH- Conductivity, equilibrium WU, and SR), Middle: 
Distribution of input variables used in the machine learning model: RH (%), measurement temperature (°C), and IEC (meq/g), Bottom: 
scatter plots for each pair of properties, highlighting the correlation between them. WU: Water uptake; SR: swelling ratio; RH: relative 
humidity; IEC: ion exchange capacity.

with temperature and RH[12]. AEMs typically operate under conditions of 100% RH, representing complete 
saturation with liquid water, to ensure a continuous flow of water at the electrodes. The IEC can be adjusted 
by varying the monomer ratio within a copolymer.

IEC is a crucial descriptor for modeling AEMs. However, experimental IEC, which differs from theoretical 
IEC due to system effects, cannot be determined for candidate polymers without synthesizing them[13-15]. 
Theoretical IEC refers to the maximum number of ions that a material can theoretically exchange and 
assumes that all exchange sites are equally accessible, there are no material imperfections, and that 
environmental (temperature, pH) and kinetic effects are negligible. This limitation means that, for 
candidate polymers, we have no direct knowledge of the experimental IEC. Fortunately, as shown in 
Figure 3, theoretical IEC is qualitatively similar to experimental IEC, even when the measured IEC is twice 
that of theoretical IEC, as in the case of quaternized poly(phenylene) oxide (QPPO)-x. Theoretical IEC can 
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Figure 3. Comparison of theoretical IEC vs. experimental IEC for various AEM polymers. Theoretical IEC, calculated from the polymer’s 
chemical structure, is generally consistent with experimental values. This correlation is essential for predicting the performance of 
candidate polymers without the need for experimental synthesis. The plot includes various polymer classes: QPPO-x, ImPES-x, QPPO-
10x, QAPEK-10x, ImPES-0.1x, and Polysulfone, each represented by different colors and markers. The dashed line represents the ideal 
case where theoretical and experimental IEC are equal (y = x). IEC: Ion exchange capacity; AEM: anion exchange membrane; QPPO: 
quaternized poly(phenylene) oxide.

be calculated from the chemical structure of the polymer alone; thus, for candidate polymers, we rely on 
theoretical IEC, which is calculated by:

Although both vehicular and Grotthuss transport influence anion conduction, understanding the relative 
contributions of these two transport mechanisms is an ongoing area of research[10,11]. The dependence of 
vehicular ion transport on water in hydrated polymer systems is well-established, and the characterization 
of water channels within the AEM is crucial.

Ion-containing polymer membranes often exhibit microphase segregation, leading to the formation of water 
channels, particularly when monomers feature extended side chains. These water channels promote anion 
conduction, but excessive WU compromises the mechanical integrity of the AEM through unwanted 
swelling[16,17]. Anion conductivity, WU, and SR are interrelated but independently affected by morphology 
and polymer chemistry, exhibiting complex inherent correlations with chemistry, temperature, and RH[18].

Given these challenges, this problem may be well-suited for an informatics-based approach, which is 
beginning to show promise[19]. Machine learning (ML) models can rapidly evaluate vast lists of potential 
materials, filtering and identifying the most promising candidates for experimental validation. This 
approach has the potential to accelerate the material discovery process, as extensively reviewed[20]. In 

(3)
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previous work, we explored a large space of PEMs using ML models for proton conductivity, WU, and 
several other properties[21].

In the present study, we leverage ML to develop predictive models based on curated AEM data from the 
literature, aiming to design robust polymers with high anion conductivity, low WU, and low SR. The 
informatics-based approach, outlined in Figure 1C, comprises four distinct steps. First, we identify critical 
properties and their optimal desired values based on design of experiments (DOE) and literature guidelines. 
Our objective is to identify innovative copolymers that exhibit hydroxide conductivity greater than 100 mS/
cm, equilibrium WU less than 35 wt%, and equilibrium SR below 50%, with SR and WU serving as proxies 
for degradation and indicators of anion conductivity. We use WU and SR as proxies for stability because of 
data scarcity and because polymers with lower water adsorption are less likely to experience degradation 
due to unwanted swelling. Next, we train ML models to predict these key properties using measured 
property data curated from the literature. Then, a large set of candidate copolymers built using known co-
monomers was generated to define the search space. Finally, we use the ML models to predict the key 
properties of these candidates and screen them to find the optimal candidates for further exploration. 
Future work will address mechanical and chemical stability directly by incorporating time-dependent 
conductivity and mechanical property retention data into a holistic AEM dataset.

MATERIALS AND METHODS
Dataset
The AEM dataset comprises approximately 1,100 data points collected from the literature, involving 108 
unique monomers, including information on hydroxide conductivity, WU, and SR for polymer 
electrolytes[5,22-60]. The chemical space includes copolymers; thus, we record both the chemistry information 
for each monomer and the relative composition of each monomer in the copolymer. For each data point, 
we collect an associated measurement of temperature, RH, and experimental IEC. Figure 2 shows the 
distribution of various properties in the dataset, the correlation between each pair of properties, and the 
distribution of variables used as descriptors in the ML models. Table 1 shows a fragment of the dataset, 
including its structure. The full data set and training splits are available on the polyVERSE GitHub.

Feature engineering
In previous work, polymers were characterized using the Co-Polymer Genome fingerprinting scheme, 
which has been demonstrated to accurately model the properties of copolymers[61]. Each monomer repeat 
unit is decomposed into a hierarchical feature vector, which serves as a numerical representation of the 
chemical building blocks. We then perform a linear combination of the fingerprint vectors of each co-
monomer weighted by their respective composition within the copolymer. Each fingerprint vector is 
concatenated with the sample temperature, RH, and IEC, as defined by Equations (1-3), respectively.

ML algorithm
The fingerprint vectors are fed through a Gaussian process regression (GPR) framework for parameter 
optimization which allows us to map the chemical structure and environmental conditions to the desired 
properties. This allows us to predict the properties of candidate polymers later. We use a radial basis 
function (RBF) kernel multiplied by white noise and linear kernels to train the property prediction 
models[61-63].

We train both single-task (ST) and multi-task (MT) models[61] to predict multiple properties of interest. In 
ST learning, each model is trained to predict only one property at a time, while in MT learning, a single 
model is trained to predict several properties simultaneously. To assess the predictive capabilities of both 
approaches, we divide the data into training and test sets in three distinct ways:

https://github.com/Ramprasad-Group/polyVERSE
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Table 1. Example snippet of the dataset used for training machine learning models in the design of AEMs

SMILES1 SMILES2 c1 c2 Temp (C) RH (%) IEC (meq/g) Property Value

Cc1cc(*)... (*)C(C... 37 63 25 100 2.33 OH- Cond. (mS/cm) 12.1

Cc1cc(*)... (*)C(C... 37 63 25 100 2.33 WU (wt%) 17.4

Cc1cc(*)... (*)C(C... 37 63 25 100 2.33 SR (%) 7.2

The dataset includes copolymer repeat unit SMILES strings, monomer compositions, and associated experimental property measurements. AEMs: 
Anion exchange membranes; RH: relative humidity; IEC: ion exchange capacity; WU: water uptake; SR: swelling ratio.

1. Polymer split (PS): The test set contains a set of monomers that are completely absent in the training set. 
This simulates the prediction of properties for chemistries that are unseen by the training dataset. 
2. Composition split (CS): The test set is composed of data points with monomers that are present in the 
train set but with unique combinations of monomers and compositions. This simulates the interpolation of 
the monomers captured in the training set to novel copolymers. 
3. Temperature split (TS): The test set consists of data points from identical chemistries to a subset of the 
training data, but has a different temperature measurement and, consequently, recorded property values. 
This scenario tests the model’s capacity to predict properties for copolymer compositions and monomers 
seen previously under unseen temperature conditions.

Finally, a production model was trained on the full dataset to make predictions for the candidate set. To 
ensure statistical significance, all models were evaluated using five-fold cross-validation in five seed-splitting 
randomizations and five different train-test ratios.

Candidate generation
We generate a set of novel candidates by enumerating every combination of three repeat units from our set 
of 108 unique monomer units with each composition in increments of 10%. Figure 4 depicts this process 
pictorially. This resulted in the generation of approximately 11 million candidates, including copolymers 
with extreme IEC values (which are impractical for AEM materials; low IEC leads to low ionic conductivity 
and high IEC causes mechanical instability)[3,8].

Further screening is performed to identify promising candidates without fluorine-containing monomers. By 
ensuring that our proposed candidates contain no fluorine, we impose sustainability and cost as key criteria 
in our polymer discovery efforts. This work is primarily motivated by our desire to discover functional 
polymers with no fluorine, as fluorinated polymers are known to be toxic and expensive.

RESULTS AND DISCUSSION
Model performance
The MT framework trains on datasets encompassing multiple properties, enhancing predictive performance 
and enabling exploration of broader chemical diversity. Unlike ST models, MT models learn shared 
information across related tasks, capturing correlations between properties such as hydroxide conductivity, 
WU, and SR.

Figure 5 shows the performance of various models across a range of train-test ratios, illustrating how MT 
learning improves performance for all split types and all test-train ratios, and Figure 6 presents 
representative instances of the different splitting methods for OH- conductivity with 80% of the data in the 
training set. Both the ST and MT models struggled in the PS setting across all test-train ratios. Note the high 
root mean squared error (RMSE), low coefficient of determination (R2), and exceptionally large error bars 
for all PS parity plots. These metrics highlight the difficulty of accurately and confidently predicting the 
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Figure 4. Illustration of the candidate generation process: unique monomer units are extracted from the training dataset and combined 
in various ratios to generate novel random copolymer candidates. Each candidate’s composition is varied in 10% increments, resulting in 
a search space of approximately 11 million candidates. The copolymers are then screened based on theoretical IEC to filter for candidates 
with IEC values between 0.5 and 5 meq/g. The selected candidates undergo ML-based property predictions for hydroxide conductivity, 
WU, and SR for further screening. IEC: Ion exchange capacity; ML: machine learning; WU: water uptake; SR: swelling ratio.

Figure 5. Average RMSE and R2 for five random seeds at various train-test splits for each property. Green bars represent CS, and orange 
bars represent PS. Solid-colored bars represent ST learning, and the hashed bars represent MT models. The error bars correspond to the 
standard deviation across the five random seeds for each split and train-test ratio type. RMSE: Root mean squared error; R2: coefficient 
of determination; CS: composition split; PS: polymer split; ST: single-task; MT: multi-task.
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Figure 6. Comparison of predicted vs. true values of hydroxide conductivity (mS/cm) for PS and CS datasets using ST and MT models 
for a single instance of 80% training data and 20% testing data. (A) and (B) represent ST and MT predictions for the PS dataset, while 
(C) and (D) represent ST and MT predictions for the CS dataset. The diagonal dashed line indicates the ideal case in which predicted 
values perfectly match the true values. The RMSE and R2 values for each model are provided, demonstrating improved predictive 
performance with the MT models in both the PS and CS splits. The error bars represent prediction uncertainty, highlighting the 
increased confidence of the MT model. PS: Polymer split; CS: composition split; ST: single-task; MT: multi-task; RMSE: root mean 
squared error; R2: coefficient of determination.

properties of novel polymers without prior examples of the corresponding chemistry (e.g., extrapolation to 
novel polymer classes). The MT model outperformed the ST model for all split types and test-train ratios, 
indicating its ability to generalize across shared structural features despite the absence of direct training 
examples. This suggests that augmenting the dataset with additional monomer chemistries could 
significantly enhance the model’s extrapolative capabilities. The superior performance of the MT model 
implies that capturing deeper polymer structure-property relationships leads to better generalization with 
more comprehensive data.

Compared with the PS split, the CS, where the test set included new combinations or compositions of 
known monomers, represented an easier challenge because the model could rely on learned knowledge 
about individual monomers and their interactions. The MT model outperformed the ST model in this case 
as well. This is due to the ability of the MT model to leverage the shared information across tasks, allowing 
it to make more accurate predictions for unseen copolymer compositions by drawing on correlations 
between different properties. The strong performance of the model in this split demonstrates its proficiency 
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in interpolation within the chemical space defined by the training set, making it a valuable tool for 
optimizing new combinations of known monomers for improved AEM performance.

The TS, which tested the model’s ability to predict properties of known chemistries at different 
temperatures, further showcased the advantage of MT learning. Figure 7 shows how the MT model captures 
the expected linear trend (Arrhenius behavior) of hydroxide conductivity slightly beyond the temperature 
range captured by the training dataset for three different polymers. As shown by the gray vertical dashed 
lines, the linear regime stretches from 275 to 400 K. This ability to predict across different temperature 
conditions is crucial for understanding real-world AEM performance, as operational environments in fuel 
cells can vary widely.

Based on the performance of the MT models across all splits, we anticipate that the final model - 
incorporating all curated data - will exhibit strong interpolative capabilities but currently has limited 
extrapolative behavior to new monomer chemistries due to the small dataset size. The superior performance 
of the MT model in the challenging PS suggests that increasing the size and chemical diversity of the dataset 
will enhance its ability to predict novel chemistries. Its robust interpolative performance in the composition 
and TS provides confidence in predicting the properties of new candidate copolymers composed of known 
monomers. As the dataset grows, we expect improvements in both extrapolation and interpolation, leading 
to more accurate predictions for entirely novel AEM polymer chemistries. In future work, we plan to 
expand our dataset to include poly(aryl piperidinium), polynorbornene, and other advanced chemistries 
and extend from just neat thermoplastics to also incorporating thermosets, composites, and blends.

SHapley Additive exPlanations (SHAP) analysis was used to add an element of interpretability to the ML 
models by identifying the most important input features. Figure 8 shows the top ten most impactful 
chemical features from most important (top) to least important (bottom). From the SHAP analysis, we 
identified temperature and IEC as having the major impact on the model output, along with certain 
chemical motifs such as quaternary ammonium ions, backbone toluene, and side chain length. The effect of 
these chemical motifs on AEM fuel cell performance should be explored in future works, with this analysis 
aiding in the explainable design of AEM membranes. As quaternary ammonium cations were found to be 
one of the most descriptive chemical features, their effect on the AEM performance needs to be thoroughly 
investigated.

Promising candidates and design suggestions
Our candidate set addresses the gaps in the AEM literature over the past 20 years. By enumerating all 
captured chemistries at various monomer ratios, we explore the full spectrum of synthesized and 
characterized monomer combinations. This comprehensive approach enables us to identify polymers with 
fine-tuned properties without compromising the synthetic feasibility.

Among the approximately 11 million candidates generated, 6.5 million did not contain fluorine. Of these, 
478 candidates met all the property criteria: anion conductivity of ≥ 100 mS/cm, maximum WU of ≤ 35 wt%, 
and maximum SR of ≤ 50 wt%. The expected improvement (EI) for each property for each candidate was 
calculated using:

(4)

where δ for maximization is equal to the predicted mean at x, µ(x), minus the best-observed data point, fbest, 
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Figure 7. Predicted vs. true values of hydroxide conductivity (mS/cm) for TS using the MT model on a few representative polymers 
from the curated dataset, with each color representing a unique polymer. The square and triangle markers indicate the train and test 
set, respectively, indicating the model’s ability to predict the properties at higher temperatures given samples at lower temperatures. 
The circles represent the candidate polymers across a range of temperatures and are used to establish the range of acceptable property 
predictions. The dashed vertical lines indicate the range of acceptable temperatures used for conductivity predictions. TS: Temperature 
split; MT: multi-task.

Figure 8. Top ten most important input features to the MT GPR model as identified by SHAP analysis. MT: Multi-task; GPR: Gaussian 
process regression; SHAP: SHapley Additive exPlanations.
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Figure 9. Predicted hydroxide conductivity (OH- conductivity, mS/cm) vs. equilibrium WU (wt%) for the training dataset (experimental 
data) and the candidate copolymers (prediction data). The color map represents the predicted equilibrium SR (%), with darker shades 
indicating lower SRs. The star markers indicate the candidates with no fluorine that meet all ideal screening criteria: hydroxide 
conductivity ≥ 100 mS/cm, WU ≤ 35%, SR ≤ 50%. The figure demonstrates how the ML model identifies promising AEM candidates 
with optimized properties for further investigation. WU: Water uptake; SR: swelling ratio; ML: machine learning; AEM: anion exchange 
membrane.

and for minimization δ is equal to fbest minus µ(x), σ(x) is the predicted standard deviation (error) at x, ξ is 
the exploration parameter that balances exploitation and exploration and is set to 0.01, Φ is the cumulative 
distribution function of the normal distribution, and φ is the probability density function of the normal 
distribution.

The candidates were ranked by the sum of the normalized EI across all of the properties. Figure 9 presents 
the predicted hydroxide conductivity, WU, and SR overlayed with the training data and the filtered 
candidates. As anticipated, the candidate set effectively fills gaps in the training data and, in some instances, 
extends the boundaries of property combinations toward more desirable outcomes. These candidates offer 
slight modifications to existing experimental data points while combining favorable properties of several 
copolymers reported in the literature. Table 2 shows the chemical structure and predicted properties of 
some selected candidates. Notably, the selection of candidates contains a large range of prediction 
uncertainties. The intended goal is to balance the exploration of unconfident chemical space with the 
exploitation of the comfortable chemical space. The remaining screened candidates are available on the 
polyVERSE GitHub. We are optimistic that some of these exceptional candidates will be synthesized and 
validated in the future. The measurements made on these candidates can serve as valuable training data 
points for recursive ML model training, potentially improving the predictive performance of our models.

CONCLUSIONS
Our approach takes a significant step toward accelerating the discovery of AEM materials while illuminating 
the balance between polymer chemistry, morphology, performance, and stability. Although challenges 
persist, especially in moving beyond the limited chemical space that dominates AEM research, our method 

https://github.com/Ramprasad-Group/polyVERSE
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Table 2. The chemical structure and predicted properties of a handful of top-performing copolymer candidates

# Chemical structure OH- Pred. (mS/cm) WU Pred. (wt%) SR Pred. (%)

1 101.9 ± 1.06 30.2 ± 1.1 18.6 ± 1.3

2 114.7 ± 1.94 21.2 ± 2.5 6.4 ± 3.2

3 107.8 ± 44.2 27.2 ± 57.7 14.4 ± 23.1

4 131.83 ± 34.7 27.2 ± 57.5 19.9 ± 22.9
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5 138 ± 34.7 34.6 ± 44.7 22.6 ± 18.8

WU: Water uptake; SR: swelling ratio.

offers an immediate pathway to identifying stable, high-conductivity polymers without relying on fluorinated monomers.

To summarize the findings and contributions presented in this work: 
• Although the body of AEM data remains relatively small, it provides untapped potential for exploring the vast copolymer space, offering practical solutions 
for material challenges. 
• Using theoretical IEC as a key descriptor in ML models, we bypass the need for synthesized samples, accelerating the screening process. 
• Incorporating several properties in a MT framework empowers us to pinpoint materials that portray high hydroxide conductivity, low WU, and low SR. In 
the future, mechanical properties and performance under alkaline conditions should be considered to identify polymers with long-term stability for practical 
application. 
• Despite the dominance of fluorinated monomers in top-performing polymers, we identified hundreds of novel, fluorine-free copolymers with strong 
predictive confidence, marking a significant step toward more sustainable materials. 
• Future efforts will focus on expanding our dataset using natural language processing and advanced molecular modeling, paving the way for even more robust 
and generalizable models.
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