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Abstract
The initial gut colonization of the infant plays a pivotal role in shaping the immune system, developing the intestinal 
tract, and influencing host metabolism, all of which are strongly influenced by several determinants, such as 
gestational age at birth, mode of delivery, neonatal feeding practices, early-life stress (ELS), and exposure to 
perinatal antibiotics. However, resulting gut microbiome (GM) dysbiosis may alter this developmental 
programming, leading to long-term adverse health outcomes. This narrative review synthesizes current knowledge 
on early-life GM development and its long-term impact on health. Specifically, it addresses how early-life GM 
dysbiosis may affect the trajectory of physiological processes, predisposing individuals to conditions such as 
allergic diseases, metabolic disorders, type 1 diabetes, inflammatory bowel disorders, and atherosclerotic 
cardiovascular diseases. In addition, it examines the influence of probiotic and prebiotic supplementation during 
pregnancy and early life in shaping infant GM composition, as well as the impact of ELS-induced GM dysbiosis on 
mental health. Recent research suggests that the early-life microbiota initiates long-lasting effects, and inadequate 
or insufficient microbial exposure triggers inflammatory responses associated with several physiological 
conditions. Although several studies have reported a connection between ELS and the GM during both prenatal and 
postnatal periods, a unified microbiome signature linked to either prenatal or postnatal stress remains to be fully 
elucidated. Thus, future studies are needed to establish causality and determine whether modifiable factors 
affecting the GM could be targeted to improve gut health, especially in children exposed to contextual stress or 
adverse conditions.
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INTRODUCTION
The colonization of the infant gut by microbes during the perinatal period is essential for the future health 
of the child, as the interaction between the microbiota and the host plays a key role in the proper 
development of homeostatic systems[1]. Therefore, early colonization has a profound impact on subsequent 
health and represents a window of opportunity for modulating the microbiota toward a healthy 
composition, potentially leading to long-term beneficial outcomes[2].

The initial gut colonization of the infant is strongly influenced by several determinants, such as gestational 
age at birth, mode of delivery, neonatal feeding practices, early-life stress (ELS), and exposure to perinatal 
antibiotics[3-6]. The gut microbiome (GM) is established after birth and evolves throughout the lifespan of 
the host, from infancy to advanced age[7]. The GM composition ultimately achieves homeostasis, 
establishing complex ecological and trophic interrelationships between its microbial members and the 
human host[8]. However, diverse factors can disrupt the microbial balance of the GM, causing a state of 
dysbiosis[9].

Several clinical and preclinical studies have suggested that GM dysbiosis during the perinatal period may 
play a pivotal role in the onset of various physiological and neurodevelopmental disorders[10-12]. 
Consequently, disruptions in the GM during critical developmental stages may have persistent effects on 
health, underscoring the need for early interventions to mitigate the risk of chronic conditions and a deeper 
understanding of the role of the GM in both physical and mental well-being. In order to provide a 
comprehensive overview of the topic, this narrative review synthesizes current knowledge on early-life GM 
development and its long-term impact on health outcomes. Specifically, it addresses how early-life GM 
dysbiosis may affect the trajectory of physiological processes, predisposing individuals to conditions such as 
allergic diseases, metabolic disorders, type 1 diabetes (T1D), inflammatory bowel disorders (IBDs), and 
atherosclerotic cardiovascular diseases (ACVDs). In addition, it examines the influence of probiotic and 
prebiotic supplementation during pregnancy and early life in shaping infant GM composition, as well as the 
impact of ELS-induced GM dysbiosis on mental health, with a particular focus on depression.

EARLY LIFE GM DEVELOPMENT
Until the beginning of the 21st century, the neonatal gut was thought to be a sterile ecosystem (the “sterile 
womb paradigm”)[13], with microbial colonization believed to commence at birth[10]. However, recent 
findings have challenged this notion, revealing the presence of bacterial cells or DNA in the meconium, 
placenta, and umbilical cord blood from healthy newborns delivered via cesarean section[14,15]. Diverse 
researchers have postulated the “in utero colonization hypothesis”[13,16] on the basis that probiotics 
consumed by expectant mothers were identified in both the placenta and in the meconium of term 
infants[17,18]. Perez-Muñoz et al. analyzed the evidence supporting these two opposing hypotheses based on 
(i) the physiological, immunological, and anatomical features of the placenta and fetus; (ii) the 
methodological approaches currently used to explore microbial populations in the intrauterine 
environment; (iii) the composition of the fecal microbiome during the first days of life; and (iv) the 
generation of axenic animals and humans[13]. From this analysis, these authors suggested that the “in utero 
colonization hypothesis” relies on methodologically weak data, likely due to the existence of kitomes. In 
addition, the consistent success in generating axenic animals via cesarean section provides strong evidence 
for the sterility of the fetal environment in mammals.

During pregnancy, the mother undergoes several endocrine, immunologic, and metabolic changes aimed at 
creating an appropriate intrauterine environment for optimal fetal development[19]. These modifications 
promote a pro-inflammatory state, resulting in shifts in the maternal vaginal, intestinal, cutaneous, and oral 
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microbiomes[20,21]. Interestingly, the maternal transfer of bacteria to the fetus plays a significant role in the 
establishment of a healthy neonatal microbiome, which may subsequently influence both the immune 
system maturation[22] and the neurodevelopment[23]. The maternal gut microbiota during late pregnancy is 
decreased in microbial α-diversity compared to the first trimester, with a decline in the abundance of 
members of Bacillota but an elevation in the bacteria belonging to the phyla Pseudomonadota and 
Actinomycetota, as well as to the Streptococcus genus[24,25]. Furthermore, the administration of probiotics, 
prebiotics, or synbiotics to the mother during pregnancy has a significant influence on fetal and neonatal 
GM[17,26]. Table 1 shows studies conducted on the effects of probiotic and prebiotic supplementation during 
pregnancy and early life, and their influence on the composition and diversity of the infant’s GM[27-47].

In several studies on probiotic supplementation during pregnancy and infancy, diverse effects on GM 
composition and immune development have been reported. Rinne et al. evaluated the effects of 
Lacticaseibacillus rhamnosus (L. rhamnosus) strain GG on infant gut microbiota and immune markers in a 
study of 96 infants whose mothers received either a probiotic or placebo before delivery, and infants 
continued the assigned treatment postnatally[27]. At 6 months, breastfed infants supplemented with 
probiotics showed higher counts of Bifidobacterium and Lactobacillus/Enterococcus. Additionally, probiotic-
supplemented infants exhibited increased IgG-secreting cells at 3 months and higher IgM, IgA, and IgG-cell 
counts at 12 months compared to the placebo group, which suggests that probiotics administered during 
breastfeeding may positively influence gut immunity. Gueimonde et al. examined maternal 
supplementation with L. rhamnosus strain GG from 2-4 weeks before delivery until 3 weeks postpartum in 
82 infants[28]. At 5 days of age, infants in the probiotic group showed higher colonization of Bifidobacterium 
breve (B. breve), but this effect did not persist at 3 weeks. These authors concluded that the transfer and 
initial establishment of bifidobacteria in neonates result from maternal consumption of L. rhamnosus strain 
GG. Rinne et al. studied 132 newborns whose mothers received either probiotics or placebo before and for 6 
months postnatally[29]. The probiotic treatment did not significantly alter overall gut microbiota 
composition, but at 6 months, infants in the probiotic group had higher clostridia levels compared to 
placebo, indicating its role in microbiota succession. Grönlund et al. studied the colonization of 
Bifidobacterium species in 61 mother-infant pairs, with mothers receiving probiotics from 30-35 weeks of 
gestation[30]. Only infants of allergic mothers were colonized with Bifidobacterium adolescentis 
(B. adolescentis), and their mothers had significantly lower bifidobacterial levels in milk. Consequently, the 
presence of bacteria in breast milk should be recognized as a key contributor to the development of the 
intestinal microbiota in infants. Kukkonen et al. tested a combination of probiotics and prebiotics in 1,223 
pregnant women, showing that probiotic-supplemented infants had higher colonization by lactobacilli and 
Propionibacterium at 3 and 6 months, although the intervention did not reduce allergic disease incidence by 
age 2 years[31]. Building on these findings, the authors posit an inverse correlation between atopic diseases 
and gut colonization by probiotics. Abrahamsson et al. assessed the effects of Limosilactobacillus reuteri 
(L. reuteri) supplementation, finding that at 5 days, the probiotic group had significantly higher 
colonization, but prevalence declined over time[32]. However, the probiotic L. reuteri was found in breast 
milk in nearly all infants following oral supplementation during the first year of life, and in some infants 
who were not treated. Niers et al. evaluated a mixture of probiotics administered prenatally to mothers of 
high-risk children, showing a preventive effect on eczema that persisted until age 2[33]. This preventive effect, 
related to probiotics, appears to be established within the first 3 months of life. Grönlund et al. applied two 
probiotic combinations in 61 mother-infant pairs, finding significant effects on maternal-infant 
Bifidobacterium counts, but no impact on colonization frequencies[34]. The authors concluded that maternal 
colonization by Bifidobacterium bifidum (B. bifidum) had the most consistent effects on the infant’s 
bifidobacterial microbiota. Conversely, maternal probiotic treatment had minimal impact on the 
aforementioned mother-infant association. Grześkowiak et al. used two probiotic combinations in 57 
mother-infant pairs, showing significant differences in Lactobacillus-Enterococcus counts, but no major 
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Table 1. Influence of probiotic and prebiotic supplementation during pregnancy and early life on GM composition and diversity in 
infants

Ref. Probiotics and prebiotics Effect of probiotic and prebiotic supplementation on infant GM

Rinne et al.[27] L. rhamnosus strain GG At six months, counts of Bifidobacterium and Lactobacillus/Enterococcus were greater in 
breastfed infants compared to those fed formula. At twelve months, infants who were 
breastfed for three months and supplemented with probiotics exhibited higher levels of IgM, 
IgA, and IgG-secreting cells compared to those who received placebo

Gueimonde 
et al.[28]

L. rhamnosus strain GG At five days of age, infants whose mothers were supplemented with probiotics had significantly 
higher colonization by B. breve compared to control, but this effect did not persist at three 
weeks. In addition, maternal supplementation with L. rhamnosus did not substantially enhance 
the gut bifidobacterial diversity in infants at three weeks

Rinne et al.[29] L. rhamnosus strain GG Probiotic supplementation during the early months of life did not substantially affect the long-
term composition of the gut microbiota, with bifidobacteria remaining the predominant 
microbiota. At six months, the feces of the placebo group contained a higher abundance of 
clostridia compared to the probiotic group. After two years of follow-up, the probiotic group 
showed a lower presence of lactobacilli/enterococci and clostridia than the placebo group, 
highlighting the role of clostridia as an indicator of microbiota progression in healthy infants

Grönlund 
et al.[30]

B. adolescentis and B. bifidum Only infants born to allergic, atopic mothers were colonized with B. adolescentis. The 
predominant species found in breast milk was B. longum. Allergic mothers had notably lower 
levels of bifidobacteria in their breast milk compared to non-allergic mothers, and their infants 
also displayed reduced bifidobacteria counts in their feces

Kukkonen 
et al.[31]

Probiotic cocktail: L. rhamnosus 
strain GG, L. rhamnosus strain 
LC705, B. breve strain Bb99 and 
Propionibacterium freudenreichii 
subsp. shermanii strain JS 
Prebiotic: GOS

At three and six months, infants in the probiotic group exhibited a significantly higher 
frequency of colonization by lactobacilli and Propionibacterium. Fecal counts of total 
bifidobacteria and lactobacilli were notably higher at six months. No significant differences 
were found between the groups regarding fecal bacterial colonization at two years of age. 
Probiotic treatment presented a negative correlation between the occurrence of atopic 
diseases and gut colonization by probiotics

Abrahamsson 
et al.[32]

L. reuteri At five days of age, the prevalence of L. reuteri was notably higher in the probiotic group 
compared to the placebo group. Despite ongoing supplementation, the prevalence of the 
probiotic decreased over time in the infants

Niers et al.[33] A mixture of probiotic bacteria 
(B. bifidum, B. animalis subsp. 
lactis, and L. lactis)

The administration of the probiotic bacterial cocktail demonstrated a preventive effect on 
eczema incidence in high-risk children, with this effect lasting throughout the first two years of 
life. The intervention group showed significantly higher colonization rates and greater numbers 
of L. lactis

Grönlund 
et al.[34]

Combination 1: L. rhamnosus + 
B. longum 
Combination 2: 
Lacticaseibacillus paracasei + B. 
longum

Bifidobacterium genus levels at one month and B. longum levels at six months were correlated 
between mothers and their infants. By six months, the probiotic intervention significantly 
influenced the mother-infant relationship in fecal bifidobacterial counts, although no notable 
effects were observed on colonization frequencies, diversity, and similarity indices. Maternal 
colonization with B. bifidum had the most consistent impact on the infant’s bifidobacterial 
microbiota

Grześkowiak 
et al.[35]

Combination 1: L. rhamnosus 
strain LPR + B. longum strain 
BL999 
Combination 2: L. paracasei 
strain ST11 + B. longum strain 
BL999

At the genus level, Bifidobacterium counts varied significantly across the study groups, with the 
lowest counts observed in the combination 1 group compared to the placebo. However, the 
relative abundance of Bifidobacterium did not show significant differences between the groups. 
Infants whose mothers received combination 1 probiotics exhibited a notable difference in the 
relative abundance of the Lactobacillus-Enterococcus group compared to the placebo group. No 
other significant differences were observed between the probiotic and placebo groups in the 
relative abundance of key bacterial groups, including Prevotella, Clostridium histolyticum, and 
Akkermansia muciniphila

Ismail et al.[36] L. rhamnosus strain GG Prenatal supplementation with L. rhamnosus did not significantly influence the fecal microbial 
diversity in infants at seven days of age

Pärtty et al.[37] Probiotic: L. rhamnosus strain 
GG. 
Prebiotics: Mixture of GOS and 
polydextrose

The placebo group exhibited a higher percentage of Clostridium histolyticum in their stools 
compared to the probiotic group. Additionally, the ratio of Lactobacillus-Lactococcus-
Enterococcus to the total bacterial count was greater in excessive criers than in contented 
infants at one month of age. The species composition of Bifidobacterium also varied between 
the groups, with B. longum subsp. infantis being less abundant in the stools of excessive criers 
compared to contented infants

Enomoto 
et al.[38]

B. longum strain BB536 and B. 
breve strain M-16 V

At four months of age, infants in the probiotic group showed a significantly higher relative 
abundance of members of the phylum Bacteroidota compared to the control. No significant 
differences were obtained in stool samples collected at ten months of age

Bisanz et al.[39] L. rhamnosus strain GR-1 Infants between 10 and 25 days of age whose mothers were supplemented with probiotics 
exhibited a threefold increase in the relative abundance of Bifidobacterium and a reduction in 
Enterobacteriaceae compared to the control group

During the supplementation period, the probiotic group showed a higher abundance and 
prevalence of probiotic species, but this difference diminished once supplementation ceased. 
At one month of age, bifidobacteria were significantly more abundant in the probiotic group, 
while L. lactis was significantly higher at both two weeks and one month. L. lactis was not 
detected in the placebo group during the intervention and was significantly more abundant at 

Rutten et al.[40] B. bifidum, B. animalis subsp. 
lactis and L. lactis

two years in the probiotic group
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Avershina 
et al.[41]

L. rhamnosus strain GG Infants in the probiotic group exhibited a higher relative abundance of L. rhamnosus at ten days 
and three months of age compared to the control group. However, this difference was not 
sustained at twelve months or two years. No significant differences were observed between the 
probiotic and placebo groups in terms of α- or β-diversity of the total microbiota in infant stool 
samples at three months or two years of age

Korpela 
et al.[42]

Probiotics: B. breve, P. 
freundenreichii subsp. shermanii 
strain JS, and L. rhamnosus 
strain GG 
Prebiotic: GOS

The probiotic supplementation had a significant overall impact on microbiota composition, but 
the effect was influenced by the diet of the infant. In breastfed infants, those receiving 
probiotics showed a higher relative abundance of lactobacilli and bifidobacteria compared to 
controls. However, other taxa (clostridia and Gammaproteobacteria) were less abundant in the 
probiotic group. In formula-fed infants, there was a slight but significant decrease in total 
bifidobacteria in those supplemented with probiotics. In addition, the genera Anaerostipes, 
Klebsiella, and Veillonella were more abundant in the formula-fed probiotic group compared to 
the formula-fed control group

Pärnänen 
et al.[43]

Combination 1: L. rhamnosus 
strain LPR and B. longum 
Combination 2: L. paracasei and 
B. longum

No significant differences were observed in the abundance of antibiotic resistance genes 
between the probiotic and placebo groups in the infants

Plummer 
et al.[44]

B. longum subsp. infantis strain 
BB-02, Streptococcus 
thermophilus strain TH-4 and B. 
animalis subsp. lactis strain BB-
12

Infants who received probiotics had a higher abundance of Bifidobacterium and a reduced 
presence of Enterococcus compared to the placebo group during the supplementation period

Castanet 
et al.[45]

Probiotic: B. animalis subsp. 
lactis 
Prebiotic: BMOS

A significant correlation between changes in microbiota composition and the gut maturation 
marker calprotectin was found. While B. animalis subsp. lactis increased in the probiotic-
supplemented groups, it remained a minor part of the overall fecal Bifidobacterium composition. 
The authors concluded that the prebiotic component of the synbiotic mixture had a more 
substantial impact on the observed shift in gut microbiota than the probiotic component

Martí et al.[46] L. reuteri strain DSM 17938 Probiotic supplementation led to greater bacterial diversity and an increased abundance of L. 
reuteri during the first month. At one week, supplementation also resulted in a reduced 
abundance of Enterobacteriaceae and Staphylococcaceae. No significant effects were observed at 
two years

Bargheet 
et al.[47]

B. longum subsp. infantis strain 
ATCC 15697 and Lactobacillus 
acidophilus strain ATCC 4356

Both microbiota-altering treatments (antibiotics and probiotics) were associated with an 
increased presence of mobile genetic elements in preterm infants compared to term controls. 
Thus, antibiotics and probiotics contribute to dynamic changes in the resistome, mobilome, and 
gut microbiota, which are relevant to infection risk

GM: Gut microbiome; GOS: galactooligosaccharide; BMOS: bovine milk-derived oligosaccharides.

shifts in other bacterial groups[35]. Ismail et al. found no significant impact of prenatal L. rhamnosus strain 
GG supplementation on infant microbial diversity[36]. Probiotic treatment had varying effects on the GM 
composition of Finnish and German infants, attributable to discrepancies in feeding modes and early 
commensal microbiota. The authors also reported that maternal administration of L. rhamnosus strain GG 
during the late stages of pregnancy did not modulate diversity in the early infant gut microbiota, despite 
promoting a beneficial bifidobacteria profile. Pärtty et al. reported that 94 preterm infants receiving 
L. rhamnosus strain GG, prebiotics, or placebo did not show significant effects on overall microbial 
diversity, but the probiotic group had lower Clostridium histolyticum levels[37]. Furthermore, the provision of 
early prebiotic and probiotic supplementation was shown to mitigate symptoms related to crying and 
fussing in preterm infants, suggesting a novel preventive approach for this prevalent disturbance in early 
life. Enomoto et al. showed that probiotic supplementation with Bifidobacterium longum (B. longum) and 
B. breve resulted in higher Bacteroidota abundance in infants at 4 months, although no differences were 
observed at 10 months[38]. These findings indicate that the administration of bifidobacteria during the 
prenatal and postnatal periods is effective in preventing allergic diseases. Bisanz et al. noted that 
L. rhamnosus supplementation to mothers led to higher Bifidobacterium relative abundance in infants at 10-
25 days[39]. The consumption of Moringa-supplemented probiotic yogurt was shown to enhance 
Bifidobacterium relative abundance and to reduce the presence of Enterobacteriaceae in the feces of 
newborns. However, these effects were not observed in the maternal microbiota across all body sites. The 
oral and gut microbiota remained stable throughout pregnancy, while the vaginal microbiota exhibited a 
substantial increase in diversity around birth and in the postpartum period. Rutten et al. pointed out that a 
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probiotic mixture administered to 1,099 preterm infants led to a higher prevalence of probiotic species 
during supplementation, but these differences were not sustained after cessation[40]. Perinatal probiotic 
treatment in children at high risk for atopic disease had minimal effects on GM composition during the 
supplementation period. No lasting differences were identified by the authors, suggesting that, regardless of 
intervention or atopic disease status, children follow a common microbiota development trajectory over 
time, influenced by age, which persists between two and six years of age. Avershina et al. administered 
L. rhamnosus strain GG in 48 mother-infant pairs, finding a greater relative abundance of this bacterium at 
10 days and 3 months, but no significant differences in microbiota diversity at 12 months or 2 years[41]. The 
authors concluded that the late-colonizing OTUs were acquired at a later stage and not at birth. Korpela 
et al. tested a probiotic mixture and prebiotic in 96 mother-infant pairs, showing that in breastfed infants, 
probiotics increased Lactobacillus and Bifidobacterium relative abundance[42]. In this regard, in formula-fed 
infants, Bifidobacterium abundance was lower, with other taxa showing increases. The findings of the study 
demonstrate the efficacy of probiotic supplementation in conjunction with breastfeeding in rectifying 
adverse disruptions in the composition and function of the infant’s microbiota. These changes may result 
from antibiotic treatments or cesarean delivery. In turn, Pärnänen et al. found no significant impact of two 
probiotic combinations on antibiotic resistance genes[43]. The authors posited that infants inherit their 
mothers’ legacy of past antibiotic consumption, a phenomenon transmitted genetically. However, the 
composition of the microbiota remains a significant factor in determining the overall resistance load. 
Plummer et al. studied 1,099 preterm infants, showing higher Bifidobacterium and reduced Enterococcus in 
the probiotic group during supplementation[44]. The authors identified a correlation between increased 
Bifidobacterium abundance in the immediate postnatal period and a reduced risk of necrotizing 
enterocolitis in very preterm infants. Furthermore, Castanet et al. investigated the effects of different 
nutrient combinations in infants fed starter formula, finding that prebiotic components had a greater 
impact on microbiota shifts than probiotics[45]. A correlation was noted between alterations in microbiota 
composition and the gut maturation marker calprotectin. Supplementation with the prebiotic seems to 
promote a more advanced state of gut maturation, resembling that observed in breastfed infants. Moreover, 
Martí et al. conducted a study in which they administered a L. reuteri supplementation to 132 extremely 
preterm infants, noting increased bacterial diversity but no significant long-term effects[46]. Overall, 
probiotics appeared to have the potential to confer benefits by modulating the composition of the GM 
during the initial postnatal period (the first month) in infants with extremely low birth weight. Lastly, 
Bargheet et al. tested probiotic effects in preterm infants, showing improved microbiota and resistome 
similarity to term infants, but both probiotics and antibiotics increased the presence of mobile genetic 
elements[47]. The authors concluded that prolonged hospitalizations, antibiotic use, and probiotic 
interventions contribute to dynamic alterations in both the resistome and mobilome, which are key 
characteristics of the gut microbiota central to infection risk.

The establishment of the GM infant shape is impacted by a variety of external, maternal-related, nutritional, 
and pharmacological agents[48-50]. Following birth, the initial microorganisms that colonize the body of the 
infant are derived from the maternal microbiota, including sources such as the vagina, skin, mouth, and 
feces, along with microbes from the immediate environment[51]. The predominant bacterial composition of 
the GM of vaginally delivered newborns is the genera Bifidobacterium, Collinsella, Clostridium,
Lactobacillus,  Streptococcus,  Veillonella,  Bacteroides,  Parabacteroides, Prevotella, Sneathia, Escherichia,
Shigella, and Akkermansia[51-54]. Alternatively, the GM of cesarean-born infants is primarily composed of
Corynebacterium, Propionibacterium, Slackia, Staphylococcus, Streptococcus, Veillonella, Enterobacter, and
Haemophilus[5,21,55-58]. Figure 1 presents several important factors affecting microbiome abundance and
richness at the early stage of life.
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Figure 1. Important factors affecting microbiome abundance and richness at the early stage of life.

.

Lachnospiraceae), heightened dietary fiber intake (connected to members of the family Prevotellacea), and 
increased mucin generation (from the genus Akkermansia)[60]. It is estimated that approximately three years 
are required for the establishment of a mature and functional GM, at which point its composition resembles 
that of adults[66,68,69]. Nevertheless, the structure and composition of the GM are continually and dynamically 
influenced throughout life by factors such as drug use, dietary patterns, physiological changes, infectious 
diseases, and lifestyle choices[66,70-73].

IMPACT OF EARLY-LIFE MICROBIOTA ON LONG-TERM PHYSIOLOGICAL OUTCOMES
The early establishment of microbial communities plays a crucial role in the parallel development of the 
immune system and the subsequent maturation of the gut and its associated metabolic functions. Therefore, 
GM dysbiosis may disrupt or alter this programming, resulting in long-term physiological responses and 
health conditions[11]. In this sense, it has been demonstrated that microbial factors influence the activity of 
chemokine ligand CXCL16, which regulates the concentration of non-variable natural killer T cells in both 
the colon and lungs. Furthermore, colonizing germ-free mice with a conventional microbiota during the 
neonatal period protects against this accumulation[74]. According to these authors, the early-life microbiota 
initiates enduring effects, and the lack of such microbial exposure may lead to inflammatory responses later 
in life that are associated with asthma and IBDs. More recently, a link has been suggested between the 

During the first three months of life, breastfeeding as a method of infant nutrition leads to changes in the
composition of the GM, resulting in increased levels of the genera Bifidobacterium, Corynebacterium,
Propionibacterium, Sneathia, Enterococcus, Lactobacillus, and Streptococcus, and decreased levels  of
Bacteroides and Staphylococcus[59-61]. Nevertheless, formula-feed infants possess a recognizable GM
composition, mainly characterized by elevated levels of the bacterial genera Atopobium, Clostridium,
Enterococcus, Granulicatella, Lactobacillus, Bacteroides, Citrobacter, Enterobacter, Escherichia, and
Bilophila[58,59,62,63].

In the course of weaning, the introduction of various solid foods and novel dietary components leads to a
rise in microbial α-diversity and pH within the GM[5]. Solid foods promote the proliferation of bacteria
capable of utilizing a broader spectrum of carbohydrates, synthesizing vitamins, and degrading
xenobiotics[57,64-66]. Consequently, the dominant members of the infant microbiome undergo a shift, although
there is a substantial difference between the GM of infants who have weaned and those who have been
breastfed for a continued period. In the initially mentioned group, the predominant genera include
Bifidobacterium, Anaerostipes, Blautia, Clostridium, Faecalibacterium, Roseburia, Ruminococcus, Bacteroides, 
Bilophila, and Akkermansia. In contrast, infants who continued breastfeeding for an extended duration 
exhibit higher abundances of Collinsella, Lactobacillus, Megasphaera, and Veillonella[5,57,67]. These
microbial alterations are linked to enhanced protein intake (associated with members of the family
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disruption of the GM balance and the sustained impacts on immune system disorders[75]. This cross-talk 
occurs through host-microbial interactions in the initial days of life, or via microbial acquisition in 
gestation, indicating that the risk of disease may be established early in life, including during the prenatal 
period[60].

Allergic diseases
Among the immune pathologies associated with the establishment of a specific microbiota, allergies, 
especially in the form of atopic dermatitis (AD) and subsequently asthma, are probably the result of 
inadequate GM development and the consequent disturbance of immune homeostasis in the initial year of 
existence[76,77]. In the case of AD or eczema, several classic studies have provided evidence of early shifts in 
the microbiota of infants who later developed this skin disease[20,78,79]. These investigations revealed 
differences in the microbial composition of infant GM, with an increased abundance of clostridia and 
Escherichia coli, and diminished levels of bifidobacteria and Faecalibacterium for the later development of 
allergic disease[80,81]. Further research has shown that a decreased microbial α- and β-diversity of the early-life 
microbiota and depletion of Bacteroides and Clostridium sensu stricto 1 directly correlate with later 
development of eczema at one year of age[82-84], and a reduction in eczema severity during the three-month 
follow-up interval was directly associated with an enhancement in butyrate-producing bacteria, such as 
Coprococcus eutactus[85,86].

Although the development of asthma has been associated with genetic, epigenetic, and environmental 
factors[87,88], there is a growing recognition of the critical role that the GM plays in the perinatal 
programming of this condition[89,90]. The concept of the “gut-lung axis” illustrates the influence of the GM 
on lung immune function, both through direct activation of the innate immune response and indirectly via 
the metabolites generated by gut microbes. The colonization of the intestinal microbes in newborns is 
pivotal for their overall health, with dysbiosis occurring in the first 100 days and being particularly impactful 
for the development of hypersensitivity disorders[91]. Infants at risk for asthma have significantly reduced 
relative abundances of the genera Rothia, Faecalibacterium, Lachnospira, and Veillonella, and these 
dissimilarities in bacterial taxa abundance were also associated with distinct amounts of microbial 
metabolites in feces[92]. Additionally, lower gut microbiota diversity in the first month of life has been 
associated with an increased incidence of asthma in children by age seven[93]. Moreover, reduced levels of 
Lachnospira combined with elevated levels of Clostridium spp., especially Clostridioides difficile, during 
infancy are positively correlated with a greater risk of asthma development by the age of four or older[94,95].

Metabolic disorders
The composition and function of the GM have been related to metabolic disorders, such as obesity and 
obesity-related diseases. Adequate gut barrier function appears to be pivotal for metabolic health[96], but 
various factors that disrupt this barrier and microbial eubiosis during early life play a critical role in 
overweight, obesity development, and childhood adiposity later in life. The GM, by increasing energy 
expenditure, may regulate obesity behavior and peripheral metabolism through the so-called obesogenic 
microbiota[97]. Several studies have indicated that various factors that impact the establishment of the GM 
during infancy could contribute to the risk of obesity later in life, such as feed, maternal obesity, mode of 
delivery, intestinal permeability, pathogenic infections, and antibiotic exposure[98-100]. Microbiota-related 
obesity studies in humans have indicated that early microbial profiles may serve as predictors for 
overweight in children[101]. In this sense, it has been reported that overweight in seven-year-old children is 
associated with increased abundance of members of the phylum Bacillota and decreased abundance of the 
genus Bifidobacterium[102], while Bacteroides fragilis levels at 1 month of age were significantly correlated 
with an increased body mass index in children[103].
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In addition, epigenetic shifts linked to microbiota in the early stages of development[104], and also the 
influence of the GM on brain development, must be considered in the programming of obesity[105]. 
According to some preclinical and clinical studies, the most important factor influencing metabolic diseases 
is antibiotic therapy in early life[106], which significantly alters the GM[100,107,108]. However, one study involving 
a substantial cohort of over 260,000 subjects reported that childhood obesity was positively associated only 
with non-treated infections rather than with antibiotic intake during infancy[109]. To resolve these conflicting 
findings, further evidence from human epidemiologic studies is necessary to conclusively determine the 
causal relationship between antibiotic-driven dysbiosis during early life and subsequent metabolic effects in 
later life.

T1D
Dysbiosis of the GM in early infancy has also been linked to various chronic diseases that may emerge later 
in life. T1D is an autoimmune disease that results from an autoimmune response in which autoreactive T 
cells partially or completely destroy the beta cells responsible for insulin production within the islets of the 
pancreas, and it is triggered by genetic and environmental factors[110,111]. Accumulating evidence from both 
preclinical and human studies suggests a role for GM in the onset of this condition[112,113]. Microbial studies 
in T1D have shown a lower microbial diversity and a significant difference in the Bacillota/Bacteriodota 
phyla ratio, and also diminished levels of the butyrate producer Faecalibacterium prausnitzii in children 
with diabetes[114,115]. Interestingly, several studies have suggested that early-life gut colonization may 
influence the course of T1D development and is also involved in the pathophysiology of this disease[116]. In 
the DIABIMMUNE study, children from different geographical contexts, specifically Estonia, Finland, and 
Russia, who had an HLA predisposition to autoimmune diseases, were examined[117,118]. The children who 
developed T1D showed a reduction in α-diversity and elevated levels of Blautia, Rikenellaceae, 
Ruminococcus, and Streptococcus, while Coprococcus eutactus and Dialister invisus were absent. A separate 
study involving 33 infants at risk for T1D revealed a reduction in bacterial diversity and an increase in pro-
inflammatory bacterial species, including Ruminococcus gnavus and Streptococcus infantarius[119]. In 
addition, the researchers observed heightened levels of human β-defensin 2, an antimicrobial molecule 
synthesized during inflammation, in those children who went on to develop T1D.

IBDs
IBDs are hyperimmune, multifactorial diseases that include Crohn’s disease and ulcerative colitis. Both 
disorders are related to inflammation and changes in the GM (e.g., decreased microbial diversity and lower 
abundance of Roseburia) and have a strong genetic basis[120]. These diseases may first appear in childhood 
and adolescence and have a lifelong chronic, relapsing course[121]. Several factors have been reported to be 
associated with the development of IBDs in childhood, such as exposure to antibiotics and cigarette smoke 
during fetal life, and also breastfeeding[122,123]. Although infants born to mothers with IBDs showed an 
increased abundance of members of the phylum Pseudomonadota and a decreased abundance of 
bifidobacteria during the first 3 months of life[124], it is still not clear whether these associations are causal or 
interrelated, as the persistent inflammation of IBDs may affect the GM rather than the dysbiosis that causes 
IBDs[125].

ACVDs
Specific conditions in infancy, including preterm birth, malnutrition, or the colonization of the GM, may 
increase the risk for an individual to develop ACVDs later in life[126]. Malnutrition and changes in the GM 
composition are closely related, as a decline in commensal gut bacteria, such as Bifidobacterium, can result 
in poor digestion, and in turn, decreased use of dietary carbohydrates and diminished vitamin synthesis 
may contribute to malnutrition[126,127]. In addition, elevated levels of Pseudomonadota in preterm infants 
have been identified in certain adults with ACVDs[128]. Phylum Pseudomonadota contains several 
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pathobionts that reduce nutrient absorption, potentially causing epithelial damage and promoting 
inflammation, which in turn compromises intestinal barrier permeability[121]. This situation can escalate 
systemic inflammation, a key factor in the development of ACVDs[129,130].

ACVDs are characterized by chronic inflammation in which lipids are retained within the arterial wall, 
leading vascular smooth muscle cells to form a collagenous, fibrous cap that becomes infiltrated by immune 
cells, such as mast cells, T cells, and macrophages[131]. This atherosclerotic process, a primary contributor to 
ACVDs, begins early in life and is linked to a broad range of risk factors, such as diabetes, hypertension, 
persistent low-grade inflammation, and GM imbalances[132]. Therefore, the impacts of gut metabolites and 
gut dysbiosis underscore the influence of the GM on ACVDs by promoting inflammation and altering 
cholesterol metabolism. Bacterial presence has been detected within atherosclerotic plaques[133], contributing 
to the origination of atherogenesis by stimulating platelet aggregation and thrombus formation, or by acting 
via their structural components like LPS, to activate an inflammatory cascade by heightening the expression 
of IL-1β[134]. Diverse studies have examined the indirect impact of the GM on ACVD development via its 
metabolites [short-chain fatty acids (SCFAs), trimethylamine, trimethylamine-N-oxide (TMAO), and bile 
acids (BAs)], which regulate host systemic inflammation, activate the innate immune system, and shape the 
adaptive immune response[121,135,136]. These microbial metabolites can function as signaling molecules, 
binding to specialized receptors on remote organs or influencing endocrine pathways through indirect 
interactions with other endocrine molecules[134].

IMPACT OF ELS ON THE GM
ELS encompasses a range of adverse experiences occurring before the age of 18, including forms of abuse 
(psychological, physical, or sexual), neglect (both emotional and physical), persistent family dysfunction, 
and socioeconomic struggles[137]. In addition, ELS is a predictor of adult depression[138], and it is related to the 
magnitude of depressive symptoms and the duration of the depressive trajectory[139]. Several studies have 
shown that ELS provokes GM dysbiosis[140], and that the GM exerts a pivotal role in the development of 
depression through the gut-brain axis communication[141,142]. The interplay between GM and depression 
constitutes a reciprocal process; depressed patients exhibit altered GM composition[143], and the 
transplantation of GM from individuals with depression can result in anxiety and depressive behaviors in 
receptor rodents[144].

The human GM composition shows marked differences between individuals with depression and healthy 
controls, but there are controversial results across studies[145,146]. At the phylum level, findings from most 
studies indicate that individuals with depression exhibit a significantly higher relative abundance of 
Actinomycetota compared to controls[147-152]. At the family level, the most abundant taxa in depressed 
patients include Bifidobacteriaceae, Enterobacteriaceae, and Lachnospiraceae[147-149,152,153]. At the genus level, 
the most abundant bacteria are Alistipes, Bacteroides, Bifidobacterium, Blautia, Clostridium, Eggerthella, 
Holdemania, Oscillibacter, Parabacteroides, and Streptococcus[143,148-156]. On the other hand, members of the 
phylum Bacteroidota and genus Faecalibacterium seem to be inversely related to depression[147,148,150-153]. More 
recently, Kraaij et al. performed a cross-sectional study involving 1,784 ten-year-old children from the 
Netherlands to define the relationships between the GM and mental health issues in children[157]. Although 
lower gut microbial diversity and richness were associated with internalizing problems and anxious/
depressed behavior issues, these associations were not significant. These authors did not find definitive 
evidence linking GM diversity, taxonomic features or functions, and mental health conditions in the 
pediatric cohort. However, they noted suggestive findings indicating a reduction in the genera that have 
previously been related to psychiatric disorders, including Anaerotruncus, Hungatella, and Oscillospiraceae. 
No associations were found between ELS and the GM, although socioeconomic stress was the only ELS 
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domain associated with lower α- and β-microbial diversity[158]. Table 2 shows several studies examining 
changes in the GM composition of patients with depression.

Retrospective studies have shown a consistent association between ELS and cognitive decline in adulthood, 
linked to systemic inflammation[159,160]. ELS has also been related to neurological deficits in executive 
function, memory capacity, and processing speed[161-163], which are associated with significant changes in the 
hippocampus and the prefrontal cortex[164], thereby affecting the hypothalamic-pituitary-adrenal (HPA) axis 
and the neuroendocrine system, both implicated in stress regulation due to the release of cortisol[165]. 
Cortisol influences a range of cognitive and physiological processes, including immunity, inflammation, and 
neuroplasticity[166]. Additionally, individuals subjected to ELS frequently present psychiatric comorbidity 
with multiple behavioral consequences[167-169]. Moreover, individuals who have experienced childhood and 
adolescent psychological trauma possess significant difficulties in regulating their emotions, limitations 
regarding their social interactions, reduced capacity to concentrate, and persistent psychological distress 
that persists into adulthood[170].

Chronic stress, in combination with GM dysbiosis, has been shown to disrupt SCFA metabolism and 
exacerbate dysfunction in the microbiota-gut-brain axis in individuals with depression. SCFAs exhibit 
neuroprotective effects and are involved in pathological processes linked to the onset and progression of 
depression, such as neuroinflammation, neuroendocrine fluctuations, chronic cerebral hypoperfusion, and 
epigenetic modifications[171].

SCFAs present in the systemic circulation are capable of crossing the blood-brain barrier (BBB), thereby 
modulating the transfer of nutrients and molecules that are instrumental in preserving the integrity of the 
BBB. This process exerts a direct influence on brain development and the maintenance of central nervous 
system (CNS) homeostasis[172]. Furthermore, SCFAs have been shown to regulate a multitude of 
fundamental behavioral and neurological processes by modulating the HPA axis, the immune system, and 
tryptophan metabolism, as well as by contributing to the synthesis of various metabolites, including 
neurotransmitters with neuroactive properties[173].

Within the microbiota-gut-brain axis, SCFAs play a pivotal role in the synthesis and release of peripheral 
neurotransmitters, such as acetylcholine and serotonin (5-HT)[174]. However, the permeability of the BBB 
can limit the access of these neurotransmitters into the brain, potentially hindering their ability to directly 
affect CNS function. Although peripheral blood 5-HT has been shown to regulate gastrointestinal motility 
and excretion, it may also constitute a potential indirect mechanism by which cognitive, emotional, and 
behavioral responses are influenced via neuroendocrine pathways or vagal afferents[175]. In addition, studies 
have demonstrated that, upon crossing the BBB, SCFAs modulate neurotransmitter levels within the 
CNS[176].

DISCUSSION AND FINAL REMARKS
The present review aimed to summarize the impact of early-life GM development and dysbiosis on long-
term health, focusing on its role in physiological and mental health. Reinforcing key findings, a large body 
of recent studies have explored this topic, primarily focusing on psychosocial factors[177,178], acute 
stress[179-182], mental disorders[183], as well as physiological, metabolic, and immune processes[184]. However, 
much still remains to be elucidated regarding the underlying mechanisms and long-term effects of early-life 
GM alterations.
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Table 2. Alterations in the GM composition observed in depressed patients

Study Participants Sequencing 
methods Increased Decreased

Naseribafrouei 
et al.[155]

N = 37 depressed 
patients (mean age 49.2 
years) and N = 18 HCs 
(mean age 49.2 years)

16S rRNA Order bacteroidales 
Genera: Alistipes and Oscillibacter

Family: Lachnospiraceae

Jiang et al.[149] N = 46 depressed 
patients and N = 30 
HCs 
Age rank: 18-40 years

Pyrosequencing Phyla: Actinomycetota, Bacteroidota, and 
Pseudomonadota 
Family: Enterobacteriaceae 
Genus: Alistipes

Phylum: Bacillota 
Genus: Faecalibacterium

Zheng et al.[152] N = 165 subjects with 
MDD and N = 217 HCs

16S rRNA Phylum: Actinomycetota 
Families: Actinomycetaceae, 
Coriobacteriaceae, Enterobacteriaceae, 
Lachnospiraceae, Lactobacteriaceae, 
Ruminococcaceae, and Streptococcaceae 
Genera: Anaerostipes, Blautia, 
Clostridiales incertae sedis XI, Dorea, 
Erysipelotrichaceae incertae sedis, and 
Parvimonas

Phylum: Bacteroidota 
Families: Acidaminococcaceae, 
Bacteroidaceae, Rikenellaceae, 
Sutterellaceae, and Veillonellaceae 
Genera: Alistipes, Clostridium XlVa, 
Coprococcus, Faecalibacterium, 
Lachnospiracea incertae sedis, 
Megamonas, Phascolarctobacterium, 
and Roseburia

Chen et al.[147] N = 10 MDD patients 
(age, 18-56 years) and 
N = 10 HCs (age, 24-65 
years)

Metaproteomics Phyla: Actinomycetota, and Bacillota 
Families: Actinomycetaceae, 
Bifidobacteriaceae, Clostridiaceae, 
Erysipelotrichaceae, Lachnospiraceae, 
Nocardiaceae, Porphyromonadaceae, 
Ruminococcaceae, and Streptomycetaceae

Phyla: Bacteroidota and 
Pseudomonadota 
Families: Chitinophagaceae, 
Enterobacteriaceae, Marinilabiliaceae, 
Oscillospiraceae, Prevotellaceae, 
Rikenellaceae, and Sutterellaceae 
Genus: Faecalibacterium

Chung et al.[148] N = 36 MDD patients 
and N = 37 HCs 
Age rank: 20-65 years

16S rRNA Phylum: Actinomycetota 
Families: Bifidobacteriaceae, 
Lachnospiraceae Peptostreptococcaceae, 
Porphyromonadaceae, and Streptococcaceae 
Genera: Adlercreutzia, Bifidobacterium, 
Clostridium cluster X I, Eggerthella, 
Holdemania, Parabacteroides, 
Ruminococcus, and Streptococcus

Phyla: Bacteroidota and 
Pseudomonadota 
Families: Alcaligenaceae and 
Prevotellaceae 
Genera: Megamonas, Prevotella, and 
Sutterella

Rong et al.[151] N = 31 depressed 
subjects (mean age 41.6 
years), and N = 30 HCs 
(mean age 39.5 years)

Shotgun 
metagenomics

Phyla: Actinomycetota, and Bacillota 
Genera: Bacteroides, Bifidobacterium, 
Clostridium, Oscillibacter, and Streptococcus

Phylum: Bacteroidota

Yang et al.[143] N = 156 MDD patients 
and N = 155 HCs 
Age rank: 18-65 years

Metagenomic Genus: Bacteroides Genera: Blautia and Eubacterium

Zheng et al.[146] N = 165 MDD patients 
(mean age 26.5 years) 
and N = 217 HCs (mean 
age 26.8 years)

16S rRNA Families: Bacteroidaceae and 
Bifidobacteriaceae

Family: Enterobacteriaceae

Lai et al.[150] N = 26 depressed 
patients and N = 29 
HCs

Shotgun 
metagenomic

Phylum: Actinomycetota 
Genera: Atopobium, Bifidobacterium, 
Coriobacterium, Eggerthella, Olsenella, 
Rothia and Slackia

Phylum: Bacteroidota

Stevens et al.[153] N = 20 depressed 
patients and N = 20 
HCs (mean age 34 
years)

16S rRNA Families: Acidaminococcaceae, 
Coriobacteriaceae, and Enterobacteriaceae 
Genera: Alistipes, Blautia, Flavonifractor, 
Holdemania, Oscillibacter, Parabacteroides, 
Phascolarctobacterium and Roseburia

Family: Lachnospiraceae 
Genera: Bacteroides, Faecalibacterium, 
and Ruminococcus

Mayneris-
Perxachs 
et al.[154]

N = 25 depressed 
patients, N = 25 MDD 
and N = 44 HCs

Shotgun 
metagenomic

Genera: Acidaminococcus and 
Parabacteroides

Family: Lachnospiraceae 
Genus: Bifidobacterium

GM: Gut microbiome; HCs: healthy controls; MDD: major depressive disorder.

Emerging evidence suggests that early-life GM plays a critical role in shaping long-term health, with 
disruptions during key developmental stages contributing to various chronic conditions. Alterations in GM 
composition, driven by factors such as maternal stress, early nutrition, and perinatal antibiotics, can have 
lasting effects on immune and metabolic processes. Moreover, exposure to prenatal and postnatal 
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adversities has been linked to altered GM profiles in children, with specific microbial taxa associated with 
adversity exposure. These alterations are reflected in the child’s socioemotional functioning, supporting the 
idea that intergenerational transmission of adversity may affect mental health through changes in GM 
function[177]. Moreover, variations in the GM, along with inflammatory markers, may represent mechanistic 
pathways for the observed health outcomes. For instance, GM characteristics could predict social 
disadvantage and psychosocial stress, highlighting microbial imbalances as mediators of early adversity 
effects[178]. This evidence suggests that ELS can induce microbial changes predisposing individuals to 
conditions like asthma and diabetes.

ELS has also been linked to later-life health issues, including inflammatory diseases and cardio-metabolic 
disorders[121,181]. In addition, ELS-induced GM dysbiosis plays a particularly crucial role in depression 
through gut-brain axis communication[142,183]. Inadequate or insufficient microbial exposure in early life can 
lead to inflammatory responses associated with several conditions, such as allergies, obesity, T1D, and 
cardiovascular diseases[121,184-186]. Furthermore, childhood trauma has been shown to negatively impact stress 
recovery, with heart rate indices indicating impaired recovery, further emphasizing the long-term effects of 
ELS on health. These findings point to enduring impacts on both physical and psychological well-being in 
adulthood[179]. Thus, understanding the mechanisms behind early-life GM dysbiosis is essential for 
identifying potential interventions to mitigate the risk of chronic diseases.

Maternal stress is another key factor influencing both maternal and infant microbiota. Prenatal and 
postnatal stress can lead to volatile shifts in infant GM that are specific to certain developmental stages[180], 
indicating a complex relationship between stress and microbiome development, as well as potentially 
exacerbating the risk of chronic diseases in offspring. Early exposure to maternal stress may predispose 
individuals to conditions like obesity, cardiovascular diseases, and neurodevelopmental disorders, with a 
disrupted GM playing a central role[181]. Furthermore, stress-related changes in the microbiome may involve 
epigenetic modifications that adapt the gut-brain axis to stress[182].

Although several studies have reported a connection between ELS and the GM during prenatal and 
postnatal periods, a unified microbiome signature linked to either prenatal or postnatal stress has not yet 
been completely established[177,178,180]. This variability in findings is likely attributable to a range of 
methodological differences, including variations in experimental designs, age groups, geographical 
locations, ethnic backgrounds, assessment tools, timing of sample collection, analysis techniques, sample 
sizes, and the nature of stressors examined. In addition, differences in microbial composition across regions 
or populations, as well as the source of the samples (e.g., human vs. animal models, or hospital vs. 
community-based samples), can contribute to observed inconsistencies. These factors may impact the 
generalizability and comparability of results. Further research employing consistent stressors, validated 
stress metrics, and high-resolution microbiome analyses is essential to establish clear connections between 
stress and the human GM[187,188].

Mulder et al. found that specific domains of ELS, such as socioeconomic stress, presented limited evidence 
of association with the GM, suggesting that other factors may also be implicated[158]. However, the limited 
number of longitudinal studies and controlled intervention trials on this topic makes it difficult to establish 
a clear causal relationship. Consequently, future research is necessary to establish causality and determine 
whether various modifiable factors might be effectively targeted to improve gut health, particularly in 
children facing heightened contextual stress or adverse conditions. Understanding the mechanisms by 
which these factors influence the GM is crucial, as it could facilitate the development of customized 
interventions that mitigate the adverse effects of ELS.
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Nutrition has been shown to play a crucial role in shaping microbial composition[70], making a diet rich in 
essential nutrients, particularly balanced plant-based patterns, ideal for supporting microbial diversity. For 
example, the adoption of a vegetarian diet, rich in indigestible fibers, facilitates fiber fermentation and alters 
the intestinal microbial ecosystem, leading to the production of metabolites such as SCFAs and other 
postbiotics. These metabolites exert beneficial effects on the intestinal immune system, the integrity of the 
BBB, energy substrate supply, and defenses against microbial pathogens[189].

The modulation of the GM and its metabolites through the administration of psychobiotics also seems to be 
a very promising approach for treating CNS alterations resulting from ELS[190]. Psychobiotics, including 
probiotics, synbiotics, and postbiotics, provide mental health benefits by modulating the GM, which in turn 
influences the regulation of stress, anxiety, and depression symptoms[191]. With respect to ELS, few studies 
have investigated the use of probiotics to mitigate its effects on mental health and CNS function, through 
the ability of probiotics to synthesize neuroactive compounds such as gamma-aminobutyric acid, serotonin, 
dopamine, norepinephrine, and acetylcholine[192]. In addition, Borrego-Ruiz and Borrego reviewed the 
application of FMT in various neurological and mental health disorders, highlighting overall positive 
outcomes[193]. However, the broader clinical implementation of this procedure is limited by multiple factors, 
including the time and route of administration, the high cost of treatment, and concerns regarding its safety, 
tolerability, efficacy, and potential side effects.

Within the context of Nutritional Psychiatry, the combined supplementation of psychobiotics and 
nutraceuticals may offer a synergistic strategy for treating certain mental health conditions. However, 
significant gaps remain between epidemiological findings and clinical evidence regarding the role of diet-
related factors in managing mental disorders. Future research should focus on exploring the mechanistic 
pathways that involve the GM and its interaction with the CNS[194]. Translating microbiota-related insights 
into clinical practice presents considerable challenges, such as the inherent complexity of individual 
microbiomes and the difficulty in establishing causal relationships between dietary interventions and 
clinical outcomes. While dietary interventions can serve as a supportive measure, they should not be viewed 
as a cure for severe mental illnesses. Instead, they should be considered part of a broader, comprehensive 
treatment plan that includes approaches with more robust clinical validation[195].

Addressing psychosocial factors, such as the availability of mental health resources and supportive 
environments, can further help mitigate the impact of stressors on gut integrity and overall health. In this 
respect, interventions should not only focus on individual-level approaches but also on transforming the 
prevailing adverse social dynamics. As individuals progress through life, several potentially disturbing and 
distressing events, such as the emotional experience of humiliation due to bullying victimization, can lead 
children and adolescents to severely negative health and behavioral outcomes[196]. Therefore, a 
multidisciplinary approach aimed at addressing the factors that can induce ELS is essential for promoting 
optimal development and overall well-being for all individuals, including initiatives directed at advancing 
the understanding of the influence of the microbiome and the potential interventions derived from it, which 
to date appear to show promising results.

Future research should focus on investigating the causal relationship between microbiota and stress using 
more rigorous research approaches. Specific experimental designs, such as longitudinal studies and 
randomized controlled trials, are essential for establishing stronger evidence of causality. Furthermore, 
advanced analytical techniques, including multivariate analysis, should be employed to better understand 
the complex interactions involved. It is also crucial to address potential confounding variables, including 
diet, lifestyle factors, and other environmental influences, to ensure the validity and accuracy of the 
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findings. Taking these factors into account will enhance the ability of future studies to generate conclusive 
insights into the mechanisms linking the GM to ELS-related health outcomes.

Although substantial progress has been made in understanding the role of the GM in early development, 
there remains a need for further studies to establish clear causal relationships between GM alterations and 
long-term health outcomes. Future research should focus on refining our understanding of the temporal 
dynamics of GM dysbiosis, particularly in the context of ELS, and explore potential therapeutic strategies to 
restore microbial balance and improve long-term health.
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