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Abstract
Ionic liquids (ILs) are a new group of novel solvents with great potential in design-synthesis. They are promising 
electrolyte candidates in energy storage applications, especially in rechargeable batteries. However, in practice, 
their usage remains limited due to the unfavorable high-viscosity (η) property at ambient conditions. To optimize 
the design synthesis of ILs, a systematic fundamental study of their structure-property relationship is deemed 
necessary. In this study, we employed a deep-learning (DL) model to predict the room-temperature viscosity of a 
wide range of ILs that consist of various cationic and anionic families. Based on this DL model, accurate prediction 
of IL viscosity can be realized, reaching an R2 score of 0.99 with a root mean square error of ~45 mPa·s. To further 
help identify low- and high-η ILs, a low/high-η binary classification model with an overall accuracy of 93% for test 
prediction is obtained based on the DL model. From the important structure-property relationship analysis 
governed by the top-rank molecular descriptors of this model, a list of very low-η ILs (i.e., η < 30 mPa·s) that could 
be potentially useful in battery electrolytes is identified. Based on the finding of the DL model, it suggests that in 
order to achieve low-η, grafting IL cations into smaller sizes (e.g., smaller head rings) and short alkyl chains and 
reducing ionization potentials/energies will help. Meanwhile, for the same cations, further reducing anions in sizes, 
chain lengths, and hydrogen bonds might be useful to further reduce the viscosity. Thus, with a fine selection and 
molecular grafting of anionic and cationic species in ILs, we believe fine-tuning IL viscosities can be achieved 
through the proper design synthesis of functional groups in ILs.
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INTRODUCTION
In current modern society, increasing energy demand is inevitable and causes a lot of unwanted 
environmental problems due to the strong dependence on fossil fuels used to generate electricity in various 
applications. In particular, the consequences of climate change can be dramatic. To be better tailored to this 
challenge, utilizing and diversifying renewable energy resources is the key to sustainable growth of current 
society. To achieve this goal, wide applications of electrochemical energy storage technologies (e.g., 
batteries) are one of the promising strategies because of their several attractive features, including excellent 
round-trip efficiency, high power flexibility in various grid applications, durable cycle life, etc.[1,2]. 
Meanwhile, to provide intermittent renewable energy resources (e.g., solar, wind) into the grid and various 
applications, rechargeable batteries are known to be a practical solution to energy storage technology. They 
are energy-saving and environmentally friendly and can be utilized on a large scale, supplying the world 
with clean and sustainable electricity.

Due to their high volumetric energy density[3,4], lithium (Li)-based batteries have been widely used in many 
portable electronic devices since the 1990s and are now powering many battery electric vehicles. To improve 
their performance and capacity, there is tremendous progress in the exploration and design-development of 
new electrode materials in Li-based batteries, especially the cathodes, including Li-O2 and Li-S batteries[4-6]. 
However, one of the limiting factors remains to be the electrolytes, which inherently govern the current or 
power density, cycling performance, electrochemical stability, and safety[6-13]. For a working electrolyte, it 
has to be both a good ionic conductor and an electronic insulator; therefore, ionic liquids (ILs) are one of 
the promising candidates for electrolytes[7-13].

For rechargeable batteries, the crucial parameters that determine their IL-based electrolytes include the 
viscosity (η), ionic conductivity, electrochemical stability, and safety[7-15]. Among these key parameters, ionic 
conductivity is one of the important performance metrics for these novel liquids in energy storage 
applications, which is usually determined by the viscosity. In general, low η is strongly correlated with high 
ionic conductivity[14,15] and is an important feature critically needed in battery applications. The viscosity 
determines the resistance to flow in ILs and is generally governed by several factors: (1) size; (2) shape; and 
(3) ionic interactions among the constituent anions and cations. These interactions are determined by 
electrostatic forces, van der Waals forces, and hydrogen bonds, which depend on the molecular structures of 
ILs[16-20]. In addition, it was also found that the fluidity of ILs is complicated. Besides the motion of free 
cations or anions, the influences of ion pairs, clusters, or aggregates are significant in ILs[21,22]. Although 
these factors are known, finding optimum and practical design principles to perfect the related 
physicochemical properties (e.g., viscosity) of ILs is not trivial.

It is known that ILs are a specific class of molecular electrolytes characterized by the absence of co-solvent 
in solution due to their unique interplay between electrostatic and van der Waals interactions[23]. However, 
understanding their unique viscosity features can be challenging. Particularly, an accurate measurement of 
viscosity is never a trivial task[24]. Although using viscometers has proven to be an effective means of 
determining the IL viscosity over a wide range of temperatures and pressures, measuring an extensive 
selection of ILs at various thermodynamic conditions can be extremely challenging. Meanwhile, to better 
understand their fundamental properties, the advanced molecular dynamics (MD) simulations based on 
polarizable force fields can provide thermodynamics, structural correlations, ions dynamics, and collective 
dynamics description, including viscosity prediction[17,25-29] with great accuracy. However, the huge 
computational cost generally limits their use and is only suitable for specific problem-based focus studies. 
According to Katritzky et al., about 1018 combinations of cations or anions could be used to form ILs[30]. The 
large diversity of IL species and their physicochemical properties make a systematic detailed investigation 
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on these IL compounds exceptionally difficult, especially for both experimental and theoretical studies.

To address this challenge, it is important to develop robust computational tools to benefit the experimental 
design and synthesis of new ILs with desirable structural properties, such as ILs with practically low η and 
high ionic conductivity within a room-temperature range. To explore and predict the viscosities of large 
varieties of ILs, a comprehensive study based on advanced atomistic or molecular simulation can be a 
challenge and might not be feasible in practice[25-29]. To overcome this challenge, a systematic high-
throughput screening supported by a detailed study on a large amount of reported IL datasets, with a 
specific focus on viscosity analysis, has been proposed in recent years[31-38]. As an affordable solution and a 
predictive model to estimate or predict the viscosity of various ILs, advanced statistical models following 
Arrhenius, Litovitz, Andrade, Vogel-Fucher-Tammann (VFT) equations using quantitative structure-
property relationships (QSPR) are one of the practical methods[33-35]. In particular, advanced traditional 
machine-learning (ML) methods, such as support vector machine (SVM) and least-squares SVM (LSSVM) 
approaches, are found to be very useful[34,38] when combined with structural data of ILs through the group 
contribution (GC) theory. In terms of the accuracy and prediction capacity, this approach is found to be 
comparable to classical QSPR methods[33-35].

However, due to the ever-increasing data on ILs in reported literature, a well-timed strategy is to utilize 
advanced ML methods for a systematic study of various types of IL properties. To accommodate the huge 
datasets from reported literature, the contemporary deep-learning (DL) models[39-42] are known to 
outperform traditional statistical methods or ML models because of their capacity to process a huge number 
of feature properties from big data and intelligent big data analysis in materials science for design and 
discovery[43,44]. Thus, the development of robust simulation methods that integrate high-throughput 
screening of huge feature properties of ILs using state-of-the-art data-mining approaches and DL models 
can be extremely valuable in their fundamental studies. This unique strategy will help us to significantly 
speed up the exploration and discovery of new ILs from currently known data, complementary to more 
specific case studies using advanced atomistic simulations. With this as a motivation, we propose to adopt a 
combined data mining method, chemoinformatic approach, and DL models to high-throughput screen and 
predict the viscosities for a large variety of ILs, with the hope to benefit the design and development of 
electrolytes in energy storage applications.

METHODS
Dataset extraction and preparation
In this work, all the viscosity datasets we used were gathered from the Ionic Liquids Database - ILThermo 
(v2.0.)[45,46], which is a comprehensive database of thermophysical and thermodynamic properties of ILs in 
the field. According to the latest update (by 28th Dec 2022), the ILThermo contains 2,732 types of ILs and 
includes 5,177 compounds, with a total of 870,304 datapoints collected from 4,230 published works of 
literature. For pure ILs, the database has 2,332 IL systems with 145,602 datapoints related to 
thermodynamic, thermochemical, and transport properties. For this study, the room-temperature viscosity 
collected dataset contains 922 types of ILs and includes a wide range of IL families. For this wide range of IL 
candidates, predicting room-temperature viscosities accurately and understanding their useful structure-
property relationship without depending on costly computational resources are important in practice. The 
details of data extraction, conversion, and post-processing of the ILThermo dataset can be found in our 
recent work[47]. To account for an extensive description of molecular structure features of each individual IL 
in the dataset, all the 5,272 molecular descriptors based on chemoinformatic QSPR approach[48,49], e.g., 
constitutional indices, topological indices, connectivity indices, walk and path counts, etc., were generated 
based on Dragon7 software[48].
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Prior to the ML study, it is important to remove the unnecessary data. During this process, all the molecular 
descriptor columns with low variance and those containing missing values or empty columns were 
removed. All the molecular descriptors and viscosity values were normalized using the Standard Scaler 
function from scikit-learn (scikit-learn 1.2.0)[50]. To overcome the problem of overfitting, the dimension of 
the original molecule descriptors matrix was further reduced using the Pearson correlation. This helps us to 
further identify important molecular descriptors that exhibit a statistical significance with a high correlation 
to the viscosity of ILs. To achieve this goal, the molecular descriptors with low correlations (< 0.20) and high 
correlations (> 0.90) were further excluded from the dataset. Throughout this process, a set of important 
molecular structure features consisting of 179 molecular descriptors was identified. After the correlation 
feature selection and normalization of these molecular descriptors, the dataset was randomly split into 
training and testing datasets with a ratio of 80/20 (or 80% for training and 20% for testing) for the evaluation 
of our ML models. To improve the accuracy (i.e., R2) of our ML models in regression analysis, we have 
removed some of the outliers (i.e., 13 in total). These outliers are not restricted to particular cationic or 
anionic species. They are mostly ILs with high η (η ~ 150-2,030 mPa·s) and might not be very useful in 
batterie applications. Generally, all these outliers are large molecules and have large molecular weight 
(190 ≤ MW ≤ 583), large Bertz branching index (i.e., 11 ≤ BBI ≤ 52), and large Zagreb indices[51,52] 
(e.g., 44 ≤ ZM1 ≤ 176) due to their high complexity in molecular substructures (e.g., N,N,N-tributyloctan-1-
a m i n i u m  t r i f l u o r o m e t h a n e s u l f o n a t e ,  d e c y l d i m e t h y l ( 4 - v i n y l b e n z y l ) a m m o n i u m  
bis(trifluoromethanesulfonyl)amide), etc.). Therefore, for the η-prediction based on regression model of ML 
in the subsequent study (Section "Viscosity prediction from deep-learning (DL) models"), it will base on 909 
types instead of 922 types of ILs found in this work.

Machine-learning model: deep-learning
In this work, we have considered two types of DL models, i.e., deep neural networks (DNN) and 
convolutional neural networks (CNN), which are based on the algorithms implemented in TensorFlow (i.e., 
TensorFlow 2)[53], a popular ML framework that provides a high-level python API to construct and train DL 
models. DL is a subfield of ML and is an artificial neural network (ANN) that is essentially represented by 
multiple layers of neural networks. While a neural network with a single layer can still make approximate 
predictions, additional hidden layers can help to optimize and refine for accurate prediction[39-41]. These 
neural networks attempt to mimic how the human brain processes information progressively with higher-
level features from large data and are able to develop a hierarchy of learning processes based on a set of 
algorithms defined within each layer.

For a DL model, a multi-layer feedforward neural network is constructed with multiple hidden layers, of 
which each layer contains predefined numbers of neurons to capture the non-linear relationship between 
the input features (e.g., molecular descriptors of ILs) and the output viscosities. The network is trained 
using stochastic gradient descent with backpropagation to minimize the mean squared error between the 
predicted and actual viscosity values. Figure 1 shows a general structure of our DNN and CNN models, 
which consists of multiple layers, with each layer containing a different number of neurons. As shown in 
Figure 1A, our DNN model consists of one input layer (179 neurons), 1st hidden layer (128 neurons), 2nd 
hidden layer (64 neurons), 3rd hidden layer (32 neurons), 4th hidden layer (16 neurons), and output layer 
(1 neuron). In contrast, our CNN model [Figure 1B] is a neural network with basic building blocks/layers 
consisting of tensors except for the output layer. Specifically, Figure 1B features one input layer represented 
by 1D convolutional layer with tensor (179, 1), 1st hidden layer based on 1D convolutional layer with tensor 
(177, 32), 2nd hidden layer as flattened layer (5,664 neurons), 3rd hidden layer (180 neurons), 4th hidden 
layer (128 neurons), 5th hidden layer (64 neurons), 6th hidden layer (32 neurons), 7th hidden layer 
(16 neurons) and output layer (1 neuron). To update all the neural network weights or hyperparameters 
iteratively during the training of the DL model, an adaptive moment estimation (Adam) optimizer, a 
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Figure 1. The schematic plot of the deep-learning (DL) models adopted in this work: (A) deep neural network (DNN) and (B) 
convolutional neural network (CNN).

stochastic gradient descent method, is used to speed up the optimization process[54]. To avoid an over-fitting 
problem during the training process of DL models (i.e., DNN and CNN), we have carried out a systematic 
study on the accuracy of data validation or error rates for a range of epochs through an iterative process. As 
shown in Supplementary Figure 1, an optimal number of epochs (i.e., epoch = 1,500) are identified when 
convergence is achieved (i.e., when the accuracy in the DL model stops improving). Thus, in this work, to fit 
the DNN and CNN with a training dataset, the number of iterations, i.e., epochs, is set to 1,500, and the 
batch size equal to 32 in each epoch is used throughout the process.

RESULTS AND DISCUSSION
Data consolidation and evaluation
In this work, we are only interested in the viscosity of pure ILs that are close to the room temperature (i.e., 
T = 298 ± 5 K) and at ambient pressure (i.e., P = 101 ± 2 kPa), a condition relevant to the operating 
condition of conventional batteries. By neglecting the binary and ternary mixtures, there are 2,119 entries of 
the viscosity dataset of pure ILs, which are within this room-temperature range collected from the 
ILThermo database[45,46]. Among these experimentally measured η data reported by different authors at 
ILThermo[45,46], we found that some entries are duplicated or belong to the same ILs. For these duplicated 
entries, it is noted that the collected η data reported by different authors do exhibit some small discrepancies 
or variations, which might be possibly related to impurities (e.g., water), differences in purification 
procedures, or experimental techniques employed in viscosity measurements. To reconcile with the 
discrepancies reported by different authors that belong to the same ILs, the reported η values, which are 
duplicated by different studies or duplicated entries, were averaged and retained only if the minimum and 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202309/em3038-SupplementaryMaterials.zip
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maximum reported values were within the average error (i.e., reported standard deviation) of the average 
value ( ), i.e.,  and , where  is the average duplicated reported values,  is the 
average measurement error, and ηmin and ηmax are the minimum and maximum reported value for the 
duplicated values reported by different studies, respectively.

In this dataset, a wide diversity of structures and functional groups in ILs with various combinations of 
cations (e.g., imidazolium, ammonium, pyridinium, phosphonium, pyrrolidinium, etc.) and anions (e.g., 
bistriflimide (NTF2) derivatives, sulfonate, phosphate, hexafluorophosphate, borate, sulfate, acetate, 
dicyanamide, triazolide, etc.) families can be found and is highlighted in Figure 2. From this large dataset 
(922 types of ILs), a wide distribution of room temperature measured η can be found, whose viscosities vary 
from 2 to 97,000 (in mPa·s) based on various combinations of anionic and cationic families of ILs. Although 
the imidazolium-based cation is the dominant cationic family in this dataset [Figure 2], it covers a wide 
variety of ILs. Among the 320 types of ILs, those consisting of imidazolium-related cations exhibit a wide 
range of viscosity values, i.e., spanning from 1-ethyl-1H-imidazolium acetate to 1-(2-cyanoethyl)-3-
(phenylmethyl)-1H-imidazolium chloride with η ~ 4-69,000 mPa·s. Meanwhile, for the imidazolium-based 
ILs that with viscosity < 50 mPa·s, there are only 77 candidates are found from 320, as shown in Figure 2. 
Similarly, a wide range of η ~ 12-20,100 mPa·s is also found among the dominant NTF2 anionic species 
[Figure 2] related ILs. Therefore, in our opinion, the issue of a strongly skewed IL dataset toward a narrow 
range of viscosities restricted to the dominant imidazolium cationic species or NTF2 anionic species should 
not be a major concern.

Viscosity prediction from deep-learning (DL) models
To measure the accuracy of the prediction from the DL models (i.e., DNN and CNN) described in Section 
"Machine-learning model: deep-learning", three metrics, such as the square coefficient of correlation (R2), 
the root mean square error (RMSE), and mean absolute error (MAE), were used to assess the performance 
of the DL models for the test dataset. Based on the selected 179 molecular descriptors for each IL (Section 
"Dataset extraction and preparation"), a summary of the performance of DL models on test dataset 
prediction can be found in Figure 3 and Table 1. As shown in Figure 3, a linear regression with high R2 value 
[Table 1] can be found. Supported by the high R2 value, the predicted viscosity values from both DNN and 
CNN models are found to be randomly distributed along the diagonal line with only a small deviation, 
compared with experimentally reported viscosity values at room temperature.

As shown in Table 1, we found that the accuracy of viscosity prediction is, in general, dictated by the sample 
size of distinct ILs (n), ML models, and the representation of structure features or molecular descriptors of 
ILs. Compared to the reported literature[34,36-38], the test R2 score and RMSE for the prediction of viscosity 
around room temperature (T ~ 298 K) reported in this work are found to be outstanding. Among the DL 
models we considered, the performance metrics obtained from CNN models are found to be among the best 
in reported literature, especially for the prediction of room-temperature viscosities (i.e., R2 ~ 0.9980, 
RMSE ~ 45.27, MAE ~ 30.42) [Table 1]. For the DNN model, the prediction accuracy is also found to be 
excellent, i.e., R2 ~ 0.9869, RMSE ~ 63.78, MAE ~ 41.68 [Table 1], compared to the reported literature, 
especially for the room-temperature viscosity prediction.

To further examine the influences of molecular descriptors on the performance of DL models, the top 
important molecular descriptors for these models were computed, and the top 20 most important molecular 
descriptors can be found in Supplementary Table 1. Based on Pearson correlation, these 20 descriptors are 
found to have important impacts on the room-temperature viscosity of ILs obtained from DNN and CNN 
models. For DNN models, the performance of metrics is found to be nearly similar (i.e., R2 ~ 0.988, 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202309/em3038-SupplementaryMaterials.zip
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Table 1. The comparison of the performance metrics for test predictions of IL viscosities obtained in this work with reported 
literature. ANN is a feedforward artificial neural network[36], and GC/FFANN-LSSVM is a combined two-layer feedforward artificial 

neural network and least-squares support vector machine based on a group contribution scheme for ILs[34]. MTL-TransCNN is a 

multi-task learning model based on transformer convolutional neural networks using QSPR models[37]. GC/SVM is a support vector 

machine model using a newly improved scheme of group contributions of ILs[38]

Reference ML model Number of distinct ILs 
(n)

Temperature 
(K) R2 RMSE 

(mPa·s)
MAE 
(mPa·s)

This work DNN 909 298 ± 5 0.9869 63.78 41.68

This work CNN 909 298 ± 5 0.9980 45.27 30.42

Beckner et al., 2018[36] ANN 723 273.15-373.15 0.9290a 0.6856 N/A

Paduszyński et al., 2019[34] GC/FFANN-LSSVM 1,596 290-410 0.9120b 203.43 N/A

Baskin et al., 2022[37] MTL-TransCNN 988 298 0.690c 0.40 0.28

Baskin et al., 2022[37] MTL-TransCNN 988 288-343 0.674d 0.375 0.265

Boualem et al., 2022[38] GC/SVM 1,654 253-571 0.9859e 57.92 N/A

This part is footer. aConsider pressure range of 60-160 kPa. bCalculated R2 based on the viscosity, η0 referenced at T = 298.15 K is 0.8637, with 
RMSE = 0.51. c,dCalculated using log(MPa·s). eCalculated using log(mPa·s).

Figure 2. The schematic plot of the distribution of cationic (A) and anionic (B) families from various ILs in the dataset.

RMSE ~ 108.92 mPa·s, MAE ~ 65.96 mPa·s) compared to 179 molecular descriptors [Table 1] if only the 
selected top 20 molecular descriptors for each IL are used for test prediction [Supplementary Table 1]. 
Whereas for the CNN model, the performance of metrics based on the top 20 molecular descriptors 
[Supplementary Table 1] is found to be decreased slightly (i.e., R2 ~ 0.963, RMSE ~ 195.2 mPa·s, MAE ~ 
115.41 mPa·s) compared to the prediction based on 179 molecular descriptors [Table 1]. Therefore, this 
suggests that the performance metrics of our DNN and CNN models are very similar and robust if an 
optimum number of important molecular descriptors are used.

Prior to our study, a systematic study of IL viscosity prediction across a wide range of IL families based on 
the ILThermo dataset[45,46] has been reported by Beckner et al. Based on the dataset, consisting of 723 distinct 
ILs for temperature range 273.15-373.15 K, pressure range of 60-160 kPa, and η range of 3.5-993 mPa·s, a 
reasonably good model of viscosity prediction can be obtained based on traditional ML models[36]. 
According to Beckner et al., high accuracy of viscosity prediction (R2 ~ 0.93, RMSE ~ 0.69 mPa·s) [Table 1] 
can be achieved based on feedforward ANN (FFANN)[36]. For that work, the result is based on 11 molecular 
descriptors selected by the least absolute shrinkage and selection operator (LASSO) from 633 molecular 
structure descriptors of ILs using the QSPR model.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202309/em3038-SupplementaryMaterials.zip
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202309/em3038-SupplementaryMaterials.zip
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Figure 3. The DL model predicted viscosity values vs. experimentally measured viscosity values (both in mPa·s unit) in the test dataset, 
with (A) representing the DNN model and (B) representing the CNN model separately. The dataset used consists of 909 types of ILs 
with 179 molecular descriptors for each IL.

The ability to predict the viscosities of a wide range of ILs accurately using the QSPR model has inspired 
further studies of physicochemical properties of other ILs in combination with diverse ML methods and 
molecular representations derived from QSPR models. To achieve this goal, a large-scale benchmark study 
of QSPR models combining several ML methods (e.g., random forest regression, RFR; extreme gradient 
boosting, XGBoost; TransCNN, etc.) with different types of molecular representations to predict several key 
physical properties of ILs (i.e., electrical conductance, density, refractive index, melting point, viscosity, and 
surface tension) was reported by Baskin et al. recently[37]. As shown by Baskin et al., it is possible to predict 
N different properties of ILs at the same condition simultaneously or the same property under N different 
conditions (e.g., temperature) simultaneously based on multi-task learning (MTL) models[37]. From this 
MTL model, it was found that the accuracy, unfortunately, is low for viscosity prediction (R2 = 0.69, 
RMSE = 0.40, MAE = 0.28) [Table 1] when making a prediction for five physical properties (i.e., electrical 
conductance, density, surface tension, viscosity, and refractive index) at T = 298 K during the test 
prediction. Whereas for MTL models in making a simultaneous prediction for viscosities at different 
temperatures within the range of T = 288-343 K, the performance metrics were found to be nearly similar 
(i.e., R2 = 0.674, RMSE = 0.375, MAE = 0.265) [Table 1] during the cross-validation test prediction. Thus, 
this suggests that while more robust than a single-task QSPR model that only manages to predict one 
physical property at room temperature, how to systematically improve the accuracy of an MTL model 
capable of providing simultaneous predictions of several room-temperature properties or predicting a 
property at several different temperatures remains a challenge.

In addition to QSPR models adopted by Beckner et al., one of the best approaches reported in the literature 
was based on the GC method developed by Paduszyński et al.[33,34,36]. Based on the GC method, the complex 
functional groups used to describe a diverse family of ILs can be represented as their cations and anions 
fragmented into a set of predefined molecular groups or fragments. And each group has a direct influence 
on the property (e.g., η(T) = η0f(T) where η0 denotes the viscosity at a reference temperature, T0 = 298.15 K) 
value as a function of temperature (f(T)), and can be combined with ML algorithms (e.g., FFANN; stepwise 
multiple linear regression, LSSVM) for a systematic study. Based on an extensive IL dataset, the FFANN is 
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found to be the best ML model[34] to predict the viscosity at room temperature (η0) with test accuracy of 
R2 ~ 0.8637 and RMSE ~ 0.51 mPa·s. Based on the LSSVM best fitted f(T) with R2 ~ 0.97, the overall 
prediction of η(T) with accuracy of R2 ~ 0.91, RMSE ~ 203 mPa·s [Table 1] can be obtained modeled with 
FFANN and LSSVM. As noted by Paduszyński et al., the large RMSE is attributed to a wide range of IL 
datasets across wide temperature ranges (T ~ 290-410 K)[34].

To improve upon the GC method inspired by Paduszyński et al.[33,55-57], a newly improved GC fragmentation 
scheme has been proposed by Boualem et al. recently[38]. This new GC scheme is capable of defining a large 
variety of ILs and is able to differentiate among the isomers. According to this scheme, the molecular 
structure of each IL can be considered as a collection of three separate groups, i.e., cationic, anionic, and 
substituent groups. The cationic and anionic groups are the constituent groups, representing charged 
components/fragments of ions, whereas the substituent groups are those representing neutral components/
fragments of various types of side chains[33,38,58]. With this new approach, it is possible to overcome the 
limitation related to structural representation that is not sufficiently described in a conventional GC 
scheme[33,34]. With this new fragmentation scheme combined with SVM, the overall accuracy of the test 
prediction of η(T) reported by Boualem et al. was impressive, i.e., R2 ~ 0.9859 with RMSE ~ 57.92 mPa·s, 
despite being the largest dataset considered to date [Table 1][38]. Thus, this suggests that besides the ML 
model itself, a systematic classification and robust identification of molecular structural features of ILs are 
also critical factors in improving the accuracy of the model.

Low- and high-viscosity binary classification prediction from deep-learning model
In addition to the room-temperature viscosity prediction (Section "Viscosity prediction from deep-learning 
(DL) models"), it is also necessary to investigate the important structure-property relationship that 
determines the low- or high-η of various ILs at room temperature based on a robust binary classification of 
ML models. It is noteworthy to point out that the extremely low-η (< 2-3 mPa·s) ILs at room temperature 
comparable to traditional solvents (e.g., water, ethanol) are very rare in the ILThermo (v2.0.) database[45,46], 
i.e., only six candidates (i.e., from 2-methylpyridinium acetate to N-methyl-2-oxopyrrolidinium butanoate) 
out of 922 types of ILs are found in this work. Whereas for the ILs below the range of η ~ 10 mPa·s at room 
temperature, only about 19 types of ILs can be found (e.g., 2-methylpyridinium acetate, trihexylammonium 
hexanoate, 1-ethyl-3-methyl-1H-imidazolium tricyanomethanide, etc.). The very limited dataset makes ML 
model prediction, especially for the extremely low-η ILs (< 2-3 mPa·s or ≤ 10 mPa·s), becomes very difficult. 
According to a recent comprehensive review of room-temperature viscosities of ILs by Jiang et al., typical 
room-temperature low-to-medium viscosities of ILs were commonly found below 100 mPa·s, whereas for 
high-η, the η is generally larger than 100 mPa·s[18]. In addition, it is also found that the most commonly used 
low-η ILs in metal-ion batteries at room temperature are within the range of η ~ 19-156 mPa·s[59]. With this 
as a reference[18,59], all the ILs studied in this work can be classified into two groups, i.e., low-η ILs 
(η ≤ 100 mPa·s) and and high-η ILs (η > 100 mPa·s), accordingly across a wide range of viscosities in our 
dataset [Figure 4A], which spans from two to 97,000 mPa·s based on various combinations of anionic and 
cationic families of ILs [Figure 4B]. Based on this low/high-η binary classification, there are 540 high-η and 
382 low-η ILs can be found in the dataset.

To further identify the hidden correlation of the structure-property relationship of these low-η and high-η 
ILs, a DL model based on a DNN model is constructed [Supplementary Figure 2], which is similar to the 
DNN model discussed in Section "Machine-learning model: deep-learning". Based on the 179 selected 
molecular descriptors (M = 179 in Table 2), similar to our aforementioned viscosity prediction model 
(Section "Viscosity prediction from deep-learning (DL) models"), the overall accuracy of the low/high-η 
binary classification reaches 93% for test prediction, even with a skewed dataset (i.e., ~58.6% high-η ILs 
relative to ~41.4% low-η ILs). To better evaluate the performance of this DNN model in low/high-η binary 
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Table 2. The DNN model performance metrics for test predictions of low/high-η binary classification for 922 types of ILs obtained in 
this work with different numbers (M) of molecular descriptors for each IL. In this table, the negative case is low-η, while the positive 

case is high-η. The dataset of low/high-η binary classification for 922 types of ILs with the top 20 molecular descriptors can be 

found in File2.csv in the Supplementary Material

M = 179 precision recall M = 20 precision recall

low-η 0.91 0.94 low-η 0.92 0.86

high-η 0.95 0.92 high-η 0.89 0.94

Figure 4. (A) The schematic plot of the room-temperature viscosity distribution (in log(mPa·s) scale) that classifies the low-η 
(η ≤ 100 mPa·s) and high-η (η > 100 mPa·s) ILs from various types in the dataset. (B) A few randomly selected ILs that represent low-η 
and high-η ILs in the dataset.

classification, the positive precision (positive predictive value, PPV) (i.e., the accuracy of positive prediction/
high-η prediction), negative precision (negative predictive value, NPV) (i.e., the accuracy of negative 
prediction/low-η prediction), recall for sensitivity of positive class (i.e., true positive rate, TPR), and recall for 
specificity of negative class (i.e., true negative rate, TNR) are used. These metrics are defined in the following 
equations[60]:

positive precision = , where TP is the number of true positives (i.e., true high-η), and FP is the number 
of false positives (i.e., false high-η)

negative precision = , where TN is the number of true negatives (i.e., true low-η), and FN is the 
number of false negatives (i.e., false low-η)

recall (sensitivity) = , where FN is the number of false negatives (i.e., false low-η).

recall(specificity) = , where FP is the number of false positives (i.e., false high-η).

Based on the computed confusion matrix [Supplementary Figure 3], all the values of TP, TN, FP, and FN 
can be obtained. Based on the test sample (i.e., 20% of dataset), the overall performance metrics of DNN 
models [Supplementary Figure 2] in low/high-η binary classification are shown in Table 2. Despite the 
skewed dataset, a balanced accuracy in both negative (NPV ~ 91%) and positive precision (PPV ~ 95%) was 
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found [Table 2] based on our DNN model. For positive (i.e., high-η) prediction, the TPR of 92% is slightly 
lower than TNR (i.e., 94%), even though a larger sample size in positive cases (high-η). To further examine 
the influence of the number of molecular descriptors on the DNN model performance in low/high-η binary 
classification, the top-ranking important molecular descriptors were computed. From the feature filtering 
and ranking scores [Figure 5] of DNN models, the important correlation among the top 20 molecular 
descriptors that are important in low/high-η binary classification of ILs was obtained using Pearson 
correlation. Based on the DNN model with only the top 20 molecular descriptors [Figure 5], the overall 
accuracy of the low/high-η binary classification is 90 % for test prediction and is slightly lower than the 179 
selected descriptor-based test accuracy, i.e., 93%. As shown in Table 2, the overall performance metrics (i.e., 
PPV = 89%, NPV = 92%, TPR = 94%, TNR = 86%) of the DNN model with M = 20 are also generally lower 
than the accuracy obtained with M = 179. This suggests that the top 20 important molecular descriptors 
might not be sufficient to achieve the high accuracy anticipated in low/high-η binary classification 
prediction according to our current DNN model.

Important molecular descriptors that determine viscosities of ILs
According to the DNN model, the top 20 important molecular descriptors that determine the low/high-η of 
ILs are highlighted in both Figure 5 and Supplementary Table 2. From Supplementary Tables 1 and 2, some 
common important molecular descriptors of ILs can be found in the findings of viscosity prediction 
[Supplementary Table 1] and low/high-η binary classification [Supplementary Table 2] using the DNN 
model, e.g., MPC10, piPC09, NdssC, etc., defined by chemoinformatics molecular descriptors[48,49] of ILs. 
From these top ranked molecular descriptors [Supplementary Tables 1 and 2], the significant influences of 
both cations and anions of ILs are found to be closely related to the geometrical structures, shapes, or 
branching characters (e.g., piPC10, piPC09, MPC10). Besides, the molecular weights/sizes (e.g., ATS8m) of 
ILs, partial charges (e.g. ATSC7i), and functional groups and bonds (e.g., NdssC, B02[C-S], B04[N-S], 
B07[F-F], F05[S-F]) features of ILs are also found to be important factors that could possibly affect their 
viscosity due to the strong correlation of local bonding with molecular dipole/polarizability and electrostatic 
interaction (e.g., cation-cation, anion-anion, cation-anion interaction). In addition, the important structure 
features governing the intermolecular, hydrogen bonding, and van der Waals interactions of ILs can be 
captured based on the P-VSA and CATS2D-based molecular descriptors (e.g., P_VSA_ppp_L, 
CATS2D_03DA, CATS2D_07_DL) [Supplementary Tables 1 and 2].

To improve our basic understanding on how these top ranked molecular descriptors 
[Supplementary Table 2] determine the low/high-η of ILs, the distribution of low- and high-η ILs was 
analyzed based on the combination of two important descriptors selected from Supplementary Table 2. 
From the analysis of the distribution of low/high-η ILs using some of the best combinations of two top 
ranked molecular descriptors from Figure 5, we believe useful insights regarding design rules of IL 
viscosities can be found. In Figure 6, the unique interplay governed by the inherent structural features of the 
cations and anions of ILs that determine the distribution of low- and high-η ILs is obvious. From Figure 6, 
an opposite trend between the low- and high-η ILs represented by these molecular descriptors is evident. As 
shown in Figure 6A and C, the majority of low-η ILs favor the regime of smaller values in CATS2D_03_DA 
(i.e., CATS2D_03_DA = 0), MPC10 (i.e., MPC10 ≤ 3.25) or piPC10 (i.e., piPC10 ≤ 3). From the 
chemoinformatic model[48,49,61], the CATS2D_03_DA is belonged to a CATS2D-based descriptor. It is a 
topological descriptor quantifying the number of hydrogen bond donor-acceptors (i.e., an integer) at a 
given topological distance (i.e., lag three) of an IL within the hydrogen-depleted molecular graph[48,49,61]. As 
highlighted in Figure 6A and C, nearly all the low-η ILs (η ≤ 100 mPa·s) are found to have zero value (“0”) in 
CATS2D_03_DA values, whereas there is a substantial amount of high-η (η > 100 mPa·s) ILs are found to 
have nonzero (i.e., 1-6) values, despite some with zero values. Thus, this suggests that the majority of low-η 
ILs tend to have a minimal number of hydrogen bond donor-acceptors, whereas the high-η ILs tend to have 
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Figure 5. A Pearson correlation matrix comparing the viscosity with the top 20 important molecular descriptors for low/high-η binary 
classification of ILs based on DNN models. The numbers shown in the Pearson correlation matrix are the feature correlation coefficients 
among different molecular descriptors. A brief description of these molecular descriptors can be found in Supplementary Table 2.

a larger number of hydrogen bond donor-acceptors (e.g., 2-hydroxy-N-(2-hydroxyethyl)-N-
methylethanaminium phosphate, 1-(2-hydroxyethyl)-3-methylimidazolium L-serinate, etc.).

Whereas for MPC10, it is a molecular path count (MPC) of order ten topological descriptors counting the 
total number of molecule paths of length m (in this case is ten). The length m of the path is the number of 
edges along the molecular path and is related to path order in an IL[48,49,62]. This is complementary to piPC10, 
which quantifies multiple path counts. piPC10 is a descriptor that can capture bond order features (e.g., 
aromatic bonds) and belongs to the path count descriptor group[48,49,63]. It is a count of molecular graph 
weighted paths of a given length (in this case is ten) in the molecular path, where each path is weighted by 
the product of the conventional bond order of the involved edges and, therefore, can account for multiple 
bonds in an IL[48,49,63]. Large values in MPC10 imply large values in molecular branching or presence of long 
chain branches (e.g., 17-hydroxy-N-(17-hydroxy-3,6,9,12,15-pentaoxaheptadec-1-yl)-N-methyl-N-
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Figure 6. The distribution of the IL viscosity that distinguishes the low-η (represented as 0) and high-η (represented as 1) using the 
combination of two important molecular descriptors selected from Pearson correlation matrix: (A) CATS2D_03_DA vs. MPC10; (B) 
P_VSA_ppp_L vs. ATSC7i; (C) CATS2D_03_DA vs. piPC10; and (D) ATSC7i vs. ATS8m. The yellow region highlights the dominance of 
high-η ILs, whereas the green region highlights the prevalence of low-η ILs in the distribution. For the ILs with very low η (η < 30 mPa·s) 
that could be potentially useful in battery electrolytes, they are mostly found in the red dotted region. For the complete list of these 
potentially useful ILs (η < 30 mPa·s), it can be found in File1.csv in the Supplementary Material.

tetradecyl-3,6,9,12,15-pentaoxaheptadecan-1-aminium methyl sulfate) in ILs. Whereas larger values in 
piPC10 imply significant presence of multiple bonds (e.g., single, double, aromatic bonds) in molecular 
branches of ILs (e.g., L-phenylalanine benzyl ester bis(perfluoroethylsulfonyl)imide). For those ILs 
consisting of anionic and cationic species, this suggests that despite large molecular branching in IL cations, 
a reduced chain length or a minimal number of hydrogen bonds acceptor-donor in IL anions (e.g., low 
viscous trioctylammonium butanoate with η ~ 13 mPa·s, MPC10 = 3.1, CATS2D_03_DA = 0 in Figure 6A) 
helps reduce the IL viscosities, analogous to dicyanamide-based ILs[18,64].

The P-VSA-like descriptors are the molecular descriptors that define the amount of van der Waals surface 
area (VSA) having a property in a certain range[65]. According to P-VSA-based models[48,49,65], P_VSA_ppp_L 
is the descriptor measuring the potential pharmacophore points of lipophilic, an important factor that 
estimates the level of lipophilicity. High-lipophilicity molecules tend to be hydrophobic or less polar, 
whereas for ATSC7i, it is a 2D autocorrelation descriptor [Supplementary Table 2] based on autocorrelation 
of a topological structure (ATS) that describes how a property is distributed along the topological 
structure[48,49,66]. For ATSC7i, it is a descriptor measuring the centered Broto-Moreau autocorrelation of lag 
seven used to weigh all the contributions of the ionization potential of each different path length (lag) in the 
molecular graph. Smaller values of ATSC7i imply a strong tendency in the formation of cations. Therefore, 
from Figure 6B, it is found that the small values in both P_VSA_ppp_L and ATSC7i tend to yield low-η with 
highly ionic ILs (e.g., N-methyl-2-oxopyrrolidinium acetate with η ~ 2.4 mPa·s, P_VSA_ppp_L = 13.9, 
ATSC7i = 0 in Figure 6B). In contrast, for high-η ILs (e.g., trihexyl(tetradecyl)phosphonium chloride with 
η ~ 1,400 mPa·s, ATSC7i = 3.2, P_VSA_ppp_L = 148.6), large values in both P_VSA_ppp_L and ATSC7i are 
generally found, as shown in Figure 6B. In addition, it is also interesting to observe that low-η ILs tend to 
favor the regime of small values in both ATSC7i and ATS8m, as shown in Figure 6D (e.g., 
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trimethylammonium hydrogen sulfate with η ~ 4.7 mPa·s, ATSC7i = 0, ATS8m = 0). Similar to ATSC7i, 
ATS8m belongs to 2D autocorrelation-based descriptors and represents a molecular feature that measures 
the centered Broto-Moreau autocorrelation of lag eight weighted by mass[48,49,66]. Thus, ILs with small 
molecular sizes generally have small values in ATS8m. From Figure 6D, the trend suggests that heavier and 
less polar ILs with large molecular sizes tend to have high-η (e.g., tributyl(tetradecyl)phosphonium 2-
dodecylbenzenesulfonate with η ~ 1,400 mPa·s, ATSC7i = 3.5, ATS8m = 4.0), and this observation is 
consistent with the observation that the presence or increase of alkyl group or alkyl chain (e.g., imidazolium 
cations) will increase viscosities of ILs due to increasing intermolecular van der Waals interactions[18,35].

Thus, from the general trend of molecular descriptors for low/high-η ILs highlighted in Figure 6A-D, a set 
of useful design rules to tune the IL viscosity through molecular grafting can be obtained. Specifically for 
low-η ILs, small values in all these important descriptors, i.e., CATS2D_03_DA, MPC10, piPC10, 
P_VSA_ppp_L, ATSC7i, and ATS8m, are generally preferred (i.e., the red dotted region in Figure 6A-D and 
File1.csv in the Supplementary Material). From this observation, a list of 96 IL candidates with very low 
viscosities (i.e., below ~30 mPa·s), which might be potentially useful electrolytes in battery applications, can 
be identified [File1.csv in the Supplementary Material]. Thus, the observation [Figure 6] suggests that in 
order to reduce the IL viscosity, grafting IL cations into smaller sizes (e.g., smaller head rings) and short 
alkyl chains and reducing ionization potentials/energies will help. Meanwhile, for the same cations, further 
reducing anions in sizes, chain length, and hydrogen bonds [e.g., TFSI-, N(CN)2

-] might be useful to further 
help to reduce the viscosities. Thus, to fine-tune the IL viscosity, a synergistic effect to achieve an optimum 
design of both cations and anions in ILs is deemed necessary.

CONCLUSIONS
ILs are a new group of solvents with great potential in design synthesis. They are promising electrolytes in 
energy storage applications, especially in rechargeable batteries. It is known that the variation in viscosity of 
ILs can lead to subtle effects in their transport properties, e.g., ionic conductivity, charge transfer rate, etc., 
which are extremely important factors in the development of novel electrolytes for energy storage 
applications[14,15,59]. However, in practice, the usages of ILs remain limited due to their unfavorable viscosity 
property at ambient conditions. To optimize their design synthesis, a systematic fundamental study of 
structure-property relationships in ILs is deemed necessary. With this as our motivation, we pursued a 
baseline study to investigate the trend of room-temperature viscosities for various types of ILs. To search for 
important insights that will lead us to fine-tune the viscosity of ILs, an integrated approach that combines 
high-throughput screenings of a large IL dataset, chemoinformatics, and DL models is adopted in this work.

Based on the dataset obtained from ILThermo (v2.0)[43,44], we have constructed a robust DL model (Section 
"Viscosity prediction from deep-learning (DL) models") to predict the viscosity of ILs at ambient conditions 
with high accuracy. We achieved R2 scores of ~0.9869 (RMSE ~ 63.78 mPa·s) and 0.9980 
(RMSE ~ 45.27 mPa·s) using chemoinformatics descriptors based on DNN and CNN models separately. To 
help to identify the low-η (i.e., η ≤ 100 mPa·s) and high-η (i.e., η > 100 mPa·s) among various ILs over a wide 
range of viscosities spanning from twp to 97,000 mPa·s (based on various combinations of cationic and 
anionic families of ILs), a low/high-η binary classification DNN model (Section "Low- and high-viscosity 
binary classification prediction from deep-learning model") has been developed. Based on this low/high-η 
binary classification model, 540 high-η and 382 low-η ILs can be found in the dataset (i.e., 922 types of ILs). 
Despite this skewed dataset (i.e., 59% high-η vs. 41% low-η), a balanced accuracy in both low-η and high-η 
prediction with an overall accuracy of 93 % for test prediction is achieved.
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Despite a large deviation in viscosity distributions and a huge variety of anion-cation combinations 
presented in the IL dataset, we found the viscosities of various ILs can be determined based on a limited 
number of important molecular descriptors. From the top ranked molecular features/descriptors obtained 
from DL models (Section "Low- and high-viscosity binary classification prediction from deep-learning 
model"), the molecular features, i.e., the geometrical structures, shapes or branching characters, 
constitutional molecular weights or sizes, partial charges, functional groups, local bonds, hydrogen bonding, 
and van der Waals interactions, related to both anions and cations of ILs are found equally important. 
Similarly, based on the DL model, an important structure-property relationship governed by a set of 
important molecular descriptors (e.g., ATSC7i, ATS8m, MPC10, P_VSA_ppp_L, etc. in Figures 5 and 6) of 
the cations and anions of ILs in defining the low/high-η ILs can be found (Section "Important molecular 
descriptors that determine viscosities of ILs"). The analysis of DL model prediction suggests that in order to 
reduce the IL viscosity, grafting IL cations into smaller sizes (e.g., smaller head rings) and short alkyl chains 
and also reducing ionization potentials/energies will help. Meanwhile, for the same cations, further reducing 
anions in size, chain length, and hydrogen bonds (e.g., TFSI-, N(CN)2

-) might be useful to further help 
reduce the viscosity of ILs. This is supported by a list of potentially useful ILs with very low η (i.e., 
η < 30 mPa·s) we found in this study [File1.csv in the Supplementary Material].

Thus, with a fine selection and molecular grafting of anionic and cationic species in ILs, we believe the 
design synthesis of appropriate molecular functional groups in ILs is vital to fine-tune the viscosity for 
potentially useful electrolytes. However, in order to obtain robust ILs for battery applications in practice, 
simply fine-tuning IL viscosity is insufficient. To identify robust IL-based electrolytes, considering a 
synergistic effect of achieving an optimum design of both cations and anions in ILs to simultaneously fulfill 
other important physicochemical properties (e.g., redox stability, salt concentration, ionic conductivity, 
melting/boiling points, thermal conductivity, heat capacity) relevant to specific energy storage applications, 
further development of more sophisticated multi-modal DL models will be necessary.
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