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Abstract
Transfer RNA (tRNA) modification and aminoacylation are post-transcriptional processes that play a crucial role 
in the function of tRNA and thus represent critical steps in gene expression. Knowledge of the exact processes 
and effects of the defects in various tRNAs remains incomplete, but a rapidly increasing number of publications 
over the last decade has shown a growing amount of evidence as to the importance of tRNAs for normal human 
development, including brain formation and the development and maintenance of higher cognitive functions as 
well. In this review, we present a synopsis of the literature focusing on tRNA-modifying enzymes and aminoacyl-
tRNA synthetases (ARSs) that have been found to be involved in the etiology of hereditary forms of intellectual 
disability. Our overview shows several parallels but also differences in the symptomatic spectrum observed 
in individuals affected by intellectual disability caused by mutations in tRNA modifier and/or ARS genes. This 
observation suggests that tRNAs seem to assume diverse roles in a variety of cellular processes possibly even 
beyond translation and that not only the abundance but also the modification and aminoacylation levels of tRNAs 
contribute to cell functions in ways that still remain to be understood. 

Keywords: transfer RNA modification, aminoacylation, intellectual disability, aminoacyl-tRNA synthetases, ARS, human 
cognition, cognitive impairment, brain development
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INTRODUCTION
Cognitive impairment features among the most important problems in healthcare, one prominent example 
being intellectual disability (ID) with a prevalence between 1% and 3%. The majority of severe forms of 
ID have specific yet very heterogeneous genetic causes, including numerous X-chromosomal as well as 
autosomal gene defects and disease-causing copy-number variants[1-5]. Thus, with the exception of a few 
more prominent syndromes (for pertinent reviews see e.g., Salcedo-Arellano et al.[6], 2020, Glasson et al.[7], 
2020, Antonarakis et al.[8], 2020), individual genes only account for an often extremely low proportion of 
cases.

Accumulating evidence, however, indicates that while there are no major players on a genetic level, there are 
functional contexts or pathways that play a prominent role in the etiology of hereditary forms of ID and are 
thus of major importance for the development and maintenance of higher cognitive functions. One such 
feature is the molecular and functional integrity of transfer RNA (tRNA), and we and others have recently 
put forward the notion that a full as well as a fully functional complement of tRNAs is vital for human 
cognition[9,10]. This is corroborated by the results of a survey of the recent literature, which shows a steep 
increase in the number of articles featuring tRNA-related issues in the context of impaired human cognition 
over the last few years [Figure 1]. In support of the hypothesis that tRNAs play a major role in the basis of 
human cognitive features, our review aims to provide a synopsis of the presently available literature on tRNA 
modifiers and aminoacyl-tRNA synthetases (ARSs) that were found to play a role in the etiology of cognitive 
dysfunction.
 
tRNA STRUCTURE AND FUNCTION 
tRNAs are important mediator molecules that facilitate the reading and translation process of the triplet 
genetic code from messenger RNA (mRNA) to corresponding polypeptides during protein biosynthesis[11]. 
The human genome contains more than 500 tRNA genes[12]; however, tRNA expression is cell- and tissue-
specific and approximately half of the genes are not or poorly expressed[13]. 

The typical tRNA secondary structure, consisting of hydrogen-bonded stems and associated loops, is shown 
in Figure 2. This results in a complex three-dimensional folding of the molecule, so that in their tertiary 
structure all tRNAs assume an L-shape. The 3’ end of this structure serves as the amino acid attachment site. 
The anticodon loop, which is exposed at the tip of the L-shape, is used for mRNA codon recognition. Base 
pairing with the first and third residue of the anticodon can be flexible so that some tRNAs can recognize 
various codons.

The translation of proteins from their coding mRNAs, where tRNAs play a central role, is an absolutely 
essential process. It begins with the formation of the pre-initiation complex, which is formed from the 
40S subunit of a ribosome, the initiator tRNAMet, GTP and various initiation factors. mRNA binds to this 
complex at its 5’ end and translation is initiated when a start codon (AUG) is recognized. Elongation starts 
with the binding of the initiator tRNA to the peptidyl site of the ribosome, the second binding site of the 
ribosome, and the aminoacyl site is then occupied by the next tRNA. A peptide bond is formed between 
the methionine of the initiator tRNA and the amino acid of the following tRNA. The ribosome then moves 
one position further on the mRNA and binds another aminoacylated tRNA. This elongation continues 
until a stop codon is reached, after which the polypeptide leaves the ribosome[14]. This happens at a rate of 
approximately ten tRNAs per second. 

To ensure that protein synthesis runs smoothly, tRNA molecules are chemically modified [15-18]. These 
alterations include methylation (guanosine → 7-methylguanosine), deamination (adenine → inosine), Sulfur 
substitution (uridine → 4-thiouridine), intramolecular rearrangements (uridine → pseudouridine) and the 
saturation of existing double bonds (uridine → dihydrouridine). Some of the non-standard ribonucleosides 
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are believed to be important for tRNA stability and folding, or to improve codon-anticodon recognition[19-21]. 
The wobble-uridine modification 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), for example, was 
found to be associated with improving codon-anticodon recognition[22-25], and mcm5s2U plays a role in 
improving tRNA binding to the ribosomal aminoacyl-tRNA binding site[26]. Without the modification, 
reduced binding at the aminoacyl-site leads to downstream effects, including slowing of the ribosomes and 

Figure 1. Number of articles featuring tRNA-related issues in the context of impaired human cognition between 1994 and the present

Figure 2. Overview of the main target nucleotides of the indicated tRNA modifiers involved in the etiology of ID. A-arm: acceptor stem; 
D-arm: dihydrouracil arm; C-arm: anticodon arm; ACL: anticodon loop; V-arm: variable arm; T-arm: ribothymidine arm; ID: intellectual 
disability



associated protein folding defects[23,27-29]. Defects in tRNA modifications, which sometimes only represent 
a single atom, can trigger serious neurodegenerative diseases[30]. For example, if tRNA molecules lack only 
a single chemical group, protein biosynthesis can stop at innumerable sites in the mRNA (reviewed in 
Torres et al.[31] 2014). The result is an increase in protein aggregates that the cells can no longer remove. 
Nerve cells in particular are very sensitive to such aggregates, as is well known from Alzheimer’s and 
Parkinson’s diseases[27]. Moreover, ribosome profiling experiments have shown that ribosomes in cells with 
defects in tRNAs take longer to read certain sections of the mRNA[27]. The fact that protein biosynthesis does 
not occur at a constant rate plays a major role in this context, because changes in protein synthesis rate can 
influence protein conformation, as proteins take on their active form at the same time as they are produced[32].

Another important function in protein biosynthesis is performed by the ARSs. These enzymes are essential 
for translation, since they catalyze the binding of the proteinogenic amino acids to their respective associated 
tRNAs to form aminoacylated tRNAs.

There are 37 ARSs known - 17 occur only in the cytoplasm, 17 are mitochondria-specific, and three encode 
bifunctional proteins that charge tRNAs in both compartments[33]. It is known that mutations in genes 
coding for ARSs play an important role in many human inherited diseases, both with recessive and dominant 
inheritance patterns. In homozygous carriers, recessive mutations in ARSs often cause early-onset disorders 
with a severe course, not only affecting nerve cells but also impairing the function of many other tissues. 
A total of 31 of the 37 human ARSs have been linked to a genetic phenotype. These range from later-onset 
peripheral neuropathy to severe multi-system development syndromes[34-36] with ID. 

In the following sections, we will first give an overview of tRNA modifiers that have been found to play a 
role in the etiology of hereditary forms of cognitive impairment, focusing on the major tRNA sites targeted 
by these enzymes. Subsequently, we will introduce the ID-associated ARSs known to date, based on their 
cytosolic or mitochondrial occurrence.

TRNA MODIFICATION AND ID
A list of currently known tRNA modifiers, which have been associated with ID, is given in Table 1 (see Part A).

The tRNA schematic in Figure 2 gives an overview over the main target nucleotides of tRNA modifiers 
involved in the etiology of ID, showing that there are 4 main sites that are of particular importance for 
human cognition: the C-arm (anticodon arm), V-arm (variable arm), D-arm (dihydrouridine-arm) and 
T-arm (ribothymidine arm). 

Anticodon arm
The anticodon arm of a tRNA molecule contains the anticodon site and is the most heavily modified part of 
the tRNA molecule.

Currently, six different ID proteins catalyzing tRNA modifications in this tRNA region have been identified. 
These include the following enzymes. 

FTSJ1
FTSJ1 (filamentous temperature-sensitive J, E. coli homolog 1) is an X-linked tRNA 2’-O-methyltransferase 
that catalyzes ribose methylation at tRNA positions 32 and 34. The homologous gene was originally isolated 
from an E. coli in 1991[178], and the crystal structure with the methyl donor S-adenosyl-methionine was later 
solved[179].

Yeast has been the model of choice for investigations concerning FTSJ1 as human FTSJ1 is able to 
complement yeast Trm7 growth defects[180]. In yeast, two different interaction partners have been identified 
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Yeast is a good model for molecular investigations into tRNA modifications, but far from identical to 
the human situation. For example, yeast Trm7 methylates tRNAs encoding phenylalanine, leucine and 
tryptophan whereas human FTSJ1 methylates tRNAs encoding phenylalanine, asparagine, glutamine, alanine 
and methionine[181].

In ID patients, protein-truncating mutations have been reported in 5 families[37,41,183], and a missense change 
has also been found in patients with non-syndromic ID[180]. In addition, duplication or microdeletions 
involving FTSJ1 and other ID genes were also found in ID families[184-187]. Recently, a mouse model for FTSJ1 
deficiency was reported. In combination with a mild ID phenotype, these mice presented with additional 
phenotypic features, some of which were also found in affected humans upon reexamination of patients who 
were previously considered to have a non-syndromic phenotype[40].

ADAT3 
ADAT3 (adenosine deaminase TRNA specific 3) is part of an enzyme complex involved in inosine formation 
through hydrolytic deamination of adenosine at the tRNA wobble position. This protein was also first 
characterized in yeast and is specific for modification of the tRNA wobble position. In yeast, Adat3 complexes 
with Adat2 to function as a deaminase, and the coding genes for both are essential for yeast viability[73]. In 
human cells, ADAT2 and 3 form a complex, localized in the nucleus that is required for inosine formation at 
the tRNA precursor level[188].

ID caused by ADAT3 mutations is inherited in an autosomal recessive manner and several consanguineous 
families have been analyzed mainly in the Middle East. ADAT3 mutations were first identified in 24 
individuals from eight consanguineous Arab ID families that all presented with ID and strabismus[71]. The 
missense change c.382G>A, V128M, is located in an ancient haplotype that is approximately 1600 years 
old and considered to be the most common cause for autosomal recessive ID in Arabia[71]. Other clinical 
symptoms in ID patients with the V128M mutation apart from ID and strabismus were reported to include 
growth failure, microcephaly and tone abnormality[72]. The authors concluded that despite a distinct facial 
profile, this syndrome should be considered also for ID patients from apparently non-consanguineous ID 
families originating from Arabia[72]. Recently, an 8-bp duplication in ADAT3 was found in a patient with mild 
ID, microcephaly and hyperactivity but without strabismus[75].

In a patient cell line, it was recently shown that the ADAT3 mutation V128M indeed reduces adenosine 
deaminase activity and inosine formation at the tRNA wobble position[74]. 

ALKBH8 
ALKBH8 (alkylated DNA repair protein AlkB homolog 8) was originally investigated because it is expressed 
in human cancers, including bladder cancer[80]. Knockdown of ALKBH8 in cell lines has shown several 
effects including reduced H2O2 generation, induction of JNK- and p38-mediated apoptosis, phosphorylation 
of the histone 2 variant H2AX and reduced gall bladder cancer growth[80]. In a mouse model for ALKBH8 
deficiency, Alkbh8 was identified as a methyltransferase necessary for 5-methoxycarbonylmethyluridine 
(mcm5u) formation of wobble uridine residues[189]. Generation of mcm5u is required for ALKBH8 
hydroxylation of wobble uridine to 5-methoxycarbonylhydroxymethyluridine in certain tRNAs[78,190]. 
Although Alkbh8-deficient mice seemed normal, the authors observed aberrant modification of 
selenocysteine-specific tRNASec[189].

Recently, truncating ALKBH8 mutations were found in ID patients from two consanguineous families 
with different mutations (c.1660C>T, p. Arg554Ter and c.1794delC, Trp599GlyfsTer19). tRNA from the 
investigated patients showed complete loss of wobble uridine modifications. All seven investigated patients 
had ID and showed global developmental delay. Out of the seven patients, only one affected sister did not 
present with epilepsy[79].
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CTU2 
CTU2 (cytosolic thiouridylase 2) is also a highly conserved gene that was first identified in yeast and found 
necessary for tRNA thiolation in yeast, C. elegans and even plants[102,104,191]. In these organisms, CTU1 
and CTU2 homologs form a complex that catalyzes tRNA thiolation of wobble uridine. Inactivation of 
the complex leads to loss of thiolation at the tRNA wobble uridine and abnormal phenotypes[102,104,191]. 
Interestingly, proteins involved in thiolation of the uridine wobble base are also important for the altered 
protein synthesis driven by the BRAFV600E oncogene transformation in melanomas, and melanomas depend 
on these tRNA-modifying proteins for survival[103]. 

The first human CTU2 mutations were reported in three families from Saudi Arabia and two families from 
the United Arab Emirates, and they were all homozygous for the same haplotype and splice site mutation 
(c.873G>A, Thr247AlafsTer21). The affected individuals presented with dysmorphic faces, renal agenesis, 
ambiguous genitalia, polydactyly and lissencephaly, and the authors suggested the acronym DREAM-PL for 
this syndromic form of ID[105,107].

Five more patients with the DREAM-PL phenotype were recently reported, all showing a reduced ratio of 
thiolated wobble uridine to unmodified wobble uridine[106]. 

KEOPS 
KEOPS (kinase, endopeptidase and other proteins of small size) and the KEOPS complex were originally 
identified in yeast as a complex involved in telomere capping and elongation[192]. In 2010, yeast KEOPS was 
found to be necessary for N6-threonyl-carbamoyl-adenosine modification of yeast tRNA adenosine (t6A), 
which is present at position 37 in all tRNAs that pair with ANN codons[193]. Although telomere regulation 
seems to be independent of t6A modifications[66], yeast cells lacking t6A modifications show severe growth 
defects. 

The human and yeast KEOPS complex each consist of four homologous subunits (OSGEP, TP53RK, TPRKB, 
LAGE3 and kae1, Bud32, Cgi121, Pcc1, respectively), and mutations were found in genes encoding any of 
the four subunits in Galloway-Mowat syndrome (GAMOS, MIM#251300) patients[83]. These patients were all 
affected by early-onset nephrotic syndrome, primary microcephaly, developmental delay and propensity for 
seizures of which most patients died in early childhood[83]. None of the patients carried truncating mutations 
on both alleles[83].

Due to the multiple functions involving the KEOPS complex it is difficult to determine the effect of a 
missing t6A modification on the patient phenotype. However, as overlapping phenotypes are observed in 
patients with WDR4 mutations, missing t6A modifications are likely to contribute to the observed GAMOS 
phenotype[82].

ELP2 and ELP4 
The Elongator protein complex (ELP) is composed of six highly conserved subunits (ELP1-6) and, as the 
name suggests, was initially thought to promote elongation of transcription. Recently, it was discovered 
that its primary role is to modify the uridine at position 34 of tRNAs (mcm5s2U)[194,195]. Mutations in two of 
the Elongator subunits have been linked to ID. Missense mutations in the ELP2 gene have been identified 
in three families with ID[67,93]. Microdeletions in the ELP4 gene have been linked to ID and speech delay, 
although deletion of part of the regulatory regions of PAX6 may contribute to the phenotype[99,100]. Previously, 
mutations in the ELP4 gene have been implicated in Rolandic epilepsy[101]. It is now accepted that the diverse 
disease phenotypes caused by defects in Elongator are likely due to hypomodified tRNAs, but it remains 
to be seen whether rescue experiments with elevated tRNA levels prevent the phenotypes in multicellular 
organisms[97,98].
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PUS1, PUS3 and PUS7 
Pseudouridine is a common tRNA modification, and to date, three ID proteins that play a role in 
pseudouridinylation have been identified. These are PUS1, PUS3 and PUS7 (pseudouridine synthases), 
which are involved in the conversion of uridine to pseudouridine at different specific tRNA positions.

Yeast Pus1 was the first eukaryotic tRNA pseudouridine synthase to be characterized and shown to be 
involved in the conversion of tRNA uridines at multiple positions of introns containing tRNAIle[196]. Pus1 
targets both cytoplasmic and mitochondrial tRNA[112] and was later shown also to target U2 snRNA in 
yeast[115]. 

The first reported human PUS1 mutation was a homozygous missense change (R116W) found in all affected 
individuals in two Italian families who suffered from mitochondrial myopathy and sideroblastic anemia 
(MLASA; MIM 600462) but without ID[113]. tRNA pseudouridinylation was later shown to be greatly reduced 
in patient cell lines[116]. PUS1-dependent ID was first reported in a patient with the same (R116W) missense 
change by Zeharia et al.[117]. In two brothers with MLASA and a truncating PUS1 mutation (E220X), one had 
ID whereas the other had an elevated intelligence quotient above normal levels[114].

PUS3 is a pseudouridine synthase, originally isolated from yeast, that catalyzes pseudouridine formation at 
positions 38 and 39 in the anticodon stem of certain tRNAs. Yeast Pus3 deletion strains are viable but grow 
slowly, especially at elevated temperatures[197]. The protein was found to be evolutionarily conserved, and like 
mouse Pus3, it can convert uridine at position 38 or 39 to pseudouridine in yeast and human tRNA in vitro, 
albeit with different efficiency[109].

ID caused by PUS3 deficiency is inherited as an autosomal recessive disorder. The first report of PUS3 
mutations described 3 affected sisters that were homozygous for the nonsense mutation c.1303C>T, R435X, 
and the phenotype in these patients was largely brain specific[110]. A second report presented a single child 
from consanguineous parents, carrying a frameshift mutation (c.1181_1182delCT, Ser394CysfsTer18) and 
no detectable PUS3 transcript. The child suffered from ID, microcephaly, hypotonia, seizures, and vision 
and hearing loss[56]. Furthermore, two compound heterozygous mutations were reported in a Brazilian and 
a Chinese family[198,199]. Although all reported patients presented with additional features, ID was the only 
consistent characteristic. 

PUS7 is a multi-substrate pseudouridine synthase that in yeast targets several tRNA uridines at position 13, 
the pre-tRNATyr at position 35[200], small nucleolar RNA U2 (U2 snRNA) at position 35[201] and also 5S and 
5.8S rRNA[202] and mRNA[203]. Interestingly, uridine conversion of snRNA U2 at positions 56 and 93 can be 
induced in yeast by nutrient deprivation or heat shock[204]. In human stem cells, PUS7 pseudouridinylation 
was found to activate small tRNA-derived fragments that inhibit protein synthesis by targeting the initiation 
complex. PUS7 inactivation leads to defective germ layer specification[205].

Homozygous truncating PUS7 mutations were recently reported to cause ID with speech delay, short stature, 
microcephaly, and aggressive behavior in patients from three different families[118]. Two ID families with 
homozygous PUS7 mutations, a missense change or a deletion leading to a frameshift, were also reported. 
The patients also suffered from microcephaly, whereas short stature was not seen in all patients[111]. Recently, 
another ID family of Afghan origin was reported, carrying a Gly128Arg missense change. The phenotype 
of the patient was milder without microcephaly or short stature, but still with speech delay and aggressive 
behavior[119]. In this last study, pseudouridine levels were not investigated[119], whereas markedly reduced 
pseudouridine levels at tRNA position 13 were found in all investigated ID patients[111,118]. 

Variable arm
The variable arm of tRNAs is located between the anticodon (or C) and the T arms. The length of the 
variable arm depends on the tRNA and can be between 3 and 21 nucleotides long. Generally speaking, class 
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I tRNAs have shorter variable arms (between 4-5 nucleotides) than class II tRNAs (> 10 nucleotides)[206,207]. 
The variable arm functions as a stabilizer of the tertiary structure as well as in the specific recognition of the 
ARS. So far, two modifications of nucleotides in the variable arm by two different genes have been linked to 
ID.

NSUN2 
NSUN2 (Nop2/Sun RNA methyltransferase family member 2) is one of three cytosine-5 tRNA methyltransferases 
and is responsible for methylating tRNAs that carry a cytosine at positon 48 or 49. There have been several 
reports linking mutations in the NSUN2 gene to ID[46,49,51,208]. Two reports observed a Dubowitz-like 
syndrome in patients[46,51]. Other common symptoms described include microcephaly, facial dysmorphism 
and growth retardation. 

The likely molecular mechanism in NSUN2-deficient cells is increased angiogenin-induced fragmentation 
of tRNA which inhibits protein translation[55]. Methylation of cytosine at the variable loop in healthy cells 
protects tRNAs from binding to angiogenin.

WDR4 
WDR4 (WD repeat domain 4) encodes the noncatalytic subunit of the tRNA (guanine-N7-)-methyltransferase 
which is necessary for the 7-methylguanosine modification (m7G) at position 46[62]. It has been described to 
cause primordial dwarfism, a phenotypically diverse syndrome with several subtypes, characterized by ID 
as well as pre- and postnatal growth deficiency[58,62,63]. More recently, WDR4 deficiency has also been linked 
to the Galloway-Mowat syndrome[57]. WDR4 knockouts result in a complete loss of m7G modification in 
tRNAs and consequently to disturbed codon recognition and ribosome stalling. It has also been shown that 
depletion of WDR4 in mice impairs the neural lineage differentiation capacity in mESCs[60]. 

D-arm
The D-arm of tRNAs is located between the anticodon and acceptor arms. It is of variable length, but 
the modification of the D-loop nucleotides is highly conserved in all kingdoms. Its function is mainly 
the stabilization of tRNA structure through tertiary interaction with the T-arm, but it is also involved in 
aminoacyl tRNA synthase recognition. Defects in two tRNA methyltransferases that modify different 
positions in the D-arm have been shown to cause ID.

TRMT1 
The TRMT1 (TRNA methyltransferase 1) gene encodes for a tRNA methyltransferase that dimethylates G at 
position 26 in the D-arm of most tRNAs. It was first connected to non-syndromic ID in a deep sequencing-
based screen for novel genes for cognitive disorders in 2011[67]. More recent reports confirm this finding 
and describe facial dysmorphism, general developmental delay and in some cases muscle weakness and 
spasticity as TRMT1-specific symptoms in patients[64,65,70]. Apart from decreased protein translation and cell 
proliferation, TRMT1-deficient cells show disturbed redox homeostasis and hypersensitivity to oxidative 
reagents, which might explain some of the neurological defects observed[69]. The causative mechanism at the 
tRNA level is still unclear; however, loss of m2

2G could affect tRNA structure or stability[209,210] or modulate 
translation activity[211].

TRMT10A 
TRMT10A (TRNA methyltransferase 10A) is a tRNA methyltransferase that is responsible for methylating 
the G at position 9 of tRNAs (m1G9). A missing, shortened or otherwise non-functioning TRMT10A gene 
causes ID, microcephaly and general developmental delay[86]. Interestingly, some reports describe early-onset 
diabetes or hypoglycemia in patients with mutations in the gene[86,88,91,92]. 
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A lack of m1G9 modification in yeast has been shown to play a role in tRNA stability and translation 
terminating efficiency[212,213]. In human tRNALys, which has an adenine at position 9, a lack of methylation 
prevented the tRNA to be folded into the cloverleaf form[214]. However, how exactly the lack of methylation is 
connected to the variety of symptoms is still not fully understood and continues to be the subject of ongoing 
research. 

T-arm
PUS10
So far, no modifications on the T-arm of tRNAs have been shown to cause ID specifically. While 
microduplications or -deletions of the 2p16.1p15 locus, which contains the pseudouridine synthase 10 gene 
(PUS10) among several other genes, have been linked to ID and developmental and speech delay[215-217], there 
is growing evidence that in these cases, BCL11A is the cause for ID[218,219]. Still, it cannot be ruled out that 
PUS10, which pseudouridinylates tRNAs at positions 54 and 55, contributes to the phenotype, but clinical 
cases with PUS10-specific mutations linked to ID have not yet been described so far.

ARSS AND ID 
Cytoplasmic ARSs 
The main task of ARSs is to transfer and bind amino acids to the appropriate tRNA molecules. The charged 
tRNAs are then used by the ribosomes to carry out protein synthesis. Their availability therefore plays an 
essential role in the regulatory processes of cell functions[220]. All ARSs are ubiquitously expressed and highly 
conserved. There is one ARS enzyme for each amino acid to facilitate binding with the appropriate tRNA. Of 
the 37 known ARS genes, 17 encode purely cytoplasmic enzymes[33]. Like mitochondrial ARSs (mt-ARSs), all 
cytosolic ARSs (ct-ARSs) are encoded by nuclear genes. They are complemented by three ARSs that function 
in both the cytoplasm and mitochondria to match the full complement of amino acids. It has already been 
mentioned that biallelic mutations in 31 ARS genes lead to serious recessive, early onset diseases, ranging 
from later-onset peripheral neuropathy to severe multi-system development syndromes. Here, however, we 
will focus only on ARSs, which have been found to play a role in the etiology of diseases associated with ID 
[Table 1, see Part B]. 

In VARS, for example, Friedman et al.[140] found different biallelic mutations in several families, leading 
to a very heterogeneous symptomatic picture including, developmental delay, epileptic encephalopathy 
and primary or progressive microcephaly. Another interesting case is the glutaminyl-tRNA synthetase 
gene (QARS). This gene encodes both the cytosolic as well as the mitochondrial QARS and shows a strong 
level of expression in the brain of the developing fetus. A very often found missense mutation (V476I) in 
QARS was shown to cause a reduction in its aminoacylation activity[148]. Mutations in QARS have severe 
consequences in affected individuals including not only ID but also progressive microcephaly, cerebral 
cerebellar atrophy and seizures that are difficult to treat. Altogether 11 patients have so far been described 
with QARS mutations[147,149,151,221], all of whom consistently show a severe so-called global development delay 
but none reaching any significant milestone. An initially normal occipito-frontal circumference (OFC) 
quickly and clearly changed to postnatal microcephaly. Various degrees of severity of ID from mild to severe 
were described in several case studies [Table 1B]. In addition to other serious symptoms, the condition is 
ultimately fatal for a large proportion of patients[148]. These examples shows the breadth and variability of the 
phenotypic spectrum associated with ARS mutations. 
 
There are, however, recurrent motives among the features accompanying ARS-dependent ID, such as 
microcephaly, which is observed in carriers of mutations in AARS, RARS, DARS, LARS, MARS, YARS, 
QARS, SARS, VARS and WARS2 [Table 1B]. An association with the occurrence of seizures (AARS, DARS, 
LARS, SARS, VARS, QARS, NARS2, PARS2 and WARS2) and hypotonia (AARS, DARS, LARS, MARS, YARS 
and IARS) is also frequently observed. Less common features among affected individuals range from ataxia, 

Franz et al. J Transl Genet Genom 2020;4:50-70  I  https://doi.org/10.20517/jtgg.2020.13                                                 Page 61



cerebral atrophy, neonatal choleastasis, muscular hypotension, infantile hepatopathy and hypomyelination to 
speech disorders and aggressive behavior. Finally, it should be mentioned that the non-canonical functions of 
ARSs could also be responsible for the wide phenotypic spectra that can be observed in the diseases related 
to their mal- or dysfunction. 

Mitochondrial ARSs
Human mitochondrial ARSs (mt-ARSs) are essential for the synthesis of 17 mt-DNA-encoded proteins, 
which are all subunits of the respiratory chain complexes. Therefore, they are involved in the generation of 
the major source of cellular energy, i.e., ATP. Like cytosolic ARSs, all mt-ARSs are encoded by nuclear genes, 
which are, however, different from those coding for the cytosolic ARSs. Three ARS genes encode enzymes 
that are active in both mitochondria and cytosol: glycyl-tRNA synthetase (GARS), lysyl-tRNA synthetase 
(KARS), and glutaminyl-tRNA synthetase (QARS). Only QARS, however, has so far been found to be 
associated with an ID phenotype [Table 1B]. The first correlation between an mt-ARS mutation and a human 
disorder was published in 2007 by Scheper et al.[222], who found autosomal recessive mutations in the DARS2 
gene in individuals suffering from leukoencephalopathy with brain stem and spinal cord involvement and 
lactate elevation (LBSL). Since then, numerous other pathogenic mutations in mt-ARSs have been described, 
so that to date, at least 17 out of the 19 mt-ARSs genes have been implicated in human genetic disorders 
involving damage to the central nervous system[35]. 

It is noteworthy at this point that in 2017, Moulinier et al.[223] introduced MiSynPat, an integrated knowledge 
base that links clinical, genetic, and structural data for disease-causing mutations in human mt-ARSs. 
According to the authors, this tool provides a “comprehensive knowledge base together with an ergonomic 
Web server designed to organize and access all pertinent information (sequences, multiple sequence 
alignments, structures, disease descriptions, mutation characteristics, original literature) (http://misynpat.
org/misynpat/AboutMisynpat.rvt last accessed 2020-01-09). 

Mutations in at least six mt-ARS genes (Table 1B - aminoacylation, including QARS) are involved in the 
etiology of ID. All of these lead to a syndromic phenotype. Mutations in NARS2 and PARS2, for example, 
cause Alpers syndrome, and homozygous RARS2 defects lead to pontocerebellar hypoplasia, which is 
characterized by not only overall delayed development, impaired brain development, movement problems 
and ID but also progressive atrophy, particularly of the pons and cerebellum. WARS2 mutation carriers show 
a phenotype that is very similar to patients with mutations in cytosolic SARS (Table 1B - aminoacylation). 
Other than that seen for ct-ARSs, there are no clearly prominent recurrent motives in homozygous or 
compound heterozygous carriers of mt-ARS mutations (Table 1B - aminoacylation) with the possible 
exception of seizures that are observed with a notably increased frequency (NARS2, PARS2 and QARS). 

CONCLUSION
The literature compilation we present here makes a compelling case for an important if not pivotal role of 
a fully functional tRNA complement for the development and maintenance of higher cognitive functions. 
Interestingly, disease-causing ARSs mutations often only result in a reduction of enzyme activity without 
causing complete inhibition[158,224,225]. This points to the sensitivity of cognitive features towards even slight 
disturbances in this basic cellular process. 

In addition, there is much evidence that tRNA molecules assume possibly unknown biological functions 
in eukaryotes, which have not yet been fully elucidated[17] but could be influenced by disruption of tRNA 
function. This opens up a myriad of further possibilities for tRNA involvement in the formation of cognitive 
features and underlines the importance of further research in this field.
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