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Abstract
V-domain Ig Suppressor of T cell Activation (VISTA) is a negative immune checkpoint that is expressed on 
multiple immune cell subsets and has been characterized in T cells, macrophages, and myeloid-derived suppressor 
cells. As the only immune checkpoint expressed on naïve T cells, VISTA contributes to the maintenance of T cell 
quiescence and tolerance. VISTA also regulates multiple myeloid cell activities such as chemotaxis, differentiation, 
and migration. In the context of cancer, antagonistic monoclonal antibody targeting of VISTA has been shown to 
aid anti-tumor immunity. Furthermore, combination therapies that include other immune checkpoints such as PD-1 
or CTLA-4 with VISTA blockade may enhance therapeutic efficacy in a variety of cancers. Combination therapy 
may help overcome adaptive resistance to individual checkpoint therapies, thereby improving patient outcomes 
and survival. Here, we summarize the role of VISTA in myeloid cells and T cells within the tumor 
microenvironment. We discuss the proposed counter-receptors for VISTA, VISTA antibodies currently in 
development, and the potential for combination therapies with checkpoint inhibitors such as PD-1 and CTLA-4.
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INTRODUCTION 
While cancer mortality rates have decreased over the past several decades due to the classic cancer 
treatment approaches (chemotherapy, radiation, and surgery), incidence rates continue to climb and are 
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predicted to increase by 49% in the United States between 2015 and 2050[1]. New therapeutic strategies are 
necessary to counteract disease burden, particularly in patients whose cancers resist treatment. Today, the 
complexity of the tumor microenvironment (TME) is appreciated, and it is well established that the TME 
promotes tumor growth, immune evasion, and resistance to therapies[2]. The TME consists of tumor cells 
(TCs), stromal cells (SCs), and immune cells (ICs). These cellular compartments of the TME vary in 
patients depending on factors such as cancer type and stage, expression of immune checkpoints, and 
treatment resistance. Characterizing the cellular contributions of the TME to tumor progression is critical in 
optimizing treatment strategies to overcome resistance and increase patient survival.

Harnessing the immune system for cancer therapies has gained popularity in recent decades. Cancer 
immunotherapies include antibodies, cellular therapies, cytokine-based therapies, small molecules, vaccines, 
and immune checkpoint inhibitors (ICIs). Targeting the immune system with ICIs yielded stark 
improvements in survival rates in preclinical studies, but clinical responses are more modest, in part due to 
the highly immunosuppressive TME[2-4]. This review focuses on the role of the immune checkpoint V-
domain Ig Suppressor of T cell Activation (VISTA) in the TME.

Immune checkpoints can regulate the immune system on multiple levels and are particularly notable in 
their regulation of T cell activation to prevent activation-induced damage to tissue. In the highly 
immunosuppressive TME, dysfunctional T cells express immune checkpoints[5,6]. Therefore, current 
therapies target these immune checkpoints to relieve T cell suppression[7]. Major pathways targeted by ICIs 
in the clinic include those that target programmed cell death protein-1 (PD-1) and programmed death-
ligand 1 (PD-L1), engaged during exhaustion; and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), 
induced after activation.

While the approval of ipilimumab in 2011, an anti-CTLA-4 monoclonal antibody (mAb) revolutionized 
cancer treatment, ICI treatments have shown efficacy in only a subset of patients. A phase III clinical trial 
comparing anti-PD-1 (nivolumab) and anti-CTLA-4 (ipilimumab) showed that these drugs are efficacious 
in 44% and 19% of patients, respectively, and 58% when used in combination[8]. More than half of patients 
do not respond to immunotherapy at all (primary resistance) or stop responding to ICIs (acquired 
resistance). In both cases, their immune systems recognize the cancer but cannot attack it due to the 
cancer’s mechanisms of immune evasion (adaptive resistance)[2]. Adaptive resistance can arise after 
treatment with anti-PD-1 and/or anti-CTLA-4 and is associated with an upregulation in the immune 
checkpoint V-domain Ig Suppressor of T cell Activation (VISTA) in the TME[9-11]. This indicates that 
VISTA may be involved in the development of compensatory mechanisms of adaptive resistance, thus 
supporting the need for targeting VISTA to improve therapeutic outcomes.

VISTA has been identified as a key player in regulating T cell activity, as well as in maintaining myeloid 
suppressiveness in the TME[12-14]. VISTA was first described as a member of the B7 class of immunoglobulin 
proteins that includes the ligands CD80, CD86 and PD-L1[15]. In the B7 family, VISTA is most closely 
related to PD-L1, with the two immune checkpoints sharing 24% sequence identity[15]. B7 proteins typically 
have both an Ig-V and an Ig-C domain, but VISTA has a single extracellular Ig-V domain, characteristic of 
the CD28 family receptor proteins. VISTA’s extracellular domain is unusual compared to other Ig domains 
due to its two extra disulfide bonds; a unique charged and extended loop; an additional beta strand; and an 
extra helix in the positively charged face of VISTA’s extracellular domain[16,17].

VISTA is widely expressed in the TME, including on TCs, SCs, and ICs. VISTA expression on TCs varies 
greatly depending upon the cancer type[18]. VISTA is broadly expressed in multiple IC lineages [Figure 1], 
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Figure 1. VISTA expression in the periphery versus the tumor microenvironment. BALB/c mice were injected intradermally with 100k 
CT26 cells and were grown for two weeks. Tumors and spleens were dissociated and processed for flow cytometry. Cells from VISTA-
deficient mice were used for staining controls. (A) Overlays showing VISTA expression on CD8+ T cells in the spleen or tumor. (B) 
VISTA expression as Mean Fluorescence intensity in spleen versus tumor within the indicated cell subsets. Data are represented as 
mean ± SD. VISTA: V-domain Ig Suppressor of T cell Activation.

including T cells, macrophages, monocytes, neutrophils, and myeloid-derived suppressor cells 
(MDSCs)[15,19,20]. While B cells do not express VISTA[19], we observed expression on plasma cells[21]. Only a 
small subset of CD56hi natural killer (NK) express VISTA[19]. Unlike other immune checkpoints whose 
expression is selectively induced on particular IC subsets, most ICs constitutively express VISTA. This 
makes VISTA a desirable therapeutic target for therapeutic intervention because of its broad expression in 
the TME and its ability to widely modulate the immune system.

Antibodies to VISTA can improve or dampen the immune response. Agonistic anti-VISTA enhances T cell 
tolerance, elicits a non-inflammatory program in macrophages and inhibits myeloid chemotaxis[12,22]. 
Consequently, VISTA agonism has been shown to ameliorate autoimmune disease in several preclinical 
murine models. Using models of VISTA agonism or deficiency, multiple studies have demonstrated the 
therapeutic relevance of VISTA targeting in experimental autoimmune encephalomyelitis[23], systemic lupus 
erythematosus[23-25], psoriasis[26] , and graft versus host disease[13,27]. In contrast, anti-VISTA antagonists 
dampen the establishment of T cell tolerance, exacerbate inflammation, and enhance anti-tumor immune 
responses. Preclinical murine cancer studies demonstrate slowed tumor growth when anti-VISTA is used as 
a monotherapy in multiple cancer models[9]. Enhanced tumor rejection has been observed when anti-VISTA 
is used in conjunction with anti-PD-1 or anti-PD-L1[28]. Combination therapies of multiple immune 
checkpoints holds promise for better clinical outcomes for patients.

VISTA EXPRESSION AND VALUE AS A BIOMARKER WITHIN THE TME
Different tumor types can have differing levels of VISTA expression. Cancer types with high VISTA 
expression include hepatocellular carcinoma[29,30], gastric cancers[31,32], colorectal cancer, prostate cancer[11], 
non-small cell lung cancer (NSCLC)[33], ovarian cancer[34], endometrial cancer[35], and gestational 
trophoblastic neoplasia[36]. VISTA expression in the TME is associated with poor prognosis in 
melanoma[37,38], oral squamous cell carcinoma (in cases of low CD8 expression)[39], pancreatic cancer[40], and 
gliomas[41]. While VISTA expression in the tumor may suppress immune cells and support tumor growth, 
its presence on the tumor could also indicate an active anti-tumor immune response and be a positive 
prognostic factor. In support of this, a meta-analysis of solid tumors found that high VISTA expression in 
tumors was associated with high levels of T cell infiltration and improved overall survival[42]. High VISTA 
expression in the TME can be coupled with high levels of T cell infiltration and increased overall survival, as 
seen in esophageal adenocarcinoma[43], hepatocellular carcinoma[30] and triple-negative breast cancer[44]. 
Other cancers in which VISTA expression in the TME is associated with a positive prognosis include 
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PDAC[40], non-small cell lung cancer[33,45] and high-grade serous ovarian cancer[46].

While VISTA expression is predominantly immune associated (as discussed later in the review), recent 
studies have highlighted that in some cancers, VISTA may be expressed outside of the hematopoietic 
compartment on either TCs or SCs (including adipocytes, endothelial cells, fibroblasts, and stellate cells). 
Expression of VISTA on TCs is positively associated with patient outcome in ovarian cancer[34], 
hepatocellular carcinoma[30], and NSCLC[33], while in colorectal cancer[47] and gastric cancer[31], no link with 
objective survival was observed.

On the other hand, VISTA expression on vascular endothelial cells is associated with lymph node metastasis 
in cervical[48] and ovarian cancer[34]. Beyond their association with poor prognosis, SCs have been associated 
with influencing ICs in the TME[49]. Melanoma-associated fibroblasts had increased VISTA expression 
relative to fibroblasts isolated from noncancerous intact edges of the tumor, and they can interfere with 
intracellular CTL signaling[50]. Additionally, distribution of immune cell infiltration in tumor versus stromal 
regions of the TME can vary depending on the tumor, potentially impacting therapeutic response[51]. Much 
like VISTA expression on ICs, the role of VISTA in non-hematopoietic cells such as TCs and SCs likely 
varies between cancer types and patients, so further studies are required to determine which markers might 
be positive indicators for VISTA antagonism.

For cancers in which VISTA expression is a positive prognostic factor, VISTA blockade may still have 
therapeutic benefits. Much like PD-L1 expression[52], negative suppressive impact of VISTA within the TME 
could be masked by the positive association with immune infiltration[42]. Even in tumors where VISTA 
expression is low or not directly associated with prognosis or survival—such as oral squamous sarcoma[53], 
ovarian cancer[35], prostate cancer, and renal cell carcinoma[54]—VISTA blockade may propel the TME from 
a “cold” tumor with poor IC infiltration, to become a “hot” tumor with high IC infiltration.

THE ROLE OF VISTA ON MYELOID CELLS 
Myeloid cells highly express VISTA, differentiating VISTA from other immune checkpoints. Notably, 
VISTA expression on myeloid cells in the TME is much higher than that of myeloid cells in the periphery 
[Figure 1]. VISTA is highly expressed on monocytes and regulates monocyte migration and activation. One 
pathway that is responsible for this is the CCL2/CCR2 axis, which recruits inflammatory monocytes to the 
TME, thus playing a critical role in cancer development and metastasis[55]. In splenic monocytes and bone-
marrow derived-monocytes from VISTA-deficient mice, surface expression of CCR2 is significantly 
reduced, thus impairing monocyte migration[12]. VISTA may therefore regulate monocyte recruitment to the 
TME via the CCL2/CCR2 axis. VISTA could also be regulating monocytes through other inflammatory 
pathways, such as the NFκB1 pathway that is significantly downregulated in human monocytes after 
treatment with a VISTA agonist[22].

A potential mechanism for anti-PD-1 or anti-CTLA-4 treatment failure is MDSC escape mechanisms. Such 
escape mechanisms include MDSC accumulation, activation, trafficking, and T cell inhibition[56,57]. In the 
B16 OVA model, MDSC levels decrease in mice treated with an antagonistic VISTA mAb known as 13F3 
[Figure 2][9]. Furthermore, adoptive transfer experiments of dye-labeled WT and VISTA KO MDSCs into 
WT tumor-bearing mice show reduced migration of M-MDSCs from VISTA KO mice to the TME[58]. 
Further studies show that M-MDSCs upregulate VISTA under hypoxic conditions and define HIF1α as a 
key transcriptional activator of VISTA[58]. Subsequent experiments also demonstrate that under hypoxic 
conditions, VISTA KO MDSCs promote higher levels of CD4+ and CD8+ T cell proliferation and activation 
compared to WT MDSCs[9].
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Figure 2. The proposed effects of VISTA blockade in the TME. The administration of an anti-VISTA antagonist results in the 
recruitment of T cells to the TME, as well as a reduction in chemotaxis of MDSCs and macrophages into the TME. VISTA antagonism 
also results in decreased differentiation of MDSCs into TAMS is also decreased; reduced production of suppressive cytokines by 
MDSCs and macrophages, resulting in decreased T cell inhibition, and increased production of IFNγ and IL-2. DCs become more 
activated and upregulate Erk1/2 and Jnk1/2, potentially regulating the IL-23/IL-17 inflammatory axis. Neutrophil and PMN-MDSC levels 
are decreased in the TME by the reduction of chemotaxis after VISTA blockade. Altogether, these effects of VISTA antagonism result in 
reduced tumor burden. VISTA: V-domain Ig Suppressor of T cell Activation; TME: tumor microenvironment; MDSCs: myeloid-derived 
suppressor cells; TAMS: tumor associated macrophages.

Tumor associated macrophages (TAMs) infiltrate the TME and contribute to tumor cell proliferation, 
angiogenesis, and metastasis[59]. VISTA deficiency impairs macrophage chemotaxis, migration, and cytokine 
production [Figure 2][12,60]. Moreover, VISTA KO macrophages produce high amounts of inflammatory 
cytokines such as CCL2, CCL3, CCL4, and CCL5 at steady state and after LPS stimulation[12], highlighting 
the role of VISTA in macrophage suppressiveness and potential regulatory role of VISTA antagonism of 
TAMs in the TME. Interestingly, VISTA agonist induce macrophage tolerance and promote anti-
inflammatory pathways[22]. VISTA deficiency also decreases TAM levels in the TME of CT26 tumor-bearing 
mice, consistent with the data demonstrating that M-MDSCs can differentiate into TAMs [Figure 2] and 
potentially inflammatory DCs[12,61].

VISTA expression is associated with MDSCs in cutaneous melanoma[38], oral squamous cell carcinoma[39], 
and acute myeloid leukemia[62], suggesting that these cancers are strong candidates for VISTA blockade. For 
example, expression of VISTA on MDSCs and expression of PD-1 on CD8+ T cells, CD4+ T cells, and Treg are 
positively correlated in acute myeloid leukemia (AML) patients[62]. Blocking this interaction could have a 
therapeutic impact by alleviating MDSC suppressiveness and enhancing T cell responses. Together, these 
data support that VISTA expression on MDSCs modulates the TME, and that VISTA blockade has 
therapeutic benefits, particularly in the context of adaptive resistance.

Another myeloid cell subset that expresses VISTA is monocytic-DCs (mDCs), which are associated with 
cancer inflammation and can arise as a result of M-MDSC differentiation. VISTA antagonism in the B16F10 
melanoma model increases the activation state of DCs, resulting in increased expression of CD80 and 
MHCII, as well as increased production of cytokines such as IL-12p40 and TNFα[9,63]. VISTA may also 
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regulate DCs by suppressing Erk1/2 activation and by inhibiting IL-23 production[26]. Therefore, VISTA 
antagonism may reverse immune suppression and enhance anti-tumor responses.

THE ROLE OF VISTA ON GRANULOCYTES
Beyond the previously discussed subsets, VISTA is also expressed on granulocytes, including eosinophils[64], 
neutrophils[19], and PMN-MDSCs[63]. Despite being associated with allergic diseases, some tumors display 
eosinophilia[65]. Eosinophils express VISTA constitutively at low levels but have been shown to nonetheless 
affect immune responses[64]. In an OVA-induced asthma model, VISTA-deficient mice had significantly 
higher eosinophil levels in the lung compared to WT mice[66]. Another group showed that the use of an 
antagonistic VISTA mAb during antigen challenge induced an eosinophil mediated inflammatory Th2 
allergy response. Together, these studies suggest that VISTA blockade may help modulate eosinophils in the 
TME to improve patient outcomes.

VISTA also plays a regulatory role in neutrophils. IHC analysis of primary cutaneous melanoma samples 
demonstrated that VISTA expression correlates with neutrophil infiltration of the TME and that 
neutrophils were typically associated with tumor ulceration and necrosis[37]. Transcriptional analysis of 
Vsir-/- psoriatic mice demonstrates that neutrophils in these mice may negatively regulate apoptosis and 
positively regulate the immune system[26]. These mice also possess increased Cxcl2 expression in the skin 
and increased serum CXCL2 levels. VISTA targeting reduces CXCR2 expression on neutrophils and ablates 
migratory responses to CXCL2[67]. Neutrophil migration is regulated by VISTA, which could thus impact 
both neutrophil and PMN-MDSC levels in the TME.

Indeed, VISTA antagonism significantly reduces PMN-MDSC levels in the TME and spleen in a murine 
B16F10 melanoma model[9]. However, treatment did not decrease suppressive activities of PMN-MDSCs as 
it did with M-MDSCs[9]. Though PMN-MDSCs and M-MDSCs are different in origin and function, both 
subsets are suppressive in the TME and tend to be poor prognostic factors in cancer[68,69]. These data indicate 
that the PMN-MDSC subset might not directly respond to VISTA blockade alone and can be taken into 
consideration when designing a combination therapy approach.

VISTA: A DIRECT AND INDIRECT REGULATOR OF T CELLS IN THE TME
VISTA acts as a negative checkpoint regulator of naïve T cell quiescence and peripheral tolerance[14]. Both 
naïve and memory CD4+ and CD8+ T cells express VISTA, and multiple studies show that VISTA modulates 
T cell activity[20,23]. Aged VISTA-deficient mice display enhanced T cell activation and cytokine 
production[23]. VISTA-/- CD4s cultured in vitro with anti-CD3 also exhibit high proliferation and production 
of cytokines such as IFNγ, IL-17A and TNFα[20]. Furthermore, plate-bound VISTA Ig inhibits CD4+ and 
CD8+ T cell proliferation and cytokine production, as well as reduces IL-2 production by CD4+ memory T 
cells and IFNγ production by CD8+ T cells[15].

Naïve CD4+ T cells exhibit VISTA mediated control of quiescence and peripheral tolerance[14]. Single-cell 
sequencing of naïve CD4+ T cells shows unexpected heterogeneity in the naïve T cell compartment, with 
VISTA-/- mice showing a loss in a cluster marked by genes involved in T cell quiescence[14]. CD4+ T cells are 
also less tolerized against self-peptides[14]. These data indicate that VISTA alters T cell tolerance, so targeting 
VISTA holds promise in modulating T cell tolerance to tumors. The change in tolerance may allow for a 
broader repertoire of T cells to be recruited into the TME, resulting in a more robust and broader anti-
tumor immune response. We speculate that VISTA signaling therefore may work in conjunction with TCR 
signaling by potentially reducing the threshold of TCR signaling and allowing for lower affinity antigens 
with that to induce immune responses. Naïve T cell regulation by VISTA may therefore be utilized to 
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improve cancer therapies.

In mice bearing B16OVA melanoma tumors, VISTA blockade using the VISTA antagonist monoclonal 
antibody 13F3 results in enhanced T cell activation and increased anti-tumor responses via recruitment of 
immune cells to the TME[9]. 13F3 has also been shown to have anti-tumor effects on other tumors, including 
the bladder tumor model MB49 and B16BL6 melanoma model[9]. In the GL261 glioma tumor model, 
VISTA-induced reduction of disease burden in a CD4+ T cell-dependent manner, as shown by CD4 
depletion experiments[20]. Remarkably, the combination of anti-VISTA and a single dose of a peptide 
vaccine resulted in an even greater reduction of tumor burden[9]. The authors suggest that high VISTA 
expression on myeloid cells within the TME results in effector T cell suppression, as well as recruitment of 
immunosuppressive Tregs and M-MDSC to the TME [Figure 2][9]. Tregs, a major contributor to immune 
suppression during cancer, can also be modulated by VISTA targeting[9]. Upon adoptive transfer of OTIIs 
into B16OVA-bearing mice, CD4+ conversion to Tregs was reduced in mice that received 13F3[9]. Targeting 
VISTA in tumors therefore may have a direct effect on T cell activity and recruitment, as well as display an 
indirect effect on T cells via MDSCs or induced Treg differentiation[70].

PD-1 and CTLA-4 are important checkpoint regulators of the immune system currently being targeted for 
cancer therapies in the clinic. These pathways work in a non-redundant manner on T cells compared to 
VISTA[23,28]. Studies comparing the changes in T cell effector pathways of tumor-specific CD8+ T cells found 
that anti-CTLA-4 promotes cell cycle and effector memory responses, while anti-PD-1 enhances 
metabolism and effector function[67]. Further, while anti-CTLA-4 induces the expansion of ICOS+ Th1-like 
CD4+ T cells, anti-PD-1 drives re-expansion of exhausted CD8+ T cell subsets[71]. The combination of anti-
PD-1 and anti-CTLA-4 promotes progenitor exhausted (Tex-prog) subsets, which are polyfunctional and 
retain proliferative capacity[72,73]. While these checkpoints target T cell priming or exhaustion, anti-VISTA 
has the unique ability to target naïve T cells, as well as potentially modulate T cell activity indirectly via 
other immune cells present in the TME[14]. VISTA can therefore be used in combination with anti-PD-1 or 
anti-CTLA-4 to enhance T cell activity and therapeutic outcomes in a non-redundant manner[28] [Table 1].

VISTA AND ITS COUNTER-RECEPTORS: THE TME
Multiple ligands are proposed to bind to VISTA, including PSGL-1[74], VSIG-3[75], syndecan-2[76], and even 
VISTA itself[77], suggesting that - like other B7 proteins - VISTA may have multiple binding partners. 
PSGL-1 is an adhesion molecule expressed on innate immune cells such as monocytes, macrophages, and 
neutrophils[78]. Among adaptive immune cells, PSGL-1 is expressed on CD4+ T cells, CD8+ T cells, and Th17 
cells, and it may play a role in the TME by promoting CD4+ T cell exhaustion[79] and negatively regulating T 
cells[80]. The PSGL-1/VISTA interaction was first described by Johnston et al. in 2019, where the authors 
reported that PSGL-1 only binds to VISTA under acidic conditions, like those in the TME, via a histidine-
dependent binding interface[74]. Furthermore, lymph nodes have been shown to possess acidic niches to 
suppress their effector functions without impacting initial naïve T cell activation, thus highlighting another 
physiological possibility for the pH-dependent PSGL-1/VISTA interaction[81]. Blocking this interaction in 
vitro with a pH-selective VISTA mAb demonstrated an increase in IFNγ production, NFκB 
phosphorylation, and CD4+ T cell proliferation of human T cells[74]. Though PSGL-1 is a promising 
proposed ligand, it is likely that VISTA has additional binding partners due to VISTA interactions being 
found elsewhere in the body where higher pH conditions are present.

V-set and immunoglobulin domain-containing protein 3 and V-set and immunoglobulin domain-
containing protein 8 (VSIG-8) are members of the immunoglobulin superfamily and proposed as binding 
partners to VISTA[75,82]. However, subsequent studies have not found significant binding of VSIG-8 to 
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Table 1. Predicted outcomes of VISTA blockade with PD-1 or CTLA-4 blockade

Co-
blockade Immune checkpoint expression in the TME and relevant data Proposed impact on the TME

VISTA + 
PD-1

VISTA on MDSCs associates with PD-1 on T cells in AML[64] 
VISTA expression ↑ on intratumoral lymphocytes in metastatic melanoma after 
anti-PD-1 monotherapy or anti-PD-1 and anti-CTLA-4 combination therapy[10] 
VISTA expression associates with PD-1 and PD-L1 in NSCLC[46], 
craniopharyngioma[75], and ENKTCL[76]

Co-blockade of VISTA and PD-1 reduces the 
likelihood of developing resistance by blocking 
VISTA-related compensatory immune escape 
pathways in myeloid and T cells

VISTA + 
CTLA-4

High VISTA expression on TAMs and CD68+ macrophages in pancreatic cancer 
and PDAC, respectively[40,55] 
In OSC, VISTA is overexpressed in tumor-infiltrating ICs and associated with 
PD-L1 and CTLA-4 expression[39] 
VISTA expression ↑ in tumor tissue, blood monocytes, and tumor-associated 
CD4+ and CD8+ T cells in PC after anti-CTLA-4 treatment[11]

Co-blockade of VISTA and CTLA-4 may reduce 
adaptive resistance to anti-CTLA-4, 
and have complementary impacts on T cell 
activation because VISTA  
regulates T cells prior to activation and CTLA-4 
regulates T cells after activation

VISTA: V-domain Ig Suppressor of T cell Activation; TME: tumor microenvironment; MDSCs: myeloid-derived suppressor cells; AML: acute 
myeloid leukemia; CT: combination therapy; ENKTCL: extranodal Natural killer/T-cell lymphoma; GC: gastric cancer; GIST: gastrointestinal 
stromal tumor; CRC: colorectal cancer; ICs: immune cells; NSCLC: non-small cell lung cancer; OSC: oral squamous carcinoma; OSCC: 
oropharyngeal squamous cell carcinoma; PBMC: peripheral blood mononuclear cells; PC: prostate cancer; PDAC: pancreatic ductal 
adenocarcinoma; RCC: renal cell carcinoma. TAMs: tumor associated macrophages.

VISTA[75]. While these proteins may bind VISTA under certain conditions, the biological relevance of these 
interactions as counter-receptors for VISTA is not yet clear, as VSIG-3 and VISG-8 are minimally expressed 
in secondary lymphoid organs where VISTA interactions are expected to occur[83]. In multiple tumor 
models (B16F10, MC38, and 4T1), SG7, an antibody that prevents both PSGL-1 and VSIG-3 from binding 
to VISTA, slowed tumor growth[84]. Unlike other VISTA antibodies that have demonstrated an Fc 
crosslinking requirement, this clone is Fc-silent[84]. Combination therapy of SG7 and anti-PD-1 resulted in a 
synergistic effect in the MC38 model, slowing tumor growth more than either antibody alone[84].

Most recently described is the interaction between VISTA and syndecan-2, a monocyte proteoglycan[76]. 
This interaction was identified via CRISPR/Cas9 screenings and demonstrated that heparan sulfate 
proteoglycan (HSPG) pathway enzymes and syndecan-2 mediate VISTA binding to monocytes[76]. The 
HSPG pathway is important in monocyte chemotaxis, migration, and maturation[85]. The syndecan-2 
antibody prevented the VISTA antibody from binding primary human monocytes, and like the VISTA 
monoclonal antibodies in clinical trials, this antibody demonstrated the requirement for Fc crosslinking. 
Interestingly, syndecan-2 is upregulated in some of the same cancers as VISTA, such as colorectal and 
prostate, as previously discussed[86,87]. This indicates that VISTA antagonism could have an activating effect 
on monocytes by blocking the interaction between VISTA and syndecan-2 in the TME.

Lastly, VISTA has also been reported to interact with itself via homophilic cis and trans interactions. This 
occurs in the context of p53-induced VISTA expression, which can lead to signaling-mediated phagocytic 
clearance of apoptotic cells[77]. However, another group was unable to verify this homotypic interaction of 
VISTA with itself[74], so this interaction may only occur under particular conditions. Identifying the binding 
partner(s) of VISTA is challenging due to the lack of functional data to determine whether these 
interactions are biologically relevant in the TME.

THE LANDSCAPE OF VISTA THERAPEUTICS IN RESEARCH AND DEVELOPMENT 
Numerous preclinical and clinical studies are underway to evaluate the activities of VISTA-based 
therapeutics [Table 2]. There are numerous drugs of interest in preclinical development, including VISTA 
mAbs PMC-309 by PharmAbcine[88], VTX-0811 by Verseau[89], and KVA12.1 by Kineta[90], SNS-101[91], and 
INT-18[92].
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Table 2. Current status of VISTA therapeutics in preclinical and clinical development

Drug Type Target Company Stage Cancers

JNJ-61610588 IgG1 mAb VISTA Janssen/ImmuNext Phase I: [D] NCT02671955 Advanced solid tumors

CI-8993 IgG1 mAb VISTA Curis/ImmuNext Phase I: [IP] NCT04475523 Relapsed/refractory solid 
tumors

CA-170 Small 
molecule

VISTA & PD-
L1

Curis/ImmuNext Phase I: [C] NCT02812875 Advanced solid tumors or 
lymphomas

CA-170 Small 
molecule

VISTA & PD-
L1

Curis/Aurigene Phase II: [IP] 
CTRI/2017/12011026

Advanced solid tumors or 
lymphomas

K01401-020 W0180 +/- 
Pembrolizumab

mAb VISTA +/- 
PD-1

Pierre Fabre Phase Ia, 1b: [ IP] 
NCT04564417

Locally advance or metastatic 
solid tumors

HMBD-002 IgG4 mAb VISTA Hummingbird Phase I/II: [IP] 
NCT05082610

Advanced solid tumors

KVA 12.1 IgG1 mAb VISTA Kineta Preclinical -

VTX-0811 mAb PSGL-1 Verseua Preclinical -

PMC-309 IgG1 mAb VISTA PharmAbcine Preclinical -

SNS-101 IgG1 mAb VISTA/PSGL-1 Sensei 
Biotherapeutics

Preclinical -

IMT-18 mAb VSIG-3 iOMx Preclinical -

VISTA: V-domain Ig Suppressor of T cell Activation; D: discontinued; IP: in progress; C: complete.

The first clinical trial (NCT02671955) studying a drug that targeted VISTA involved an antagonistic mAb 
(JNJ-61610588) developed by ImmuNext in collaboration with Janssen Biotech[93]. This phase I trial enrolled 
twelve participants with advanced cancers but was terminated by Janssen. The asset was returned to 
ImmuNext and licensed by Curis. Currently underway is a phase I clinical trial (NCT04475523) using 
CI-8993, an anti-VISTA IgGk mAb in patients with relapsed or refractory solid tumors[94]. Preclinical data 
published in November 2021 demonstrated that CI-8993 specifically bound VISTA in human VISTA 
knock-in mice, which is a promising indicator for use in solid tumor patients in the clinical trial[95].

CA-170 is a small molecule that targets both VISTA and PD-L1, potentially by involving binding to 
VISTA’s histidine binding sites or forming a defective ternary PD-1/PD-L1 complex[96]. The phase I trial 
(NCT02812875) was successful[96], and the phase II trial (CTRI/2017/12/011026) demonstrated efficacy[97] 
but was discontinued. Another clinical trial is evaluating the VISTA mAb W0180 in patients with locally 
advanced or metastatic solid tumors (NCT04564417)[98]. This phase Ia trial, led by Pierre Fabre, will evaluate 
the safety of W0180 as a monotherapy, and phase Ib will involve treatment with W0180 and/or 
pembrolizumab (anti-PD-1). A monoclonal IgG4 anti-VISTA antibody (HMBD-002) is being developed by 
Hummingbird, with the phase I/II trial ongoing (NCT05082610)[99]. This antibody is cross-reactive to 
murine VISTA and has been shown to be therapeutically effective in preclinical murine tumor models[100].

FUTURE PERSPECTIVES
Combination ICI therapy approaches have potential to improve cancer patient outcomes. Here, we will 
discuss the potential for the use of anti-VISTA in conjunction with anti-PD-1 and anti-CTLA-4, based on 
preclinical murine models, data from patient samples, and current clinical trials. In mice, blockade of PD-L1 
and VISTA resulted in 80% tumor regression in the CT26 colon cancer model, which was superior to either 
treatment alone[28]. A murine RCC model demonstrated that co-blockade of VISTA and PD-1/PD-L1 
resulted in a greater reduction of tumor growth relative to either treatment alone[28]. Furthermore, survival is 
significantly higher in the B16 melanoma model using co-blockade of PD-L1 and VISTA, as compared to 
monotherapy, despite being a less immunogenic model than CT26. These data demonstrate that VISTA 
antagonism may be beneficial even in cancers that are less likely to respond to immunotherapy. For 
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example, PDAC is a poorly immunogenic tumor, but the high expression of VISTA on CD68+ TAMs and 
TCs indicates that this cancer would be a strong candidate for anti-VISTA treatment[40,51].

Based on these data, VISTA activity in the TME can be modulated. VISTA blockade is especially attractive 
in the context of overcoming adaptive resistance, particularly following the use of other ICIs like anti-PD-1 
and anti-CTLA-4. As shown in Table 1, numerous studies have shown upregulation of VISTA in ICs after 
immune checkpoint blockade. This, combined with the relevance of VISTA expression on TCs and SCs, 
suggests that VISTA is an attractive therapeutic target.

VISTA blockade may also be used in conjunction with radiation therapy. A murine glioma model 
comparing the effects of radiation on WT mice versus VISTA KO mice demonstrated that the VISTA KO 
mice survived significantly longer than the WT[20]. Another study showed that the combination of VISTA 
and PD-1 co-blockade (with cyclophosphamide) with radiation therapy significantly improves tumor 
control and overall survival in a mouse model of triple-negative breast cancer[101]. This combination therapy 
approach overcame some of the mechanisms of adaptive resistance discussed earlier, specifically by 
depleting MDSCs from the TME, as well as increasing priming and infiltration of tumor specific CTLs to 
the TME.

It is worth noting that the clinical trials thus far have mostly shown safety and dose-liming toxicities. While 
the risk for immune-related adverse events in combination therapy is higher than that of monotherapy, 
preclinical models can be indicative of the extent to which that risk increases. For example, VISTA/PD-1 
double KO mice do not develop overt autoimmune disease[28], while CTLA-4 KO mice die very young due 
to severe inflammation[102,103]. Since the phenotype of the VISTA/PD-1 double KO is relatively benign to that 
of the CTLA-4 KO mice, co-blockade of PD-1 and VISTA may be more therapeutically attractive relative to 
the co-blockade of PD-1 and CTLA-4 seen clinically.

CONCLUSION
VISTA modulates both immune cell recruitment to the TME and immune cell function within the TME. It 
is especially critical to evaluate these subsets in various murine cancer models and in humans, so anti-
VISTA therapy can be tailored to specific cancer type, stage, and immunogenicity. The anti-VISTA 
antibodies in clinical trials may also help shed light on the basic biological mechanisms of VISTA and its 
potential binding partners. Although detailed studies are required to evaluate the mechanistic role of VISTA 
across immune cell subsets in the TME, it is apparent that VISTA plays a key regulatory role in the TME, 
and that VISTA antagonism will be especially beneficial in combination therapy approaches to mitigate 
adaptive resistance and improve patient outcomes.
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