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Abstract
In this paper, the decentralized tracking control (DTC) problem is investigated for a class of continuous-time nonlinear
systems with external disturbances. First, the DTC problem is resolved by converting it into the optimal tracking
controller design for augmented tracking isolated subsystems (ATISs). A cost function with a discount is taken into
consideration. Then, in the case of external disturbances, the DTC scheme is effectively constructed via adding the
appropriate feedback gain to each ATIS. In addition, utilizing the approximation property of the neural network, the
critic network is constructed to solve the Hamilton-Jacobi-Isaacs equation, which can derive the optimal tracking
control law and the worst disturbance law. Moreover, the updating rule is improved during the process of weight
learning, which removes the requirement for initial admission control. Finally, through the interconnected spring-
mass-damper system, a simulation example is given to verify the availability of the DTC scheme.

Keywords: Adaptive dynamic programming, discounted cost function, decentralized tracking control, disturbance
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1. INTRODUCTION
For large-scale nonlinear interconnected systems, which are considered as nonlinear plants consisting of many
interconnected subsystems, decentralized control has become a research hotspot in the last few decades [1–4].
Compared with the centralized control, the decentralized control has the advantages of simplifying the struc-
ture and reducing the computation burden of the controller. Besides, the local controller only depends on
the information of the local subsystem. Meanwhile, with the development of science and technology, inter-
connected engineering applications have become increasingly complex, such as robotic systems [5] and power
systems [6,7]. In [8–10], we found that the decentralized control of the large-scale system was connected with the
optimal control of the isolated subsystems, which means the optimal control method [11–14] can be adopted
to achieve the design purpose of the decentralized controllers. However, the optimal control of the nonlin-
ear system often needs to solve the Hamilton-Jacobi-Bellman (HJB) or Hamilton-Jacobi-Isaacs (HJI) equation,
which can be solved by using the adaptive dynamic programming (ADP) method [15,16]. Besides, in [13], Wang
et al. investigated the latest intelligent critic framework for advanced optimal control. In [14], the optimal
feedback stabilization problem was discussed with discounted guaranteed cost for nonlinear systems. It fol-
lows that the interconnection plays a significant role in designing the controller. Hence, it can be classified
as decentralized and distributed control schemes. There is a certain distinction between decentralized control
and distributed control. For decentralized control, each sub-controller only uses local information and the
interconnection among subsystems can be assumed to be weak in nature. Compared with the decentralized
control, the distributed control [17–19] can be introduced to improve the performance of the subsystems when
the interconnections among subsystems become strong. In [20], the distributed optimal observer was devised
to assess the nonlinear leader state for all followers. In [21], the distributed control was developed by means of
online reinforcement learning for interconnected systems with exploration.

It is worth mentioning that the ADP algorithm has been extensively employed for dealing with various opti-
mal regulation problems and tracking problems [22–24], which will achieve the goal, that is, the actual signal can
track the reference signal under the noisy and the uncertain environment. In [25], Ha et al. proposed a novel
cost function to explore the evaluation framework of the optimal tracking control problem. Then, aimed at
complicated control systems, it is necessary to consider decentralized tracking control (DTC) problems [26–29].
The DTC systems can be transformed into the the nominal augmented tracking isolated subsystems (ATISs),
which are composed of the tracking error and the reference signal. In [26], Qu et al. proposed a novel formu-
lation consisting of a steady-state controller and a modified optimal feedback controller of the DTC strategy.
Besides, the asymptotic DTC was realized by introducing two integral bounded functions in [27]. In [28], Liu et
al. proposed a finite-time DTC method for a class of nonstrict feedback interconnected systems with distur-
bances. Moreover, the adaptive fuzzy output-feedback DTC design was investigated for switched large-scale
systems in [29].

Game theory is a discipline that implements corresponding strategies. It contains cooperative and noncooper-
ative types, that is, zero-sum (ZS) games and non-ZS games. In particular, ZS games have been widely applied
in many fields [30–33]. The object of the ZS game is to derive the Nash equilibrium of nonliner systems, which
makes the cost function optimized. In [31], the finite-horizon H-infinity state estimator design was studied for
periodic neural networks over multiple fading channels. The noncooperative control problem was formulated
as a two-player ZS game in [32]. In [33], Wang et al. investigated the stability of the general value iteration al-
gorithm for ZS games. At the same time, we can also combine the ZS problem with the tracking problem to
make the system more stable while achieving the trajectory tracking. In [34], Zhang et al. developed an online
model-free integral reinforcement learning algorithm for solving the H-infinity optimal tracking problem for
completely unknown systems. In [35], a general bounded 𝐿2 gain tracking policy was introduced with a dis-
counted function. In [36], Hou et al. proposed an action-disturbance-critic neural network frame to realize the
iterative dual heuristic programming algorithm.
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As can be seen from the above, there are few studies that combine the DTC problem with the ZS game prob-
lem. It is necessary to take the related discounted cost function into account for the DTC system, which can
transform the DTC problem into an optimal control problem with disturbances. In practice, the existence of
disturbances will make an unpredictable impact on the plant. Hence, it is of vital importance to consider the
stability of the DTC system. In the experimental simulation, it is a challenge to achieve the goal of effective
online weight training, which is implemented under the tracking control law and the disturbance control law.
Consequently, in this paper, we put forward a novel method in view of ADP to resolve the DTC problem
with external disturbances for continuous-time (CT) nonlinear systems. More importantly, for the sake of
overcoming the difficulty of selecting initial admissible control policies, an additional term is added during
the weight updating process. Remarkably, in this paper, we introduce the discount factor for maximizing and
minimizing the corresponding cost function.

The contributions of this paper are as follows: First, considering the disturbance input in the DTC system, the
strategy feasibility and the system stability are discussed through theoretical proofs. It is worth noting that the
discount factor is introduced to the cost function. Moreover, in the process of online weight training, we can
make the DTC system reach a stable state without selecting the initial admissible control law. Additionally, we
present the experimental process of the spring-mass-damper system. Besides, we derive the desired tracking
error curves as well as control strategy curves, which demonstrates that they are uniformly ultimately bounded
(UUB).

The whole paper is divided into six sections. The first section is the introduction of relevant background
knowledges of the research content. The second section is the problem statement of basic problems about
the two person ZS game and the DTC strategy. In the third section, we design the decentralized tracking
controller by using the optimal control method through solving the HJI equations. Meanwhile, the relevant
lemma and theorem are given to validate the establishment of the DTC strategy. In the fourth section, the
design method in accordance with adaptive critic is elaborated. Most importantly, an improved critic learning
rule is implemented via critic networks. In the fifth section, the practicability of this method is validated by an
interconnected spring-mass-damper system. Finally, the sixth section displays conclusions and summarizes
overall research content of the whole paper.

2. PROBLEM STATEMENT
Consider a CT nonlinear interconnected system with disturbances, which is composed of 𝑁 interconnected
subsystems. Its dynamic description can be expressed as

¤𝑥𝑖 (𝑡) = 𝑓𝑖 (𝑥𝑖 (𝑡)) + 𝑔𝑖 (𝑥𝑖 (𝑡))
(
𝑢̄𝑖 (𝑥𝑖 (𝑡)) + 𝑍̄𝑖 (𝑥(𝑡))

)
+ ℎ𝑖 (𝑥𝑖 (𝑡))𝑣𝑖 (𝑥𝑖 (𝑡)), (1)

where 𝑖 = 1, 2, . . . , 𝑁 , 𝑥𝑖 (𝑡) ∈ R𝑛𝑖 is the state vector of the 𝑖th subsystem and 𝑥(𝑡) denotes the partial inter-
connected state related to other subsystems of the large-scale system. 𝑢̄𝑖 (𝑥𝑖 (𝑡)) ∈ R𝑚𝑖 is the control input
and 𝑣𝑖 (𝑥𝑖 (𝑡)) ∈ R𝑞𝑖 is the external disturbance input. As for the 𝑖th subsystem, we denote 𝑓𝑖 (𝑥𝑖 (𝑡)), 𝑔𝑖 (𝑥𝑖 (𝑡)),
ℎ𝑖 (𝑥𝑖 (𝑡)), and 𝑍̄𝑖 (𝑥(𝑡)) as the nonlinear internal dynamics, the input gain matrix, the disturbance gain matrix,

and the interconnected item in sequence. Besides, [𝑥T
1 , 𝑥

T
2 , . . . , 𝑥

T
𝑁 ]

T ∈ R𝑛 denotes the whole state of the
large-scale system Equation (1), where 𝑛 =

∑𝑁
𝑖=1 𝑛𝑖 . Accordingly, 𝑥1, 𝑥2, . . . , 𝑥𝑁 are named local states and

𝑢̄1(𝑥1), 𝑢̄2(𝑥2), . . . , 𝑢̄𝑁 (𝑥𝑁 ) are called local controllers. We let 𝑅𝑖 ∈ R𝑚𝑖×𝑚𝑖 be the symmetric positive definite
matrix and denote 𝑍𝑖 (𝑥(𝑡)) = 𝑅𝑖1/2 𝑍̄𝑖 (𝑥(𝑡)). In addition, 𝑍𝑖 (𝑥(𝑡)) ∈ R𝑚𝑖 is bounded as follows:

‖𝑍𝑖 (𝑥(𝑡))‖ ≤
𝑁∑
𝑗=1
𝛼𝑖 𝑗𝜃𝑖 𝑗 (𝑥 𝑗 ) ≤

𝑁∑
𝑗=1

𝛽𝑖 𝑗𝜃 𝑗 (𝑥 𝑗 ), (2)

where 𝑗 = 1, 2, . . . , 𝑁 , 𝛼𝑖 𝑗 is the nonnegative constant, 𝜃𝑖 𝑗 (𝑥 𝑗 ) is the positive semidefinite function. Besides,
we define 𝜃 𝑗 (𝑥 𝑗 ) = max {𝜃1 𝑗 (𝑥 𝑗 ), 𝜃2 𝑗 (𝑥 𝑗 ), . . . , 𝜃𝑁 𝑗 (𝑥 𝑗 )} and the element of {𝜃1 𝑗 (𝑥 𝑗 ), 𝜃2 𝑗 (𝑥 𝑗 ), . . . , 𝜃𝑁 𝑗 (𝑥 𝑗 )}
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will not reach zero at the same time. For this reason, 𝛽𝑖 𝑗 ≥ 𝛼𝑖 𝑗𝜃𝑖 𝑗 (𝑥 𝑗 )/𝜃 𝑗 (𝑥 𝑗 ) holds, where 𝛽𝑖 𝑗 is also the
nonnegative constant.

In this paper, considering the nonlinear system Equation (1), a reference system is introduced as follows:

¤𝑟𝑖 (𝑡) = 𝜁𝑖 (𝑟𝑖 (𝑡)), (3)

where 𝑟𝑖 (𝑡) ∈ R𝑛𝑖 denotes the desired trajectory with 𝑟𝑖 (0) = 𝑟𝑖0, the function 𝜁𝑖 is locally Lipschitz continuous
satisfying 𝜁𝑖 (0) = 0. For the 𝑖th subsystem, the trajectory tracking error can be defined as 𝑒𝑖 (𝑡) = 𝑥𝑖 (𝑡) − 𝑟𝑖 (𝑡)
with 𝑒𝑖 (0) = 𝑒𝑖0. Thus, the dynamics of the tracking error is

¤𝑒𝑖 (𝑡) = 𝑓𝑖 (𝑥𝑖 (𝑡)) + 𝑔𝑖 (𝑥𝑖 (𝑡))
(
𝑢̄𝑖 (𝑥𝑖 (𝑡)) + 𝑍̄𝑖 (𝑥(𝑡))

)
+ ℎ𝑖 (𝑥𝑖 (𝑡))𝑣𝑖 (𝑥𝑖 (𝑡)) − 𝜁𝑖 (𝑟𝑖 (𝑡)). (4)

Noticing 𝑥𝑖 (𝑡) = 𝑒𝑖 (𝑡) + 𝑟𝑖 (𝑡), we define the augmented subsystem states as 𝑦𝑖 (𝑡) = [𝑒T𝑖 (𝑡), 𝑟T𝑖 (𝑡)]T ∈ R2𝑛𝑖

with 𝑦𝑖 (0) = 𝑦𝑖0 = [𝑒T𝑖0 , 𝑟T𝑖0 ]T. Hence, the dynamic of the 𝑖th ATIS based on Equations (1) and (3) can be
formulated as a concise form

¤𝑦𝑖 (𝑡) = F𝑖 (𝑦𝑖 (𝑡)) + G𝑖 (𝑦𝑖 (𝑡))
(
𝑢̄𝑖 (𝑦𝑖 (𝑡)) + 𝑍̄𝑖 (𝑦(𝑡))

)
+ H𝑖 (𝑦𝑖 (𝑡))𝑣𝑖 (𝑦𝑖 (𝑡)), (5)

where F𝑖 (𝑦𝑖 (𝑡)) ∈ R2𝑛𝑖 , G𝑖 (𝑦𝑖 (𝑡)) ∈ R2𝑛𝑖×𝑚𝑖 , and H𝑖 (𝑦𝑖 (𝑡)) ∈ R2𝑛𝑖×𝑞𝑖 respectively. Specifically, they can be
expressed as

F𝑖 (𝑦𝑖 (𝑡)) =
[
𝑓𝑖 (𝑒𝑖 (𝑡) + 𝑟𝑖 (𝑡)) − 𝜁𝑖 (𝑟𝑖 (𝑡))

𝜁𝑖 (𝑟𝑖 (𝑡))

]
, (6)

G𝑖 (𝑦𝑖 (𝑡)) =
[
𝑔𝑖 (𝑒𝑖 (𝑡) + 𝑟𝑖 (𝑡))

0𝑛𝑖×𝑚𝑖

]
, (7)

H𝑖 (𝑦𝑖 (𝑡)) =
[
ℎ𝑖 (𝑒𝑖 (𝑡) + 𝑟𝑖 (𝑡))

0𝑛𝑖×𝑞𝑖

]
. (8)

We aim to design a pair of decentralized control policies 𝑢̄1, 𝑢̄2, . . . , 𝑢̄𝑁 to ensure that large-scale system Equa-
tion (1) can track the desired object while being restricted by external disturbances. It means that as 𝑡 → +∞,
‖𝑥𝑖 (𝑡) − 𝑟𝑖 (𝑡)‖ → 0. Meanwhile, it is noteworthy that the control pair 𝑢̄1, 𝑢̄2, . . . , 𝑢̄𝑁 should be pointed out
only as a corresponding controller with the local information. In what follows, it presents the DTC problem
by transforming it into the optimal controller design of ATISs by considering an appropriate discounted cost
function.

3. DTC DESIGN VIA OPTIMAL REGULATION
3.1. Optimal control and the HJI equations
In this section, the optimal DTC strategy of the ATIS with the disturbance rejection is elaborated. It is ad-
dressed by solving the HJI equation with a discounted cost function. Then, we consider the nominal part of
the augmented system Equation (5) as

¤𝑦𝑖 (𝑡) = F𝑖 (𝑦𝑖 (𝑡)) + G𝑖 (𝑦𝑖 (𝑡))𝑢𝑖 (𝑦𝑖 (𝑡)) + H𝑖 (𝑦𝑖 (𝑡))𝑣𝑖 (𝑦𝑖 (𝑡)). (9)

We assume that F𝑖 +G𝑖𝑢𝑖 +H𝑖𝑣𝑖 is Lipschitz continuous on a setΩ𝑖 ⊂ R2𝑛𝑖 , which is commonly used in the field
of adaptive critic control to ensure the existence and uniqueness of the solution for the differential equation.
Related to the 𝑖th ATIS, we manage to minimize and maximize the discounted cost function as

𝐽𝑖 (𝑦𝑖0) =
∫ ∞

0
𝑒−𝜆𝑖 (𝜏−𝑡)

{
𝑦T𝑖 (𝜏)𝑄𝑖𝑦𝑖 (𝜏) + 𝑢T

𝑖 (𝑦𝑖 (𝜏))𝑅𝑖𝑢𝑖 (𝑦𝑖 (𝜏)) − 𝜚2
𝑖 𝑣

T
𝑖 (𝑦𝑖 (𝜏))𝑣𝑖 (𝑦𝑖 (𝜏))

}
d𝜏, (10)
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where𝑄𝑖 ∈ R2𝑛𝑖×2𝑛𝑖 , 𝑅𝑖 ∈ R𝑚𝑖×𝑚𝑖 are both positive definite matrices. Herein, we let 𝑦T𝑖 𝑄𝑖𝑦𝑖 − 𝜚2
𝑖 𝑣

T
𝑖 (𝑦𝑖)𝑣𝑖 (𝑦𝑖) =

𝛾2
𝑖 (𝑦𝑖) and 𝜃𝑖 (𝑦𝑖) ≤

√
𝛾2
𝑖 (𝑦𝑖) − 𝜆𝑖𝐽𝑖 (𝑦𝑖), where 𝛾2

𝑖 (𝑦𝑖) > 𝜆𝑖𝐽𝑖 (𝑦𝑖). It is worth noting that this inequality is
employed to prove the feasibility of Theorem 1. Then, Equation (10) can be equivalent to

𝐽𝑖 (𝑦𝑖0) =
∫ ∞

0
𝑒−𝜆𝑖 (𝜏−𝑡)

{
𝛾2
𝑖 (𝑦𝑖) + 𝑢T

𝑖 (𝑦𝑖 (𝜏))𝑅𝑖𝑢𝑖 (𝑦𝑖 (𝜏))
}
d𝜏. (11)

If Equation (11) is continuously differentiable, the nonlinear Lyapunov equation is the infinitely small form of
Equation (11). The Lyapunov equation is as follows:

𝛾2
𝑖 (𝑦𝑖) + 𝑢T

𝑖 (𝑦𝑖)𝑅𝑖𝑢𝑖 (𝑦𝑖) − 𝜆𝑖𝐽𝑖 (𝑦𝑖) + (∇𝐽𝑖 (𝑦𝑖))T [F𝑖 (𝑦𝑖) + G𝑖 (𝑦𝑖)𝑢𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣𝑖 (𝑦𝑖)] = 0. (12)

Define the Hamiltonian of the ith ATIS for the optimization problem as

𝐻𝑖 (𝑦𝑖 , 𝑢𝑖 , 𝑣𝑖 ,∇𝐽𝑖 (𝑦𝑖)) = 𝛾2
𝑖 (𝑦𝑖) + 𝑢T

𝑖 (𝑦𝑖)𝑅𝑖𝑢𝑖 (𝑦𝑖) − 𝜆𝑖𝐽𝑖 (𝑦𝑖) + (∇𝐽𝑖 (𝑦𝑖))T

× [F𝑖 (𝑦𝑖) + G𝑖 (𝑦𝑖)𝑢𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣𝑖 (𝑦𝑖)] . (13)

To acquire the saddle point solution {𝑢∗𝑖 , 𝑣
∗
𝑖 }, the local optimal cost function need to satisfy the following Nash

condition

𝐽𝑖
∗(𝑦𝑖0) = min

𝑢𝑖
max
𝑣𝑖

𝐽𝑖 (𝑦𝑖0). (14)

Then, the optimal cost function 𝐽∗𝑖 (𝑦𝑖) is derived via solving the local HJI equation in the following:

min
𝑢𝑖

max
𝑣𝑖

𝐻𝑖 (𝑦𝑖 , 𝑢𝑖 , 𝑣𝑖 ,∇𝐽∗𝑖 (𝑦𝑖)) = 0. (15)

Due to the saddle point solution {𝑢∗𝑖 , 𝑣
∗
𝑖 } satisfies the extremum theorem, the optimal tracking control law and

the worst disturbance law can be computed by

𝑢∗𝑖 (𝑦𝑖) = −1
2
𝑅−1
𝑖 GT

𝑖 (𝑦𝑖)∇𝐽∗𝑖 (𝑦𝑖), (16)

𝑣∗𝑖 (𝑦𝑖) =
1

2𝜚2
𝑖

HT
𝑖 (𝑦𝑖)∇𝐽∗𝑖 (𝑦𝑖). (17)

Substituting the optimal tracking control strategy Equation (16) into Equation (15), the HJI equation for the
𝑖th ATIS becomes

(∇𝐽∗𝑖 (𝑦𝑖))T [F𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣∗𝑖 (𝑦𝑖)] + 𝛾2
𝑖 (𝑦𝑖) − 𝜆𝑖𝐽∗𝑖 (𝑦𝑖) −

1
4
(∇𝐽∗𝑖 (𝑦𝑖))TG𝑖 (𝑦𝑖)𝑅−1

𝑖 GT
𝑖 (𝑦𝑖)∇𝐽∗𝑖 (𝑦𝑖) = 0. (18)

3.2. Establishment of the DTC strategy design
In the following, we present the DTC strategy by adding the feedback gain to the interconnected system Equa-
tion (5). Herein, the following lemma is given by

Lemma 1 Considering the ATIS Equation (9), the feedback control

𝑢̄𝑖 (𝑦𝑖) = 𝑘𝑖𝑢∗𝑖 (𝑦𝑖) (19)

can ensure the 𝑁 ATISs are asymptotically stable as long as 𝑘𝑖 ≥ 1/2, which makes the tracking error approach
to zero.

http://dx.doi.org/10.20517/ces.2023.04
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Proof. The lemma can be proved by showing 𝐽∗𝑖 (𝑦𝑖) is a candidate Lyapunov function. We can find 𝐽∗𝑖 (𝑦𝑖) ≥ 0
in Equation (11), which implies that 𝐽∗𝑖 (𝑦𝑖) is a positive definite function. The derivative of 𝐽∗𝑖 (𝑦𝑖) along with
the 𝑖th ATIS is given by

¤𝐽∗𝑖 (𝑦𝑖) = (∇𝐽∗𝑖 (𝑦𝑖))T ¤𝑦𝑖
= (∇𝐽∗𝑖 (𝑦𝑖))T [F𝑖 (𝑦𝑖) + G𝑖 (𝑦𝑖)𝑢̄𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣𝑖 (𝑦𝑖)] . (20)

Substituting Equations (18) and (19) into Equation (20), we can rewrite it as

¤𝐽∗𝑖 (𝑦𝑖) = − 𝛾2
𝑖 (𝑦𝑖) + 𝜆𝑖𝐽∗𝑖 (𝑦𝑖) +

1
4
(∇𝐽∗𝑖 (𝑦𝑖))TG𝑖 (𝑦𝑖)𝑅−1

𝑖 GT
𝑖 (𝑦𝑖)∇𝐽∗𝑖 (𝑦𝑖)

− 1
2
𝑘𝑖 (∇𝐽∗𝑖 (𝑦𝑖))TG𝑖 (𝑦𝑖)𝑅−1

𝑖 GT
𝑖 (𝑦𝑖)∇𝐽∗𝑖 (𝑦𝑖)

= − (𝛾2
𝑖 (𝑦𝑖) − 𝜆𝑖𝐽∗𝑖 (𝑦𝑖)) −

(
1
2
𝑘𝑖 −

1
4

) 



𝑅− 1
2

𝑖 GT
𝑖 (𝑦𝑖)∇𝐽∗𝑖 (𝑦𝑖)





2
. (21)

Observing Equation (21), we can obtain that ¤𝐽∗𝑖 (𝑦𝑖) < 0 holds under the condition 𝛾2
𝑖 (𝑦𝑖) > 𝜆𝑖𝐽

∗
𝑖 (𝑦𝑖) for all

𝑘𝑖 ≥ 1/2 and 𝑦𝑖 ≠ 0. Thus, the conditions are satisfied for Lyapunov local stability theory and the actual state of
each ATIS can realize desired tracking objectives under the feedback control strategy. The proof is completed.

Remark 1. It is worth mentioning that only when 𝑘𝑖 = 1, the feedback control is optimal. Then, we will show the
following theorem to verify the proposed control law can effectively establish the DTC strategy.

Theorem 1 Taking Equation (2) and the interconnected augmented tracking system Equation (5) into account,
there exist 𝑁 positive numbers 𝑘∗𝑖 , such that, for any 𝑘𝑖 > 𝑘∗𝑖 , the feedback control polices given by Equa-
tion (19) guarantee that the interconnected tracking system can maintain the asymptotic stability. In other
words, the control pair 𝑢̄1(𝑦1), 𝑢̄2(𝑦2), . . . , 𝑢̄𝑁 (𝑦𝑁 ) is the DTC strategy for the large-scale system.

Proof. Inspired by Lemma 1, we observe that 𝐽∗𝑖 (𝑦𝑖) is the Lyapunov function. Therefore, a composite Lya-
punov function of 𝐽∗𝑖 (𝑦𝑖) is chosen as

L(𝑦) =
𝑁∑
𝑖=1

𝜇𝑖𝐽
∗
𝑖 (𝑦𝑖), (22)

where 𝜇𝑖 is a random positive constant. Taking the time derivative of L(𝑦), we have

¤L(𝑦) =
𝑁∑
𝑖=1

𝜇𝑖 ¤𝐽∗𝑖 (𝑦𝑖)

=
𝑁∑
𝑖=1

𝜇𝑖

{
(∇𝐽∗𝑖 (𝑦𝑖))T [F𝑖 (𝑦𝑖) + G𝑖 (𝑦𝑖)𝑢̄𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣𝑖 (𝑦𝑖)]

+ (∇𝐽∗𝑖 (𝑦𝑖))TG𝑖 (𝑦𝑖) 𝑍̄𝑖 (𝑦)
}
. (23)

Considering Equation (2), the mentioned inequality 𝜃𝑖 (𝑦𝑖) ≤
√
𝛾2
𝑖 (𝑦𝑖) − 𝜆𝑖𝐽𝑖 (𝑦𝑖), where 𝛾2

𝑖 (𝑦𝑖) > 𝜆𝑖𝐽𝑖 (𝑦𝑖), and
Equation (21), the upper formula can be converted to

¤L(𝑦) ≤ −
𝑁∑
𝑖=1

𝜇𝑖

{
𝛾2
𝑖 (𝑦𝑖) − 𝜆𝑖𝐽𝑖 (𝑦𝑖) +

(
1
2
𝑘𝑖 −

1
4

) 



(∇𝐽∗𝑖 (𝑦𝑖))TG𝑖 (𝑦𝑖)𝑅
− 1

2
𝑖





2

−




(∇𝐽∗𝑖 (𝑦𝑖))TG𝑖 (𝑦𝑖)𝑅

− 1
2

𝑖





 𝑁∑
𝑖=1

𝛽𝑖 𝑗

√
𝛾2
𝑖 (𝑦𝑖) − 𝜆𝑖𝐽𝑖 (𝑦𝑖)

}
. (24)
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Herein, in order to transform Equation (24) to the compact form, we denote

𝑀 = diag{𝜇1, 𝜇2, . . . , 𝜇𝑁 }, (25)

𝐾 = diag
{

1
2
𝑘1 −

1
4
,
1
2
𝑘2 −

1
4
, . . . ,

1
2
𝑘𝑁 − 1

4

}
, (26)

𝐵 =


𝛽11 𝛽12 . . . 𝛽1𝑁
𝛽21 𝛽22 . . . 𝛽2𝑁
...
...

. . .
...

𝛽𝑁1𝛽𝑁2 . . . 𝛽𝑁𝑁


. (27)

Therefore, we introduce a 2𝑁-dimensional column vector 𝜗, which consists of the 𝑁-dimensional column vec-

tor
√
𝛾2
𝑖 (𝑦𝑖) − 𝜆𝑖𝐽𝑖 (𝑦𝑖) and the 𝑁-dimensional column vector





(∇𝐽∗𝑖 (𝑦𝑖))TG𝑖 (𝑦𝑖)𝑅
− 1

2
𝑖





. Its form is as follows:

𝜗 =



√
𝛾2

1 (𝑦1) − 𝜆1𝐽1(𝑦1)√
𝛾2

2 (𝑦2) − 𝜆2𝐽2(𝑦2)
...√

𝛾2
𝑁 (𝑦𝑁 ) − 𝜆𝑁 𝐽𝑁 (𝑦𝑁 )





(∇𝐽∗1 (𝑦1))TG1(𝑦1)𝑅
− 1

2
1









(∇𝐽∗2 (𝑦2))TG2(𝑦2)𝑅
− 1

2
2






...



(∇𝐽∗𝑁 (𝑦𝑁 ))TG𝑁 (𝑦𝑁 )𝑅

− 1
2

𝑁









(28)

Next, Equation (24) can be transformed to the following compact form:

¤L(𝑦) ≤ −𝜗T
[

𝑀 − 1
2𝐵

T𝑀
− 1

2𝑀𝐵 𝑀𝐾

]
𝜗

≜ −𝜗T𝒜𝜗. (29)

According to Equation (29), it can be concluded that when 𝑘𝑖 is sufficiently large, the matrix 𝒜 is positive
definite, whichmeans there exist 𝑘∗𝑖 so that any 𝑘𝑖 > 𝑘

∗
𝑖 sufficiently large to ensure the positive definite property

of𝒜. Then, we get ¤L(𝑦) < 0. Consequently, the DTC strategy with external disturbances is constructed. The
proof is completed.

Obviously, the key point of designing the DTC strategy is to obtain the optimal controller of the ATIS based
on Theorem 1. Next, for the sake of getting hold of optimal controllers for the 𝑁 ATISs by solving the HJI
equations, in the following, we employ the ADPmethod to obtain the approximate optimal solutions bymeans
of critic networks.
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4. OPTIMAL DTC DESIGN VIA NEURAL NETWORKS
4.1. Implementation procedure via neural networks
In this section, we show the process of finding the approximate optimal solution by employing theADPmethod
based on neural networks. The critic networks have the capability of approximating nonlinear mapping, and
the approximate cost function can be derived for the DTC system. Hence, 𝐽∗𝑖 (𝑦𝑖) can be expressed as

𝐽∗𝑖 (𝑦𝑖) = 𝑤T
𝑐𝑖𝜎𝑐𝑖 (𝑦𝑖) + 𝜉𝑐𝑖 (𝑦𝑖), (30)

where 𝑤𝑐𝑖 ∈ R𝑙𝑐𝑖 is the ideal weight vector, 𝑙𝑐𝑖 is the number of neurons in the hidden layer, 𝜎𝑐𝑖 (𝑦𝑖) ∈ R𝑙𝑐𝑖 is the
activation function, and 𝜉𝑐𝑖 (𝑦𝑖) is the reconstruction error of the 𝑖th neural network. The gradient of 𝐽∗𝑖 (𝑦𝑖) is
formulated as

∇𝐽∗𝑖 (𝑦𝑖) = (∇𝜎𝑐𝑖 (𝑦𝑖))T𝑤𝑐𝑖 + ∇𝜉𝑐𝑖 (𝑦𝑖), (31)

Considering Equation (16), the optimal control policy for the 𝑖th ATIS is replaced by

𝑢∗𝑖 (𝑦𝑖) = −1
2
𝑅−1
𝑖 GT

𝑖 (𝑦𝑖)
(
(∇𝜎𝑐𝑖 (𝑦𝑖))T𝑤𝑐𝑖 + ∇𝜉𝑐𝑖 (𝑦𝑖)

)
. (32)

Utilizing Equations (31) and (32), the Hamiltonian associated with the 𝑖th ATIS is obtained as

𝐻𝑖 (𝑦𝑖 , 𝑣𝑖 (𝑦𝑖), 𝑤𝑐𝑖) = 𝛾2
𝑖 (𝑦𝑖) − 𝜆𝑖 (𝑤T

𝑐𝑖𝜎𝑐𝑖 (𝑦𝑖)) + 𝑤T
𝑐𝑖 (∇𝜎𝑐𝑖 (𝑦𝑖)) [F𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣𝑖 (𝑦𝑖)]

− 1
4
𝑤T
𝑐𝑖∇𝜎𝑐𝑖 (𝑦𝑖)G𝑖 (𝑦𝑖)𝑅−1

𝑖 GT
𝑖 (𝑦𝑖)(∇𝜎𝑐𝑖 (𝑦𝑖))T𝑤𝑐𝑖 + 𝑒𝑐ℎ𝑖 = 0, (33)

where 𝑒𝑐ℎ𝑖 is the residual error of the neural network. To avoid the unknown ideal weight vector, we construct
𝑁 critic neural networks to approximate 𝐽∗𝑖 (𝑦𝑖) as

𝐽∗𝑖 (𝑦𝑖) = 𝑤̂T
𝑐𝑖𝜎𝑐𝑖 (𝑦𝑖), (34)

where 𝑤̂𝑐𝑖 is the estimated weight. Likewise, the derivative of 𝐽∗𝑖 (𝑦𝑖) is

∇𝐽∗𝑖 (𝑦𝑖) = (∇𝜎𝑐𝑖 (𝑦𝑖))T𝑤̂𝑐𝑖 . (35)

Based on Equation (35), we obtain the estimated value of 𝑢∗𝑖 (𝑦𝑖) and 𝑣∗𝑖 (𝑦𝑖) as

𝑢̂∗𝑖 (𝑦𝑖) = −1
2
𝑅−1
𝑖 GT

𝑖 (𝑦𝑖) (∇𝜎𝑐𝑖 (𝑦𝑖))T𝑤̂𝑐𝑖 , (36)

𝑣̂∗𝑖 (𝑦𝑖) =
1

2𝜚2
𝑖

HT
𝑖 (𝑦𝑖) (∇𝜎𝑐𝑖 (𝑦𝑖))T𝑤̂𝑐𝑖 . (37)

Considering Equations (34-36), the approximate Hamiltonian is expressed as

𝐻̂𝑖 (𝑦𝑖 , 𝑣̂∗𝑖 (𝑦𝑖), 𝑤̂𝑐𝑖) = 𝛾2
𝑖 (𝑦𝑖) − 𝜆𝑖 (𝑤̂T

𝑐𝑖𝜎𝑐𝑖 (𝑦𝑖)) + 𝑤̂T
𝑐𝑖 (∇𝜎𝑐𝑖 (𝑦𝑖)) [F𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣̂∗𝑖 (𝑦𝑖)]

− 1
4
𝑤̂T
𝑐𝑖∇𝜎𝑐𝑖 (𝑦𝑖)G𝑖 (𝑦𝑖)𝑅−1

𝑖 GT
𝑖 (𝑦𝑖)(∇𝜎𝑐𝑖 (𝑦𝑖))T𝑤̂𝑐𝑖 = 𝑒𝑐𝑖 . (38)

Then, we obtain an error function of the Hamiltonian, which is denoted as 𝑒𝑐𝑖 and is expressed by

𝑒𝑐𝑖 = 𝐻̂𝑖 (𝑦𝑖 , 𝑣̂∗𝑖 (𝑦𝑖), 𝑤̂𝑐𝑖) − 𝐻𝑖 (𝑦𝑖 , 𝑣𝑖 (𝑦𝑖), 𝑤𝑐𝑖)

= 𝜆𝑖 (𝑤̃T
𝑐𝑖𝜎𝑐𝑖 (𝑦𝑖)) − 𝑤̃T

𝑐𝑖 (∇𝜎𝑐𝑖 (𝑦𝑖)) [F𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣𝑖 (𝑦𝑖)]

− 1
4
𝑤̃T
𝑐𝑖∇𝜎𝑐𝑖 (𝑦𝑖)G𝑖 (𝑦𝑖)𝑅−1

𝑖 GT
𝑖 (𝑦𝑖)(∇𝜎𝑐𝑖 (𝑦𝑖))T𝑤̃𝑐𝑖

+ 1
2
𝑤T
𝑐𝑖∇𝜎𝑐𝑖 (𝑦𝑖)G𝑖 (𝑦𝑖)𝑅−1

𝑖 GT
𝑖 (𝑦𝑖) (∇𝜎𝑐𝑖 (𝑦𝑖))T𝑤̃𝑐𝑖 − 𝑒𝑐ℎ𝑖 , (39)
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where 𝑤̃𝑐𝑖 = 𝑤𝑐𝑖 − 𝑤̂𝑐𝑖 is the weight error vector. At present, in order to minimize the objective function
𝐸𝑐𝑖 = (1/2)𝑒T𝑐𝑖 𝑒𝑐𝑖 , the normalised steepest descent algorithm based on Equation (38) is employed as follows:

¤̂𝑤𝑐𝑖 = −𝜂𝑐𝑖
1

(1 + 𝜙T
𝑖 𝜙𝑖)2

(
𝜕𝐸𝑐𝑖
𝜕𝑤̂𝑐𝑖

)
= −𝜂𝑐𝑖

𝜙𝑖

(1 + 𝜙T
𝑖 𝜙𝑖)2

𝑒𝑐𝑖 , (40)

where 𝜂𝑐𝑖 > 0 represents the basic learning rate. Besides, (1 + 𝜙T
𝑖 𝜙𝑖)2 is introduced for the normalization to

simplify the critic error dynamics, and 𝜙𝑖 is derived as

𝜙𝑖 = ∇𝜎𝑐𝑖 (𝑦𝑖) [F𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣̂∗𝑖 (𝑦𝑖)] − 𝜆𝑖𝜎𝑐𝑖 (𝑦𝑖). (41)

Usually, in the traditional weight training process, it is often necessary to select the appropriate initial weight
vector for effective training. To eliminate the initial admissible control law, an improved critic learning rule is
presented in the following.

4.2. Improved critic learning rule via neural networks
Herein, an additional Lyapunov function is introduced for the purpose of improving the critic learning mech-
anism. Then, the following rational assumption is given.

Assumption 1Consider the dynamic of the 𝑖th ATIS Equation (9) with the optimal cost function Equation (14)
and the closed-loop optimal control policy Equation (32). We select 𝐽𝑠𝑖 (𝑦𝑖) as a continuously differentiable
Lyapunov function and have the following relation:

¤𝐽𝑠𝑖 (𝑦𝑖) = (∇𝐽𝑠𝑖 (𝑦𝑖))T [F𝑖 (𝑦𝑖) + G𝑖 (𝑦𝑖)𝑢∗𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣∗𝑖 (𝑦𝑖)] < 0. (42)

In other words, there exists a positive definite matrixℬ such that

(∇𝐽𝑠𝑖 (𝑦𝑖))T [F𝑖 (𝑦𝑖) + G𝑖 (𝑦𝑖)𝑢∗𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣∗𝑖 (𝑦𝑖)] = −(∇𝐽𝑠𝑖 (𝑦𝑖))Tℬ∇𝐽𝑠𝑖 (𝑦𝑖) ≤ −𝑠𝑚𝑖 ‖∇𝐽𝑠𝑖 (𝑦𝑖)‖2, (43)

where 𝑠𝑚𝑖 is the minimum eigenvalue of the matrixℬ.

Remark 2. Herein, themotivation of selecting the cost function 𝐽𝑠𝑖 (𝑦𝑖) is to obtain the optimal DTC strategy, which
can minimize and maximize 𝐽𝑠𝑖 (𝑦𝑖) under the optimal control law and the worst disturbance law. Moreover, we
can discuss the stability of closed-loop systems by the constructed optimal cost function. Besides, just to be clear,
𝐽𝑠𝑖 (𝑦𝑖) is derived by properly selecting the quadratic polynomial in terms of the state vector. We generally choose
𝐽𝑠𝑖 (𝑦𝑖) = 0.5𝑦𝑖T𝑦𝑖 .

When the condition occurs, that is, (∇𝐽𝑠𝑖 (𝑦𝑖))T [F𝑖 (𝑦𝑖) + G𝑖 (𝑦𝑖)𝑢∗𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣∗𝑖 (𝑦𝑖)] > 0, which means the
system is in an unstable state under the optimal control law Equation (36). In this case, an additional term is
introduced to ensure the system stability. Based on Equation (36), some processing is performed as follows:

−𝜕 [(∇𝐽𝑠𝑖 (𝑦𝑖))T(F𝑖 (𝑦𝑖) + G𝑖 (𝑦𝑖)𝑢∗𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣∗𝑖 (𝑦𝑖))]
𝜕𝑤̂𝑐𝑖

=

(
𝜕𝑢̂∗𝑖 (𝑦𝑖)
𝜕𝑤̂𝑐𝑖

)T−𝜕 [(∇𝐽𝑠𝑖 (𝑦𝑖))T(F𝑖 (𝑦𝑖) + G𝑖 (𝑦𝑖)𝑢∗𝑖 (𝑦𝑖) + H𝑖 (𝑦𝑖)𝑣∗𝑖 (𝑦𝑖))]
𝜕𝑢̂∗𝑖 (𝑦𝑖)

=
1
2
∇𝜎𝑐𝑖 (𝑦𝑖)G𝑖 (𝑦𝑖)𝑅−1

𝑖 GT
𝑖 (𝑦𝑖)∇𝐽𝑠𝑖 (𝑦𝑖). (44)

Thus, we describe the improved learning rule as

¤̂𝑤𝑐𝑖 = − 𝜂𝑐𝑖
𝜙𝑖

(1 + 𝜙T
𝑖 𝜙𝑖)2

𝑒𝑐𝑖 +
1
2
𝜂𝑠𝑖Π𝑖 (𝑦𝑖 , 𝑢̂∗𝑖 , 𝑣̂∗𝑖 )∇𝜎𝑐𝑖 (𝑦𝑖)G𝑖 (𝑦𝑖)𝑅−1

𝑖 GT
𝑖 (𝑦𝑖)∇𝐽𝑠𝑖 (𝑦𝑖), (45)
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Figure 1. Control structure of the ATIS. ATIS: augmented tracking isolated subsystem.

where 𝜂𝑠𝑖 > 0 represents the additional learning rate with respect to the stabilising term and Π𝑖 (𝑦𝑖 , 𝑢̂∗𝑖 , 𝑣̂∗𝑖 )
stands for the adaptation parameter term that tests the stability of the ATIS. The definition of Π𝑖 is as follows:

Π𝑖 (𝑦𝑖 , 𝑢̂∗𝑖 , 𝑣̂∗𝑖 ) =
{

0, if ¤𝐽∗𝑠𝑖 (𝑦𝑖) < 0,
1, else.

(46)

It is found that when the derivative of 𝐽𝑠𝑖 (𝑦𝑖) satisfies ¤𝐽𝑠𝑖 (𝑦𝑖) < 0, the latter term of the weight update rule
does not play its role so that the update mode is still the traditional normalized steepest descent algorithm.
When ¤𝐽𝑠𝑖 (𝑦𝑖) > 0, the latter term of the weight update rule starts to play its role of ensuring the stability, that
is, the improved weight update method is adopted. It can be seen that the system can be adjusted to be stable
under the improved weight updating criterion. Moreover, in order to clearly highlight that we have achieved
the elimination of the initial admissible control law, herein, we set the initial weight vector to zero. Through
the new critic learning rule, the structure of the proposed DTC strategy for ATIS is performed in Figure 1.

In accordance to ¤̃𝑤𝑐𝑖 = − ¤̂𝑤𝑐𝑖 and Equation (39), the specific form of 𝑤̃𝑐𝑖 is derived. Then, we can convert
the estimated weight 𝑤̂𝑐𝑖 into the form of the weight vector 𝑤𝑐𝑖 and the error weight vector 𝑤̃𝑐𝑖 , which can be
employed by proving the state 𝑦𝑖 and the weight estimation error 𝑤̃𝑐𝑖 are UUB for the closed-loop system.

5. SIMULATION EXPERIMENT
In this section, we will introduce the common mechanical vibration system, that is, the spring-mass-damper
system. The structural diagram of the mechanical system is shown in Figure 2. From it, 𝑀1 and 𝑀2 denote the
mass of two objects, 𝐾1, 𝐾2, and 𝐾3 represent the stiffness constants of three springs. 𝐶1, 𝐶2, and 𝐶3 stand for
the damping, respectively.

In addition, let 𝑃𝑖 , 𝑉𝑖 , 𝐹𝑖 , and 𝑓𝜇𝑖 be the position, the velocity, the force, and the friction applied to the object,
where 𝑖 = 1, 2. Hence, the system dynamics for 𝑀1 and 𝑀2 are as follows:

¤𝑃1 = 𝑉1, (47)

𝑀1 ¤𝑉1 = −𝐾1𝑃1 − 𝐶1𝑉1 + 𝐾2 (𝑃2 − 𝑃1) + 𝐶2 (𝑉2 −𝑉1) + 𝐹1 − 𝑓𝜇1 , (48)
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Figure 2. Simple diagram of the interconnected mass–spring–damper system.

¤𝑃2 = 𝑉2, (49)

𝑀2 ¤𝑉2 = −𝐾3𝑃2 − 𝐶3𝑉2 + 𝐾2 (𝑃1 − 𝑃2) + 𝐶2 (𝑉1 −𝑉2) + 𝐹2 − 𝑓𝜇2 . (50)

For the object𝑀1, we define 𝑥11 = 𝑃1, 𝑥12 = 𝑉1, 𝑢̄1(𝑥1) = 𝐹1, and 𝑣1(𝑥1) = 𝑓𝜇1 . In the sameway, we let 𝑥21 = 𝑃2,
𝑥22 = 𝑉2, 𝑢̄2(𝑥2) = 𝐹2, and 𝑣2(𝑥2) = 𝑓𝜇2 for the object 𝑀2. Next, the state-space of the spring-mass-damper
system is written as

¤𝑥1 =

[
¤𝑥11
¤𝑥12

]
=

[
𝑥12

− 𝐾1
𝑀1
𝑥11 − 𝐶1

𝑀1
𝑥12

]
+
[

0
1
𝑀1

]
(𝑢̄1 (𝑥1) + 𝑍1(𝑥)) +

[
0

− 1
𝑀1

]
𝑣1 (𝑥1) (51)

and

¤𝑥2 =

[
¤𝑥21
¤𝑥22

]
=

[
𝑥22

− 𝐾3
𝑀2
𝑥21 − 𝐶3

𝑀2
𝑥22

]
+
[

0
1
𝑀2

]
(𝑢̄2 (𝑥2) + 𝑍2(𝑥)) +

[
0

− 1
𝑀2

]
𝑣2 (𝑥2) , (52)

where 𝑥1 = [𝑥11, 𝑥12]T ∈ R2 and 𝑥2 = [𝑥21, 𝑥22]T ∈ R2 are system states. 𝑢̄1(𝑥1) ∈ R, 𝑢̄2(𝑥2) ∈ R, 𝑣1(𝑥1) ∈ R,
and 𝑣2(𝑥2) ∈ R are control inputs and disturbance inputs of the subsystem 1 and the subsystem 2, respectively.
Simultaneously, 𝑍1(𝑥) = 𝐾2 (𝑥21 − 𝑥11) + 𝐶2 (𝑥22 − 𝑥12) and 𝑍2(𝑥) = 𝐾2 (𝑥11 − 𝑥21) + 𝐶2 (𝑥12 − 𝑥22), which
indicates the spring 𝐾2 and the damping𝐶2 play a connecting role for two subsystems. Herein, we let 𝜃1(𝑥1) =
| |𝑥1 | | and 𝜃2(𝑥2) = |𝑥22 |. Besides, we choose 𝛽11 = 𝛽12 = 1, 𝛽21 = 𝛽22 = 1/2, and 𝜇1 = 𝜇2 = 1. Moreover,
we select 𝜆1 = 𝜆2 = 0.6, 𝜚1 = 𝜚2 = 1, 𝑅1 = 𝑅2 = 2, and 𝑄1 = 𝑄2 = 2𝐼4, where 𝐼4 is the four-dimensional
identity matrix. Above all, the desired reference trajectories 𝑟1 and 𝑟2 for two subsystems are generated by the
following command system:

¤𝑟𝑖 =
[
¤𝑟𝑖1
¤𝑟𝑖2

]
=

[
−0.5𝑟𝑖1 − 0.5𝑟𝑖2 cos (𝑟𝑖1)

sin (𝑟𝑖1) − 0.5𝑟𝑖2

]
, 𝑖 = 1, 2, (53)

where 𝑟1 = [𝑟11, 𝑟12]T ∈ R2 and 𝑟2 = [𝑟21, 𝑟22]T ∈ R2 are reference states. Then, we define the tracking
errors as 𝑒𝑖1 = 𝑥𝑖1 − 𝑟𝑖1 and 𝑒𝑖2 = 𝑥𝑖2 − 𝑟𝑖2. Hence, the augmented state vector can be expressed as 𝑦𝑖 =
[𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3, 𝑦𝑖4]T = [𝑒𝑖1, 𝑒𝑖2, 𝑟𝑖1, 𝑟𝑖2]T, 𝑖 = 1, 2. We set practical parameters as 𝑀1 = 1kg, 𝐾1 = 3N/m, and
𝐶1 = 0.5Ns/m for the subsystem 1. Similarly, we let 𝑀2 = 2kg, 𝐾3 = 5N/m, and𝐶3 = 1Ns/m for the subsystem
2. Considering Equations (51-53), the augmented system dynamics ¤𝑦1 and ¤𝑦2 can be obtained in the following
forms:

¤𝑦1 =


𝑟12 + 𝑒12 + 0.5𝑟11 + 0.5𝑟12 cos (𝑟11)

−3(𝑟11 + 𝑒11) − 0.5(𝑟12 + 𝑒12) − sin (𝑟11) + 0.5𝑟12
−0.5𝑟11 − 0.5𝑟12 cos (𝑟11)

sin (𝑟11) − 0.5𝑟12


+


0
1
0
0


𝑢̄1 (𝑦1) +


0
−1
0
0


𝑣1 (𝑦1) (54)
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Figure 3. Weights convergence process of the critic network 1 and the critic network 2.

and

¤𝑦2 =


𝑟22 + 𝑒22 + 0.5𝑟21 + 0.5𝑟22 cos (𝑟21)

−2.5(𝑟21 + 𝑒21) − 0.5(𝑟22 + 𝑒22) − sin (𝑟21) + 0.5𝑟22
−0.5𝑟21 − 0.5𝑟22 cos (𝑟21)

sin (𝑟21) − 0.5𝑟22


+


0

0.5
0
0


𝑢̄2 (𝑦2) +


0

−0.5
0
0


𝑣2 (𝑦2) . (55)

Based on the online ADP algorithm, two critic networks are constructed as follows:

𝐽∗1 (𝑦1) = 𝑤̂10𝑦
2
11 + 𝑤̂11𝑦11𝑦12 + 𝑤̂12𝑦11𝑦13 + 𝑤̂13𝑦11𝑦14 + 𝑤̂14𝑦

2
12

+ 𝑤̂15𝑦12𝑦13 + 𝑤̂16𝑦12𝑦14 + 𝑤̂17𝑦
2
13 + 𝑤̂18𝑦13𝑦14 + 𝑤̂19𝑦

2
14 (56)

and

𝐽∗2 (𝑦2) = 𝑤̂20𝑦
2
21 + 𝑤̂21𝑦21𝑦22 + 𝑤̂22𝑦21𝑦23 + 𝑤̂23𝑦21𝑦24 + 𝑤̂24𝑦

2
22

+ 𝑤̂25𝑦22𝑦23 + 𝑤̂26𝑦22𝑦24 + 𝑤̂27𝑦
2
23 + 𝑤̂28𝑦23𝑦24 + 𝑤̂29𝑦

2
24. (57)

During the online learning process, we take basic learning rates and additional learning rates as 𝜂𝑐1 = 0.01,
𝜂𝑐2 = 0.03 as well as 𝜂𝑠1 = 𝜂𝑠2 = 0.01. Let initial system states and reference states be 𝑥10 = [1.5, 0]T,
𝑥20 = [1,−1]T, and 𝑟10 = 𝑟20 = [0.5,−0.5]T, respectively. Therefore, initial states of the ATIS are 𝑦10 =
[1, 0.5, 0.5,−0.5]T and 𝑦20 = [0.5,−0.5, 0.5,−0.5]T.

Herein, two probing noises are added within the beginning 400 steps to keep the persistence of excitation
condition of the ATIS. The weight convergence curves are shown in Figure 3. It can be seen that the weight
has converged to a certain numerical value before turning off the excitation condition, which confirms the
validity of the improved weight update algorithm. Form it, we find the initial weights are selected as zero,
which indicates the initial admissible control is eliminated.

Next, in order to make the system achieve the purpose of the optimal tracking, feedback gains are selected as
𝑘1 = 𝑘2 = 1. Then, the DTC strategy {𝑘1𝑢̂

∗
1(𝑦1), 𝑘2𝑢̂

∗
2(𝑦2)} can be derived from the obtained weight vector

for the spring-mass-damper interconnected system. In addition, the evolution curves are shown in Figure 4,
which displays the tracking control inputs and disturbance inputs for the subsystem 1 and the subsystem 2.
Then, the obtained DTC strategy is applied to the controlled system for 50 s, and its tracking error trajectory
curves are displayed in Figure 5. It is obvious that the tracking error curves are eventually enforced to the
origin. Taken together, this simulation result verifies the effectiveness of the proposed DTC strategy.
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Figure 4. Tracking control inputs and disturbance inputs for subsystem 1 and subsystem 2
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Figure 5. Tracking error trajectories for subsystem 1 and subsystem 2.

6. CONCLUSION
In this paper, the optimal DTC strategy for CT nonlinear large-scale systems with external disturbances is
proposed by employing the ADP algorithm. The approximate optimal control law of the ATISs can achieve
the trajectory tracking goal. Then, the establishment of the DTC strategy is derived by adding the appropriate
feedback gain, whose feasibility has been proved via the Lyapunov theory. Note that all the above-mentioned
results are investigated by considering a cost function with the discount. Then, only a series of single critic
networks are employed to solve HJI equations of 𝑁 ATISs, so that we acquire the approximate optimal control
law and the worst disturbance law. In addition, the stability term added in the weight updating process avoids
the selection of the initial stable control policy. Furthermore, the simulation results are displayed for the spring-
mass-damper system to indicate the validity of the proposed DTC method. In the future, we will utilize more
advanced methods to deal with the DTC problem for nonaffine systems. Besides, we can also consider the
unmatched interconnected relationship for the DTC problem, which is a considerable direction of improved
research.

DECLARATIONS
Authors’ contributions
Made significant contributions to the conception and experiments: Fan W, Wang D
Made significant contributions to the writing: Fan W, Wang D
Made substantial contributions to the revision and translation: Liu A, Wang D

http://dx.doi.org/10.20517/ces.2023.04


Page 14 of 15 Fan et al. Complex Eng Syst 2023;3:5 I http://dx.doi.org/10.20517/ces.2023.04

Availability of data and materials
Not applicable

Financial support and sponsorship
This work was supported in part by the National Natural Science Foundation of China (No. 62222301; No.
61890930-5 and No. 62021003); in part by the National Key Research and Development Program of China
(No. 2021ZD0112302; No. 2021ZD0112301 and No. 2018YFC1900800-5); and in part by the Beijing Natural
Science Foundation (No. JQ19013).

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
©The Author(s) 2023.

REFERENCES
1. Saberi A. On optimality of decentralized control for a class of nonlinear interconnected systems. Automatica 1988;24:1101–4. DOI
2. Mu CX, Sun CY, Wang D, Song AG, Qian CS. Decentralized adaptive optimal stabilization of nonlinear systems with matched intercon-

nections. Soft Comput 2018;22:82705–15. DOI
3. Mehraeen S, Jagannathan S. Decentralized optimal control of a class of interconnected nonlinear discrete-time systems by using online

Hamilton-Jacobi-Bellman formulation. IEEE Trans Neural Netw 2011;22:111715–96. DOI
4. Yang X, He HB. Adaptive dynamic programming for decentralized stabilization of uncertain nonlinear large-scale systems with mis-

matched interconnections. IEEE Trans Syst Man Cybern Syst 2020;50:82870–82. DOI
5. Karimi HR. How to deal with the complexity in robotic systems? Complex Eng Syst 2022;2:15. DOI
6. Xu Q, Yu C, Yuan X, Fu Z, Liu H. A distributed electricity energy trading strategy under energy shortage environment. Complex Eng Syst

2022;2:14. DOI
7. Bian T, Jiang Y, Jiang ZP. Decentralized adaptive optimal control of large-scale systems with application to power systems. IEEE Trans

Ind Electron 2015;62:42439–47. DOI
8. Liu DR, Wang D, Li HL. Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning

optimal control approach. IEEE Trans Neural Netw Learn Syst 2014;25:2418–28. DOI
9. Sun KK, Sui S, Tong SC. Fuzzy adaptive decentralized optimal control for strict feedback nonlinear large-scale systems. IEEE Trans

Cybern 2018;48:41326–39. DOI
10. WangXM, Feng ZG, ZhangGJ, Niu B, YangD, et al. Adaptive decentralised control for large-scale non-linear non-strict-feedback intercon-

nected systems with time-varying asymmetric output constraints and dead-zone inputs. IET Control Theory & Appl 2020;14:203417–27.
DOI

11. Wei QL, Liu DR, Lin Q, Song RZ. Discrete-time optimal control via local policy iteration adaptive dynamic programming. IEEE Trans
Cybern 2017;47:103367–79. DOI

12. Wang D, Ren J, Ha MM, Qiao JF. System stability of learning-based linear optimal control with general discounted value iteration. IEEE
Trans Neural Netw Learn Syst 2022. DOI

13. Wang D, Ha MM, Zhao MM. The intelligent critic framework for advanced optimal control. Artif Intell Rev 2022;55:11–22. DOI
14. Wang D, Qiao JF, Cheng L. An approximate neuro-optimal solution of discounted guaranteed cost control design. IEEE Trans Cybern

2022;52:177–86. DOI
15. Li YM, Liu YJ, Tong SC. Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints.

IEEE Trans Neural Netw Learn Syst 2022;33:73131–45. DOI
16. Wang H, Yang CY, Liu XM, Zhou LN. Neural-network-based adaptive control of uncertain MIMO singularly perturbed systems with

full-state constraints. IEEE Trans Neural Netw Learn Syst 2021. DOI
17. Zhang H, Hong QQ, Yan HC, Yang FW, Guo G. Event-based distributed H-infinity filtering networks of 2-DOF quarter-car suspension

systems. IEEE Trans Ind Inform 2017;13:1312–21. DOI
18. Chen YG, Fei SM, Li YM. Robust stabilization for uncertain saturated time-delay systems: A distributed-delay-dependent polytopic

http://dx.doi.org/10.20517/ces.2023.04
http://dx.doi.org/10.1016/0005-1098(88)90013-1
http://dx.doi.org/10.1007/s00500-017-2526-6
http://dx.doi.org/10.1109/TNN.2011.2160968
http://dx.doi.org/10.1109/TSMC.2018.2837899
http://dx.doi.org/10.20517/ces.2022.33
http://dx.doi.org/10.20517/ces.2022.20
http://dx.doi.org/10.1109/TIE.2014.2345343
http://dx.doi.org/10.1109/TNNLS.2013.2280013
http://dx.doi.org/10.1109/TCYB.2017.2692384
http://dx.doi.org/10.1049/iet-cta.2019.0283
http://dx.doi.org/10.1109/TCYB.2016.2586082
http://dx.doi.org/10.1109/TNNLS.2021.3137524
http://dx.doi.org/10.1007/s10462-021-10118-9
http://dx.doi.org/10.1109/TCYB.2020.2977318
http://dx.doi.org/10.1109/TNNLS.2021.3051030
http://dx.doi.org/10.1109/TNNLS.2021.3123361
http://dx.doi.org/10.1109/TII.2016.2569566


Fan et al. Complex Eng Syst 2023;3:5 I http://dx.doi.org/10.20517/ces.2023.04 Page 15 of 15

approach. IEEE Trans Automat Contr 2017;62:73455–60. DOI
19. Chen YG, Wang ZD. Local stabilization for discrete-time systems with distributed state delay and fast-varying input delay under actuator

saturations. IEEE Trans Automat Contr 2021;66:31337–44. DOI
20. Fu H, Chen X, WuM. Distributed optimal observer design of networked systems via adaptive critic design. IEEE Trans Syst Man Cybern

Syst 2021;51:116976–85. DOI
21. Narayanan V, Jagannathan S. Event-triggered distributed control of nonlinear interconnected systems using online reinforcement learning

with exploration. IEEE Trans Cybern 2018;48:92510–9. DOI
22. Wang D, ZhaoMM, HaMM, Qiao JF. Intelligent optimal tracking with application verifications via discounted generalized value iteration.

Acta Automatica Sinica 2022;48:1182–93. DOI
23. Zhang HG, Zhang K, Cai YL, Han J. Adaptive fuzzy fault-tolerant tracking control for partially unknown systems with actuator faults via

integral reinforcement learning method. IEEE Trans Fuzzy Syst 2019;27:101986–98. DOI
24. Modares H, Lewis FL. Optimal tracking control of nonlinear partially-unknown constrained-input systems using integral reinforcement

learning. Automatica 2014;50:71780–1792. DOI
25. Ha MM, Wang D, Liu DR. Discounted iterative adaptive critic designs with novel stability analysis for tracking control. IEEE/CAA

Journal of Automat Sinica 2022;9:71262–1272. DOI
26. Qu QX, Zhang HG, Feng T, Jiang H. Decentralized adaptive tracking control scheme for nonlinear large-scale interconnected systems via

adaptive dynamic programming. Neurocomputing 2017;225:1–10. DOI
27. Niu B, Liu JD, Wang D, Zhao XD, Wang HQ. Adaptive decentralized asymptotic tracking control for large-scale nonlinear systems with

unknown strong interconnections. IEEE/CAA Journal of Automatica Sinica 2022;9:1173–86. DOI
28. Liu JD, Niu B, Kao YG, Zhao P, Yang D. Decentralized adaptive command filtered neural tracking control of large-scale nonlinear systems:

An almost fast finite-time framework. IEEE Trans Neural Netw Learn Syst 2021;32:83621–2. DOI
29. Tong SC, Zhang LL, Li YM. Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale

systems with dead zones. IEEE Trans Syst Man Cybern Syst 2016;46:137–47. DOI
30. Wang D, Hu LZ, Zhao MM, Qiao JF. Dual event-triggered constrained control through adaptive critic for discrete-time zero-sum games.

IEEE Trans Syst Man Cybern Syst 2023;53:31584–9. DOI
31. Li XM, Zhang B, Li PS, Zhou Q, Lu RQ. Finite-horizon H-infinity state estimation for periodic neural networks over fading channels.

IEEE Trans Neural Netw Learn Syst 2020;31:51450–60. DOI
32. Duan JJ, Xu H, Liu WX, Peng JC, Jiang H. Zero-sum game based cooperative control for onboard pulsed power load accommodation.

IEEE Trans Ind Inform 2020;16:1238–47. DOI
33. Wang D, Zhao MM, Ha MM, Qiao JF. Stability and admissibility analysis for zero-sum games under general value iteration formulation.

IEEE Trans Neural Netw Learn Syst 2022. DOI
34. Zhang HG, Cui XH, Luo YH, Jiang H. Finite-horizon H-infinity tracking control for unknown nonlinear systems with saturating actuators.

IEEE Trans Neural Netw Learn Syst 2018;29:41200–12. DOI
35. Modares H, Lewis FL, Jiang ZP, H-infinity tracking control of completely unknown continuous-time systems via off-policy reinforcement

learning. IEEE Trans Neural Netw Learn Syst 2015;26:102550–62. DOI
36. Hou JX, Wang D, Liu DR, Zhang Y. Model-free H-infinity optimal tracking control of constrained nonlinear systems via an iterative

adaptive learning algorithm. IEEE Trans Syst Man Cybern Syst 2020;50:114097–108. DOI

http://dx.doi.org/10.20517/ces.2023.04
http://dx.doi.org/10.1109/TAC.2016.2611559
http://dx.doi.org/10.1109/TAC.2020.2991013
http://dx.doi.org/10.1109/TSMC.2019.2962088
http://dx.doi.org/10.1109/TCYB.2017.2741342
http://dx.doi.org/10.16383/j.aas.c210658
http://dx.doi.org/10.1109/TFUZZ.2019.2893211
http://dx.doi.org/10.1016/j.automatica.2014.05.011
http://dx.doi.org/10.1109/JAS.2022.105692
http://dx.doi.org/10.1016/j.neucom.2016.10.058
http://dx.doi.org/10.1109/JAS.2021.1004246
http://dx.doi.org/10.1109/TNNLS.2020.3015847
http://dx.doi.org/10.1109/TSMC.2015.2426131
http://dx.doi.org/10.1109/TSMC.2022.3201671
http://dx.doi.org/10.1109/TNNLS.2019.2920368
http://dx.doi.org/10.1109/TII.2019.2916054
http://dx.doi.org/10.1109/TNNLS.2022.3152268
http://dx.doi.org/10.1109/TNNLS.2017.2669099
http://dx.doi.org/10.1109/TNNLS.2015.2441749
http://dx.doi.org/10.1109/TSMC.2018.2863708

	1. Introduction
	2. PROBLEM STATEMENT
	3. DTC DESIGN VIA OPTIMAL REGULATION
	3.1. Optimal control and the HJI equations
	3.2. Establishment of the DTC strategy design

	4. OPTIMAL DTC DESIGN VIA NEURAL NETWORKS
	4.1. Implementation procedure via neural networks
	4.2. Improved critic learning rule via neural networks

	5. Simulation experiment
	6. Conclusion
	Declarations
	Authors’ contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright


