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Abstract
Aim: Takeda G-protein-coupled receptor 5 (TGR5) is a functional receptor which mediates a variety of metabolic 
and immune processes and is involved in the regulation of adipocyte pathophysiology. Data on TGR5 in human 
adipose tissue are very limited. Therefore, the aims of this study were to investigate TGR5 expression in visceral 
adipose tissue (VAT) and explore its association with signs of VAT dysfunction and overt metabolic disease in 
individuals with obesity.

Methods: Fifty obese candidates to bariatric surgery were recruited at Sapienza University, Rome, Italy. The 
expression of TGR5 and markers of VAT dysfunction were assessed by rt-PCR in omental fragments obtained 
intraoperatively.
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Results: Individuals with higher VAT TGR5 levels (high-TGR5) had greater fasting glucose (P = 0.027) and worse 
lipid profile (total-cholesterol, P = 0.014; LDL-cholesterol, P = 0.022) than those with lower TGR5 (low-TGR5) 
expression. High-TGR5 subjects showed significantly higher expression of markers of AT-specific inflammation and 
insulin resistance, such as tissue metallopeptidase inhibitor 1 (TIMP1; P = 0.011), poly[ADP-ribose]polymerase 1 
(PARP1, P = 0.034), and WNT1-inducible-signaling pathway protein 1 (WISP1, P = 0.05), apoptosis (caspase 7, P = 
0.031), and lipid trafficking (ANGPTL4, P < 0.001), compared to low-TGR5 patients. High VAT TGR5 expression 
predicted the presence of abnormal glucose metabolism with AUROC = 0.925 (95%CI: 0.827-1.00, P = 0.001) for 
the age-, sex-, and waist circumference-adjusted ROC curve.

Conclusion: Our data show that increased VAT TGR5 is associated with VAT dysfunction and impaired lipid 
trafficking and predicts the presence of metabolic disorders in human obesity, overall adding novel insights to the 
understanding of TGR5-mediated pathways in the clinical setting.

Keywords: Takeda G-protein-coupled receptor 5, visceral adipose tissue, lipid metabolism, type 2 diabetes, 
angiopoietin-like proteins, farnesoid-X receptor, obesity

INTRODUCTION
Takeda G-protein-coupled receptor 5 (TGR5) is a functional receptor for several hydrophobic endogenous 
ligands, including bile acids (BAs) and neurosteroids, such as estradiol, pregnanediol, and allopregnanolone. 
TGR5 is mainly expressed in gut epithelial cells and organs centrally involved in metabolism, such as the 
liver and the adipose tissue (AT)[1]. The activation of TGR5 is involved in immune regulation processes, 
mainly antagonizing the nuclear factor kB signaling[2], regulates lipid metabolism[3], and promotes glucagon-
like peptide-1 release in mice, thus taking part in the glucose-insulin homeostasis[4]. For the overall favorable 
effects on metabolism, TGR5 agonists have been recently tested as novel pharmaceutical approaches for 
dysmetabolic conditions such as non-alcoholic fatty liver disease[5-7]. Moreover, the BA-induced TGR5 
signaling has recently been acknowledged for its involvement in beige remodeling of white AT (WAT)[8], 
thus providing a potential link between BA signaling and fundamental cellular processes in adipocytes. 
Experimental models showed that BA administration augments energy expenditure in mice through a 
pathway mediated by TGR5 and its effects on the thyroid hormone activating enzyme iodothyronine 
deiodinase type II in brown adipose tissue[9].

TGR5 expression is detectable in all stages of adipocyte differentiation[8,10] and is not affected by 
experimentally induced inflammatory stress in animal models[10], suggesting that TGR5 may represent an 
unregulated gene in adipocytes under basal conditions.

Data from experimental models demonstrate that TGR5 is a central player in AT metabolism and the 
regulation of local immune processes. In turn, AT dysfunction, as indicated by the presence of local 
inflammation and impaired lipid metabolism, is a recognized determinant of metabolic diseases in 
condition of weight excess[11-14]. While initial evidence points towards a major role of TGR5 in regulating 
energy balance and AT homeostasis under physiological conditions, little is known about TGR5 in obesity 
and insulin resistance associated disorders[15]; moreover, no evidence is currently available on TGR5 
expression in visceral AT (VAT) in humans.

Therefore, the aims of this study were to investigate TGR5 expression in human VAT and explore its 
association with signs of adipose tissue dysfunction and metabolic impairment in presence of obesity.
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METHODS
Study population
For this cross-sectional study, we recruited fifty consecutive individuals with severe obesity referring to our 
outpatient clinics at Sapienza University of Rome, Italy, to undergo bariatric surgery as for clinical 
indication. Eligible for this study were all subjects aged between 20 and 65 years able to provide informed 
consent to the study participation; specific inclusion and exclusion criteria reflected those for sleeve 
gastrectomy intervention[16].

All study participants underwent medical history collection, clinical work-up, and fasting blood sampling 
for routine clinical evaluation and metabolic profiling. Weight and height were measured in light clothes 
and without shoes to calculate the body mass index (BMI, kg/m2). Waist circumference (cm) was measured 
midway between the 12th rib and the iliac crest. Systemic systolic and diastolic blood pressure (SBP and 
DBP, mmHg) were measured after 5 min rest, and the average value between two measures was considered 
for the analyses. Presence of abnormal glucose metabolism, in terms of impaired glucose regulation[IGR: 
impaired fasting glucose (IFG) and impaired glucose tolerance (IGT)] or type 2 diabetes mellitus (T2DM) 
was defined according to the American Diabetes Association 2020 criteria[17]; metabolic syndrome was 
diagnosed based on the NCEP-ATP III definition[18].

Laboratory tests
Twelve-hour fasting blood samples were drawn from the anterior-cubital vein for measuring blood glucose 
(FBG, mg/dL), glycosylated hemoglobin (HbA1c, mmoL/moL, %), fasting serum insulin (FSI, IU/mL), total 
cholesterol (mg/dL), high-density lipoprotein cholesterol (HDL, mg/dL), triglycerides (mg/dL), aspartate 
aminotransferase (AST, IU/L), alanine aminotransferase (ALT, IU/L), gamma-glutamyl transpeptidase 
(GGT, mg/dL), and creatinine (mg/dL) by centralized standard methods. Low-density lipoprotein (LDL) 
cholesterol value was obtained using the Friedewald formula.

VAT collection and gene expression analyses
Omental fragments of about 1 cm3 of volume were obtained from all study participants to measure VAT 
TGR5 mRNA expression levels and evaluate the presence of tissue markers of VAT inflammation and 
dysfunction.

In particular, we measured VAT mRNA levels of pro-inflammatory molecules mostly implicated in 
processes associated with impaired VAT lipid metabolism, starting from the gene expression array panels 
investigated in relation to VAT angiopoietin-like protein 4 (ANGPTL4) and lipoprotein lipase expression in 
our previous report[14]. Therefore, we measured the local expression of genes implicated in: adipose tissue-
specific inflammation/dysfunction and insulin resistance, such as the metallopeptidase inhibitor 1 
(TIMP1)[19], the poly[ADP-ribose] polymerase 1 (PARP1)[20], and WNT1-inducible-signaling pathway 
protein 1 (WISP1)[13]; apoptosis, such as caspase 7[21]; and lipid trafficking, such as the ANGPTL4 mRNA 
expression levels[14,22]. The expression of the other main bile acid receptor, the farnesoid-X receptor 
(FXR)[23], was also measured in VAT samples from all study participants.

All analyses were performed by two experienced pathologists, who were blinded per protocol to 
participants’ identity. Experimental procedures for gene expression analyses followed those described in our 
previous report[24]. Briefly, total RNA from Formalin-fixed paraffin-embedded (FFPE) tissue was extracted 
by using RecoverAllTM Total Nucleic Acid Isolation Kit for FFPE (ThermoFisher Scientific, Waltham, MA, 
USA) according to the supplier’s instructions. We confirmed the purity and quantity of RNA by NanoDrop 
ND-1000 Spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA). Then, total RNA was reverse 
transcribed into cDNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 
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Foster City, CA, USA).

The PCR products of human caveolin 1 (CAV1), CASP7, PARP1, WISP1, TGR5, ANGPTL4, and FXR were 
detected by using gene specific primers and probes labeled with reporter dye fluorescein amidite (FAM) 
(genes ID: 857, 840, 142, 8840, 151306, 51129, and 9971, respectively).

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as an internal standard, which yielded a 
predicted amplicon of 58 bp. GAPDH was detected using gene-specific primers and probes labeled with 
reporter day FAM (gene ID: 2597). TaqMan real-time quantitative PCR was performed on an ABI PRISM 
7500 Fast Real-Time PCR System (Applied Biosystem, Foster City, CA, USA). PCR reactions were carried 
out on 96-well plates with 10 uL per well using 1 TaqMan Master Mix, and the results were evaluated at the 
end of the reaction using ABI PRISM 7500 software (Applied Biosystem, Foster City, CA, USA). The 
amplification product lengths of these assays were 66, 76, 111, 84, 159, 67, and 78 base pairs, respectively. 
The experiment was repeated in triplicate for each assay, and the Ct values for each set of three reactions 
were averaged for all subsequent calculations. The 2-ΔCt method was used to calculate relative changes in 
gene expression.

Statistics
To the best of our knowledge, no study has investigated thus far the omental TGR5 expression in relation to 
VAT inflammation and metabolic abnormalities in humans. Therefore, the statistical power of this study 
was confirmed by a post hoc sample size calculation considering the mean difference of TIMP-1 expression 
levels between subjects in Terile I vs. Tertile III for TGR5 expression; thus, we obtained that four patients 
per group would be enough to reach statistical significance with power = 90% and α error = 0.01.

All statistic procedures were performed using SPSS package version 25. Values are shown as mean ± SD or 
percentage, as appropriate. Mean values between two independent groups (Tertile I vs. Tertile III of TGR5 
expression levels) were compared by Mann-Whitney test for continuous variables and χ2 test for categorical 
parameters; comparisons between more than two subgroups (i.e., among tertiles of VAT TGR5 distribution) 
were performed by Kruskal-Wallis test. Bivariate correlations were explored by Spearman’s r coefficients. 
To test the independence of the association between TGR5 expression and impaired glucose metabolism, as 
considered as a binary trait (absence/presence, dependent variable), we built a multivariable logistic 
regression model including age, sex, TGR5 mRNA expression levels, and potential clinical confounders. 
Finally, a receiving operator curve (ROC), adjusted for age and sex, was calculated to explore the area under 
the curve of high VAT TGR5 levels for predicting the presence of abnormal glucose metabolism in our 
study participants. A two-tailed P value < 0.05 was considered statistically significant, with a 95% confidence 
interval.

Ethics
The study protocol was reviewed and approved by the Ethics Committee of Policlinico Umberto I (approval 
number 3550, 26 February 2015) and conducted in conformance with the Helsinki Declaration. Informed 
written consent was obtained from the participants before all the study procedures.

RESULTS
All study participants had detectable TGR5 mRNA expression levels at the omental biopsy. The study 
population was divided into three subgroups in relation to the levels of TGR5 expression detected in VAT 
samples. Characteristics of study participants in relation to TGR5 levels are summarized in Table 1; TGR5 
mRNA expression levels according to the tertile of distribution are shown in Figure 1.
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Table 1. Characteristics of the study population in relation to the TGR5 mRNA expression levels in the VAT (Tertiles I, II, and III)

Tertile I Tertile II Tertile III P-value

TGR5 mRNA (A.U.) 0.64 ± 0.39 2.44 ± 0.67 16.25 ± 19.82 < 0.001

Median (95%CI) 0.70 (0.43-0.85) 2.45 (2.1-2.8) 10.9 (5.7-26.8)

Age (years) 46.8 ± 10.5 41.5 ± 9.3 56.6 ± 10.7 0.27

Gender (M/F) 5/11 3/14 5/12 0.62§

BMI (kg/m2) 42.8 ± 4.5 41.5 ± 5.6 42.6 ± 3.9 0.59

Waist circumference (cm) 126.1 ± 12.2 123.6 ± 14.4 128.2 ± 16.6 0.71

SBP (mmHg) 132.8 ± 17.6 129.1 ± 11.5 132.3 ± 6.6 0.65

DBP (mmHg) 84 ± 9.5 83.2 ± 8.3 83 ± 7.7 0.92

Total cholesterol (mg/dL) 176.8 ± 33.4 186.8 ± 33.9 206 ± 27.5 0.046, 0.014*

HDL-C (mg/dL) 48.6 ± 10.7 46.1 ± 14.7 45.7 ± 8.5 0.63

LDL-C (mg/dL) 104.3 ± 28.6 105.8 ± 37 131.2 ± 30.2 0.06, 0.022*

Triglycerides (mg/dL) 120.9 ± 27.4 175.4 ± 97.8 146.3 ± 61 0.14, 0.05*

FBG (mg/dL) 93.5 ± 18.8 101.7 ± 34.2 105.2 ± 23.8 0.05, 0.027*

HbA1c - mmoL/moL 
HbA1c - %

35.6 ± 4.4 
5.4 ± 0.4

40.5 ± 11.9 
5.8 ± 1

38.4 ± 7.8 
5.7 ± 0.7

0.35

AST (IU/l) 26.5 ± 6.7 33.4 ± 21.9 31.5 ± 15 0.94

ALT (IU/l) 26.9 ± 9 37.6 ± 16 50.3 ± 33.7 0.18, 0.05*

GGT (IU/l) 32.7 ± 17.2 34.9 ± 24.5 26.9 ± 19.6 0.18

Total bilirubin (mg/dL) 0.66 ± 0.3 0.76 ± 0.5 0.71 ± 0.1 0.13

Conjugated bilirubin (mg/dL) 0.17 ± 0.07 0.18 ± 0.09 0.17 ± 0.08 0.99

Serum creatinine (mg/dL) 0.79 ± 0.1 0.72 ± 0.1 0.71 ± 0.1 0.23

IGR-T2DM (no/yes)

# no/yes 
% prevalence

13/2 
13%

14/4 
18%

11/6 
42%

0.06§

MS

# no/yes 
% prevalence

11/5 
31%

9/8 
47%

7/10 
59%

0.28§

Kruskal-Wallis test for multiple comparison. P-values for comparisons between two sub-groups are shown when statistically significant (*Mann-
Whitney test between Tertiles I and III). § 2 test applied. SBP: Systolic blood pressure; DBP: diastolic blood pressure; HDL-C: HDL cholesterol; 
LDL-C: LDL cholesterol; FBG: fasting blood glucose; IGR-T2DM: impaired glucose regulation-type 2 diabetes mellitus; MS: metabolic syndrome.

TGR5 expression and VAT homeostasis
Individuals with increased VAT TGR5 expression, specifically those belonging to the highest tertile of TGR5 
mRNA levels, had signs of inflammation and dysfunction at the VAT biopsy. In particular, in these patients, 
we found greater VAT expression of TIMP1 (P = 0.011), caspase 7 (P = 0.031), PARP1 (P = 0.034), and 
WISP1 (P = 0.05) mRNA levels and significantly higher VAT ANGPTL4 levels than in subjects within the 
lowest tertile for VAT TGR5 (P < 0.001; Mann-Whitney comparison tests, Figure 2). In general, VAT 
TIMP1, caspase 7, PARP1, WISP1, and ANGPTL4 increased throughout tertiles of higher TGR5 expression 
(Figure 2, Kruskal-Wallis test applied).

In the bivariate analysis, increased TGR5 mRNA levels, considered as a continuous variable, positively 
correlated with FBG, total and LDL cholesterol concentrations, and TIMP1, caspase 7, PARP1, and 
ANGPTL4 mRNA expression in VAT, overall describing a phenotype with more pronounced metabolic 
impairment within individuals with morbid obesity [Table 2]. FSI levels were available from 32 out of 50 
study participants and positively correlated with triglycerides levels (r = 0.43, P = 0.027) and, slightly, with 
age (r = 0.34, P = 0.065). No significant correlation was found between FSI and other metabolic variables, 
including fasting blood glucose, diabetes, and TGR5 expression.
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Table 2. VAT TGR5 mRNA expression: bivariate correlation analysis (Spearman’s coefficient)

Correlation coefficient P value

Age -0.07 0.60

BMI -0.01 0.94

Waist circumference 0.02 0.88

FBG 0.33 0.02

HbA1c 0.14 0.39

FSI 0.16 0.61

Total cholesterol 0.44 0.004

HDL -0.10 0.60

LDL 0.37 0.018

Triglycerides 0.12 0.44

AST 0.05 0.74

ALT 0.18 0.21

GGT -0.22 0.13

MIP1α -0.02 0.87

MIP2 -0.24 0.09

CAV1 0.10 0.51

TIMP1 0.33 0.021

Caspase7 0.33 0.018

PARP1 0.38 0.006

ANGPTL4 0.48 < 0.001

FBG: Fasting blood glucose; FSI: fasting serum insulin; MIP1α: macrophage inflammatory protein 1-alpha; MIP2: macrophage inflammatory protein 
2; CAV1: caveolin 1; TIMP1: TIMP metallopeptidase inhibitor 1; PARP1: poly[ADP-ribose] polymerase 1; ANGPTL4: angiopoietin-like 4.

Figure 1. VAT TGR5 mRNA expression in relation to the tertiles of distribution. Kruskal-Wallis test applied. Data are shown as mean 
value ± standard error and expressed as arbitrary units (a.u.).

Together with TGR5, FXR represents another important BA receptor functionally involved in adipocyte 
homeostasis and metabolic regulation, as demonstrated in experimental studies[10]. Indeed, we also evaluated 
FXR mRNA expression in VAT samples; however, we did not find detectable FXR levels in any of our study 
participants.
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Figure 2. VAT TIMP1 (A); caspase 7 (B); PARP1 (C); WISP1 (D); and ANGTPL4 (E) mRNA expression in relation to the tertiles of VAT 
TGR5 expression. *Multiple comparisons Kruskal-Wallis test applied; Mann-Whitney test between Tertiles I and III applied. Data are 
shown as mean value ± standard error and expressed as arbitrary units (a.u.). TIMP-1: TIMP metallopeptidase inhibitor 1; PARP1: 
poly[ADP-ribose] polymerase 1; WISP1: WNT1-inducible-signaling pathway protein 1; ANGPTL4: angiopoietin-like 4.

VAT TGR5 expression and clinical outcomes
Obese individuals belonging to the highest tertile of TGR5 mRNA expression had worse lipid and glucose 
profile, as expressed by higher total cholesterol, LDL, and FBG, in comparison to subjects with lower TGR5 
in the VAT [Table 1]. Moreover, individuals in Tertile III of the TGR5 distribution had higher mean ALT 
levels than those in Tertile I of TGR5 (P = 0.05). The results are shown in Table 1.

No difference in age, sex distribution, and body adiposity, the latter evaluated by BMI and waist 
circumference, was observed between the subgroups.
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Twelve out of fifty patients (24% of study participants) had abnormal glucose metabolism, as indicated by 
either T2DM (n = 6/50) or IGR (IFG, n= 6/50; one of them had IFG + IGT). Greater TGR5 mRNA 
expression in VAT was independently associated with the presence of abnormal glucose metabolism 
regardless of sex, age, or waist circumference in the multivariable linear regression analysis (P = 0.029; 
Standardized β Coefficient, 0.37; Table 3).

High VAT TGR5 expression (Tertile III vs. Tertile I of TGR5 levels) was able to predict the presence of 
abnormal glucose metabolism in obese individuals with AUROC = 0.925 (95%CI: 0.827-1.00; P = 0.001) for 
the age-, sex-, and waist circumference-adjusted ROC curve [Figure 3].

Lastly, we explored metabolic correlates of VAT TGR5 expression only in participants with normal glucose 
metabolism (n = 38) and found that VAT TGR5 expression positively correlated with total cholesterol (r = 
0.42, P = 0.016); a trend toward positive association was also observed between TGR5 and FBG (r = 0.30, P = 
0.06) in individuals with optimal fasting glycemia (mean ± SD FBG: 89.4 ± 5.2 mg/dL).

DISCUSSION
The main finding of this study is the demonstration that elevated TGR5 levels in VAT are associated with 
adipose tissue dysfunction as well as the presence of metabolic alterations, such as abnormal glucose 
metabolism and impaired lipid profile, in obese individuals. Greater TGR5 levels tightly correlate with the 
presence of signs of VAT inflammation and altered lipid metabolism. To our knowledge, this is the first 
study investigating TGR5 expression in human VAT in relation to clinical metabolic impairment and signs 
of local inflammation and dysfunction in the adipose tissue.

The presence of TGR5 expression in adipocytes has been shown previously in experimental models during 
all phases of cell maturation[8,10]; indeed, TGR5 activation mediates pathways that elicit beige remodeling in 
the white adipose tissue and modulates mitochondrial function in mice[8].

In isolated adipocytes, TGR5 promotes mitochondrial biogenesis and β-oxidation by increasing lipolysis 
and substrate availability[8]; thus, TGR5 appears as a protein involved in the overall regulation of energy 
balance. The capability of TGR5 signaling to increase the energetic expenditure is preserved in the condition 
of chronic caloric overload, as this axis was shown to induce the expression of beiging markers in WAT 
from mice chronically fed with a high-fat diet[8].

In our study, we demonstrated increased VAT TGR5 expression levels in obese individuals with metabolic 
abnormalities; however, no specific association was observed with total body mass or fat distribution. 
Instead, we found a strong correlation between VAT TGR5 levels and signs of impaired adipocyte energy 
balance, as indicated by increased expression of PARP1[20] and TIMP1[19], and pro-apoptotic state, as 
expressed by higher caspase 7 levels[21]. Hence, these overall findings may be interpreted as a tentative of 
compensatory energetic boost when metabolic disease develops in obesity.

According to our results, the only previous study investigating TGR5 expression in human AT found 
increased TGR5 in subcutaneous adipose tissue from obese individuals compared to non-obese controls[15]. 
TGR5 expression levels correlated with the presence of obesity as well as the resting metabolic rate and were 
restored after diet, in the phase preceding the maximal weight loss, suggesting that TGR5 expression in 
subcutaneous adipose tissue may be regulated by changes in energy intake or metabolic rate rather than fat 
mass itself[15].
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Table 3. Multivariable linear regression analysis. VAT TGR5 expression is the dependent variable

β coefficient Standard error Standardized β coefficient P-value

0.665 0.008 -0.309 0.048

0.282 0.189 0.234 0.143

0.001 0.006 0.023 0.156

Age 
Sex 
Waist circumference 
AGM (no/yes)

0.459 0.203 0.370 0.029

AGM: Abnormal glucose metabolism.

Figure 3. VAT TGR5 receiver operating characteristic (ROC) curve for presence of abnormal glucose metabolism (AGM) corrected for 
age and sex.

In our study, we demonstrated the occurrence of a parallel increase of TGR5 and ANGPTL4 expression 
levels in metabolically unhealthy obese individuals. Both ANGPTL4 and TGR5 are involved in processes 
favoring beiging remodeling, thermogenesis, increased energy expenditure, and glucose tolerance by 
converging on the PKA-p38MAPK pathway[8,22,25]. However, the selective knock-out of the ANGPTL4 gene 
in adipose tissue was shown to reduce systemic inflammation and improve atherosclerosis and glucose 
tolerance in obese mice, without reducing VAT inflammation[26]. Recently, we reported that ANGPTL4 
overexpression in human VAT is associated with signs of AT inflammation and adipocyte size 
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heterogeneity, which is a marker of lipid metabolic impairment and dysfunction, and predicts the presence 
of abnormal glucose metabolism in obese individuals[14].

This is the first report on TGR5 mRNA levels in VAT from obese individuals in the clinical setting. 
Although the study design does not allow ascertaining the mechanistic pathways behind our findings, we 
could speculate that, in the condition of caloric overload, local stressors, i.e., impaired energy balance, 
inflammation, and pro-apoptotic state, may induce the over-expression of metabolic regulators such as 
TGR5 and ANGPTL4, to contrast further fat mass expansion and tissue dysfunction. Indeed, changes in 
VAT microenvironment towards a pro-inflammatory pattern, which is often detected in the presence of 
obesity and is clinically associated with unfavorable risk profile[27-29], may represent the starting signal for 
local TGR5 compensatory activation aiming at restoring VAT homeostasis.

Another result from our study is the absence of expression of FXR in the VAT from obese individuals, so 
raising a question on the involvement of this receptor in the adipocyte metabolism in humans. FXR was 
shown to play a key role in determining adipocyte size and AT architecture in experimental models[23] and 
reduced FXR expression has been observed in obese vs. lean mice[30]; however, at the bulk of our knowledge, 
no data were available so far on FXR expression in human adipose tissue. Besides, since our population did 
not involve metabolically healthy lean individuals, we cannot exclude that the results obtained in this study 
are specific for obese individuals, with or without metabolic abnormalities. Further studies are warranted to 
explore VAT FXR expression in different metabolic phenotypes. Moreover, although the lab protocol 
applied for RNA extraction optimally performed for the other genes tested in this and previous studies from 
our group[14,24], a role of the methods used in explaining the results on VAT FXR expression cannot be 
conclusively ruled out.

This study has some limitations. First, the cross-sectional design of this investigation does not allow 
drawing functional or mechanistic conclusions on the study findings. Moreover, data on VAT TGR5 
expression in non-obese healthy individuals would have revealed the relative gene expression under basal 
conditions. However, obtaining omental fragments from healthy individuals may expose to ethical 
concerns, since VAT biopsies can only be taken during surgery, which needs clinical reasons to be 
performed; this, by definition, excluded potential healthy donors to be recruited for this investigation. 
Moreover, data on TGR5 protein expression in the VAT were not available; therefore, the possibility that 
TGR5 gene expression may not represent increased function of the encoded protein cannot be ruled out. 
Similarly, data on tissue levels of TGR5 target genes could provide insights on TGR5 activity beside the 
expression per se. Indeed, experimental evidence shows that adipocyte TGR5 expression is not affected by 
inflammatory stressors[10], suggesting that TGR5 activation - rather than TGR5 expression - may have a 
major influence on metabolism in humans. Future studies addressing these issues may add interesting tips 
to this topic.

In conclusion, this study demonstrates that TGR5 expression is largely detectable in omental fat from obese 
individuals, is associated with impaired VAT homeostasis and ANGPTL4, and predicts metabolic disease in 
obesity, overall adding novel insights to the understanding of TGR5-mediated pathways in the clinical 
setting.
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