
Zhou et al. J Cancer Metastasis Treat 2024;10:12
DOI: 10.20517/2394-4722.2023.178

Journal of Cancer 
Metastasis and Treatment

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.oaepublish.com/jcmt

Open AccessReview

Research progress of intestinal microbiota in 
targeted therapy and immunotherapy of colorectal 
cancer
Xinying Zhou1,#, Yu Zhao1,#, Rongchuan Zhao1, Shaheryar Shafi1, Yue Yang1, Guangxing Liu1, Song-Bai Liu2

1Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China.
2Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou 
Vocational Health College, Suzhou 215009, Jiangsu, China.
#The co-first author.

Correspondence to: Song-Bai Liu, Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion 
Diagnostics in Oncology, Suzhou Vocational Health College, Kehua Road 28, Suzhou 215009, Jiangsu, China. E-mail: 
liusongbai@126.com; Guangxing Liu, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 
Suzhou 215163, Jiangsu, China. E-mail: liugx@sibet.ac.cn

How to cite this article: Zhou X, Zhao Y, Zhao R, Shafi S, Yang Y, Liu G, Liu SB. Research progress of intestinal microbiota in 
targeted therapy and immunotherapy of colorectal cancer. J Cancer Metastasis Treat 2024;10:12. https://dx.doi.org/10.20517/
2394-4722.2023.178

Received: 29 Dec 2023  First Decision: 5 Feb 2024  Revised: 25 Feb 2024  Accepted: 13 Mar 2024  Published: 21 Mar 2024

Academic Editor: Xinxiang Li  Copy Editor: Fangyuan Liu  Production Editor: Fangyuan Liu

Abstract
Colorectal cancer (CRC) is one of the most common malignancies of the digestive tract, with increasing morbidity 
and mortality worldwide, and is the third most common malignancy in the world. At present, the main treatment 
methods for CRC include surgery, chemotherapy, targeted therapy, and immunotherapy. Regulation of the gut 
microbiota is one of the most promising new strategies for CRC treatment. Gut microbiota interacts with host cells 
to regulate many physiological processes, such as energy acquisition, metabolism, and immune responses. Recent 
studies have found that a combination of gut microbiota with targeted therapy and immunotherapy could improve 
the therapeutic effect of colon cancer compared with treatment alone. This article reviews the mechanism of 
microbiota regulation in CRC and the latest progress of intestinal microbiota in targeted therapy and 
immunotherapy of CRC, which is helpful in developing potential prevention or treatment strategies for colorectal 
cancer.

Keywords: CRC, gut microbiota, targeted therapy, immunotherapy

https://creativecommons.org/licenses/by/4.0/
https://www.oaepublish.com/jcmt
https://dx.doi.org/10.20517/2394-4722.2023.178
https://dx.doi.org/10.20517/2394-4722.2023.178
http://crossmark.crossref.org/dialog/?doi=10.20517/2394-4722.2023.178&domain=pdf
OAE
图章



Page 2 of Zhou et al. J Cancer Metastasis Treat 2024;10:12 https://dx.doi.org/10.20517/2394-4722.2023.17812

INTRODUCTION
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, with a 5-year 
survival rate of 15%[1]. With the deepening of research, more and more factors increasing the incidence of 
colorectal cancer have been discovered, such as cancers of unknown primary (CUP), metastatic cancer with 
no identifiable primary site following adequate evaluation[2]. Early screening has been shown to improve 
CRC survival in developed countries. While surgery alone or combined with radiotherapy or chemotherapy 
has been the mainstay of CRC treatment, targeted therapies such as cetuximab (Cet) and bevacizumab (Bev) 
have led to significantly improved overall survival since their development in the 21st century[3]. Even 
though older patients with pT4 disease are more prone to severe postoperative complications, there is no 
consensus that age affects survival outcomes. The prognosis of older patients may be confounded by 
differences in stage at presentation, tumor site, preexisting comorbidities, and type of treatment received[4]. 
There are two main chemotherapy regimens for the treatment of colorectal cancer: FOLFOX [5-fluorouracil 
(5-FU), leucovorin, and oxaliplatin] and FOLFIRI (5-FU, leucovorin, and irinotecan). Cet, panitumumab 
(Pan), and Bev are often added to these two chemotherapy regimens for synergistic therapeutic effects[5]. In 
recent years, immunotherapy has achieved great therapeutic effects in solid tumors such as melanoma and 
lung cancer; this success has led to its gradual application in treating CRC[6]. Microsatellite instability (MSI) 
is a change in the number of short repetitive sequences (1-6 bases) in DNA and is a form of genetic 
instability in tumors. dMMR is a system for correcting errors during DNA replication, and if MMR is 
defective, it can lead to MSI. In general, CRC patients with high MSI (MSI-H) or MMR deficiency (dMMR) 
have better outcomes for ICI, while CRC patients with low MSI (MSI-L) or microsatellite stabilization 
(MSS) have ineffective or limited treatment for ICI.

The recommended screening for defective DNA mismatch repair includes immunohistochemistry (IHC) 
and/or MSI test. However, there are challenges in distilling the biological and technical heterogeneity of 
MSI testing down to usable data. It has been reported in the literature that IHC testing of the mismatch 
repair machinery may give different results for a given germline mutation, and it has been suggested that 
this may be due to somatic mutations[7]. However, prognosis remains poor for many CRC patients[8], 
highlighting the need for more effective treatments.

The intestinal microbiota represents an integral part of the gastrointestinal microenvironment and has been 
implicated in CRC development and progression, as well as response to therapy. Under homeostatic 
conditions, commensal microbes confer resistance against pathogens in part by regulating epithelial cell 
proliferation and DNA damage[9]. Thus, maintaining the gut microbial ecosystem appears critical for CRC 
prevention and treatment. There is mounting evidence that the intestinal microbiota contributes to CRC via 
various mechanisms. Consequently, preservation of gut microbial balance could mitigate CRC 
advancement[10]. Furthermore, modulation of the microbiota may improve outcomes for immunotherapy 
and targeted therapy.

MICROBIOTA IN TARGETED THERAPY
Fusobacterium nucleatum
Fusobacterium nucleatum (F. nucleatum) is a gram-negative, spore-free anaerobic bacterium. It mainly 
colonizes the mouth and is an opportunistic pathogen that may cause oropharyngeal and external oral 
diseases[11]. In recent years, a large number of tissue samples and stool samples of clinical patients with 
colorectal cancer have been detected with an increased abundance of F. nucleatum[12]. Studies have shown 
that F. nucleatum can cooperate with other intestinal microorganisms to regulate the tumor immune 
microenvironment and promote the progression of colorectal cancer, and its high abundance is often 
associated with poor prognosis and drug resistance in the late stage of chemotherapy[13]. Therefore, the 
exploration of molecular targets targeting F. nucleatum to inhibit the progression of colorectal cancer is 
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reliable. This part summarizes the existing potential therapeutic targets and molecular mechanisms related 
to F. nucleatum.

Pathogenic mechanism
FadA is a F. nucleatum adhesin that can bind to E-cadherin on human colon epithelial cells, activating the 
Wnt/β-catenin signaling pathway. This promotes CRC cell proliferation, migration, and invasion[14]. Fn 
infection can also prompt CRC development by stimulating toll-like receptor 4 (TLR4) signaling, resulting 
in NF-κB activation and upregulation of the pro-carcinogenic microRNA-21 (miR-21)[15]. 
Lipopolysaccharide (LPS), a cell wall component of F. nucleatum, can bind to TLR4 on the surface of tumor 
cells, activating MyD88 and other signaling pathways. This will further promote the transformation of LC3-
I to LC3-II and the formation of autophagosomes, contributing to the degradation of chemotherapy drugs 
and resistance. Activation of the TLR4-MyD88 signaling pathway can also inhibit the expression of two 
microRNAs involved in autophagy signaling molecules, thereby further enhancing the activation of 
autophagy[16].

Therapeutic targets
Current approaches to impede F. nucleatum-mediated CRC progression primarily fall into three categories:

(1) Small molecule compound inhibitors. Previous studies have shown that CEACAM1 and TIGIT 
inhibitors can be used as potential adjuvant drugs for CRC[17]. At present, some small molecule drugs under 
clinical trial are screened, such as azelnidipine and liothyronine[18]. A recent study has shown that Sodium 
New Houttuyfonate (SNH) significantly inhibits the progression of CRC by targeting F. nucleatum's 
membrane-associated protein FadA, leading to FadA polymerization, membrane rupture, and penetration, 
which blocks the tumor-promoting activity of F. nucleatum and F. nucleatum-associated cancer-driven 
inflammation, protecting the intestinal barrier[19]. Studies have also shown that antimicrobial peptides 
(AMPs) are a new class of antimicrobial drugs. Br-J-I, a derivative of antimicrobial peptides Jelleine-I, 
inhibits F. nucleatum colonization, colon inflammation, and F. nucleatum-induced CRC growth by 
targeting FadA. Br-J-I can also enhance the antitumor effect of 5-fluorouracil[20].

(2) Phage-guided intestinal microbiome regulation therapy. Irinotecan-loaded dextran nanoparticles 
covalently linked to azide-modified phages were demonstrated to selectively inhibit the proliferation of F. 
nucleatum and autophagy of colon tumor, thus restoring the sensitivity of tumor cells to chemotherapy 
drugs[21].

Bacteroides fragilis
Bacteroides fragilis is divided into nontoxigenic Bacteroides fragilis (NTBF) and enterotoxigenic Bacteroides 
fragilis (ETBF) according to the ability to produce Bacteroides fragilis toxin (BFT). ETBF is an obligate 
anaerobic gram-negative bacterium that can secrete BFT to destroy the intestinal epithelial barrier, induce 
inflammation and precancerous lesions, and ultimately promote the tumorigenesis and progression of 
colorectal cancer[22].

Pathogenic mechanism
In a steady state, mucosal barrier can separate gut microbiota from the immune system. Destruction of 
mucosal barrier will cause chronic inflammation, which will further inhibit apoptosis of abnormal cells and 
eventually lead to cancer. Wu et al. found that Bacteroides fragilis toxin (BFT) produced by ETBF destroys 
colon mucosal barrier by degrading E-cadherin of colon epithelial cells[23]. BFT could also induce Wnt/β-
catenin signaling[24]. In addition, the transcription factor STAT3 in colon epithelial cells and immune cells 
activated by ETBF could induce the production of growth factors, promote survival and proliferation of 
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tumor cells, and inhibit antitumor immune response[25]. ETBF was also involved in the cytokine secretion of 
T cells, which would further increase the risk of intestinal inflammation and cancer[26]. ETBF can also affect 
the inflammatory response of cells, the degradation of extracellular matrix, and the regulation of gene 
expression through various signaling pathways, such as NF-κB and MAPK signaling pathways, which will 
further promote tumorigenesis and cancer progression[27,28]. Biofilms are structures composed of bacteria 
and extracellular polymers that protect bacteria from being attacked by the host immune system and 
antimicrobial agents[29]. ETBF could participate in biofilm formation and alter the tumor 
microenvironment, thereby promoting carcinogenesis[30].

Therapeutic targets
Currently, the potential anti-enterotoxigenic Bacteroides fragilis therapy to inhibit CRC progression can be 
divided into three categories:

(1) Natural product screening. Kim et al. found that zerumbone could effectively inhibit biofilm formation 
in Bacteroides fragilis containing toxic BFT-2 by downregulating the effector pump gene (bmeB12) 
associated with biofilm formation[29]. α-humulene is also effective in killing enterotoxigenic Bacteroides 
fragilis and destroying biofilms, which is expected to treat intestinal infections[31]. In addition, a recent study 
showed that natural polysaccharides extracted from agricultural wastes exhibited antibacterial effects 
through involvement in DNA damage and plasma membrane permeability alteration in carcinogenic 
bacteria[32].

(2) Anti-inflammatory drugs. Administration of the anti-inflammatory drug auranofin can inhibit bacterial 
survival and eradicate bacterial biofilms, alleviating intestinal inflammatory response caused by ETBF, and 
may reduce the occurrence of inflammation-related cancers by reducing the expression of outer membrane 
protein (OmpA) gene and effector pump-related gene bmeB3[33].

(3) Probiotic therapy. The use of probiotic blends such as Clostridium butyricum and Bifidobacterium can 
regulate the intestinal microecological balance by inhibiting the production of intestinal pathogenic 
biofilms, thereby inhibiting the colonization and proliferation of ETBF, and reducing the possibility of 
intestinal inflammation and cancer[34]. It was also shown in the article that the synthetic recombinant BFT-2 
can inhibit the incidence of colon cancer, by decreasing the expression of Ki-67 and increasing the 
expression of Caspase-3, leading to apoptosis of colon cancer cells[35].

Clostridium butyricum
Clostridium butyricum (CB) is a spore-bearing, gram-positive anaerobic bacterium of the genus 
Clostridium. It can inhibit the growth of intestinal pathogenic bacteria and promote the amplification of 
intestinal probiotics such as Bifidobacterium. In addition, Clostridium butyricum ferments undigested 
dietary fiber to produce short-chain fatty acids (SCFA), by which butyric acid is one of the main products. 
These SCFAs affect host intestinal homeostasis and barrier function.

Therapeutic targets
Clostridium butyricum can enhance the mucosal barrier by increasing MUC gene expression in goblet cells 
and thereby increasing the content of mucin[36]. Zhou et al. found that CB inhibited the occurrence and 
progression of colon cancer by regulating the levels of inflammatory factors such as IL-6 and IL-10 through 
the MyD88-NF-κB signaling pathway[37]. Another study showed that CB can reduce the proliferation and 
promote apoptosis of intestinal tumor cells by inhibiting the Wnt/β-catenin signaling pathway. It can also 
reduce the secondary bile acid content in the stool, and increase the SCFA content in the cecum, which 
could further activate G protein-coupled receptors (GPRs) and activate the antiproliferative effect of 
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probiotics[38]. Xu et al. found that Clostridium butyricum can also reduce the stability of MYC protein by 
enhancing ubiquitin-mediated degradation, which contributes to the inhibition of the MYC-TYMS 
signaling pathway involved in CRC[39]. In addition, Clostridium butyricum can also inhibit the progression 
of colorectal cancer by regulating the expression levels of TGF-β, miR-200c, and Bcl-2[40,41].

Previous studies have reported Prebiotics-Encapsulated Probiotic Spores, spores-dex, which could be 
specifically enriched in colon cancer lesions after oral administration. Oligosaccharides are fermented by 
Clostridium butyricum to produce anticancer short-chain fatty acids (SCFAs). Meanwhile, spores-dex could 
also regulate the gut microbiota, increase the abundance of SCFA-producing bacteria, and significantly 
increase the overall diversity of the microbiota[42].

Streptococcus gallolyticus
Streptococcus gallolyticus, formerly known as Streptococcus bovis, is a Gram-positive pathogenic bacteria that 
causes endocarditis in humans. It is also the first bacterium identified to be associated with the development 
of CRC[43,44]. Studies have shown that patients with Streptococcus gallolyticus infection have an elevated risk 
of developing CRC[44]. In 2021, Rahwa Taddese et al. found that S. gallolyticus interrelates with AhR-
mediated pathways for cellular biotransformation (CYP1), which could potentially contribute to combating 
DNA damage and/or play a role in removing intestinal pathogens and protecting the epithelial barrier. S. 
gallolyticus increased the expression and activity of CYP1 biotransformation capacity in colorectal epithelial 
cells[45].

Peptostreptococcus anaerobius
Peptostreptococcus anaerobius is an anaerobic bacterium selectively enriched in the fecal and mucosal 
microbiota of CRC patients[46]. In 2019, Long et al. found that, in vivo, anaerobic bacteria attach to the 
mucosa of colorectal cancer, accelerating the development of colorectal cancer; anaerobes selectively adhere 
to colorectal cancer cell lines in vitro. Mechanistically, anaerobic bacteria drive colorectal cancer through 
the PCWBR2-integrin α2/β1-PI3K-AKT-Nf-κb signaling axis, and the PCWBR2-integrin α2/β1 axis is 
identified as a potential therapeutic target for CRC. α2/β1 is a receptor frequently overexpressed in human 
CRC tumors and cell lines. PCWBR2 can interact with α2/β1, which can induce the activation of the PI3K–
Akt pathway in CRC cells. This leads to increased cell proliferation and NF-κB activation[47].

The pathogenic microbiota and their therapeutic targets are summarized in Table 1.

MICROBIOTA IN IMMUNOTHERAPY
Gram negative bacillus
Gram-negative bacillus generally refers to bacteria with red Gram staining reaction. It mainly includes 
plateau Escherichia coli and Pseudomonas aeruginosa. LPS is one of the important products of Gram-
negative bacteria. As an immunostimulatory ligand, LPS can activate TLR4 and nuclear factor NF-κB 
pathway. As early as 2011, Hsu et al. found that LPS could promote CRC liver metastasis by stimulating the 
TLR4 signaling pathway and increasing cell adhesion mediated by β1 integration[48]. In 2018, Song et al. 
found that LPS content was significantly increased in the blood and tissues of patients with early adenoma 
and CRC. High levels of LPS in orthotopic colon cancer tissues were associated with low response to PD-L1 
monoclonal antibody treatment in immunotherapy. Clearance of Gram-negative bacteria in gut with 
polymyxin B (PmB) or blockade of TLR4 with TAK-242 alleviated the immunosuppressive 
microenvironment and promoted T-cell infiltration into CRC tumors. Based on this finding, Song et al. 
considered neutralizing or modulating LPS produced by gut microbes as a potential treatment for colorectal 
cancer. Therefore, they suggest that genetically engineered bacteria that secrete LPS traps or PmB produced 
by Bacillus polymyxa are promising therapeutic approaches to kill Gram-negative bacillus instead of 
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Table 1. Gut microbiota in CRC-targeted therapy

Bacteria Animal model & cell line Targeting sites/pathways Therapies and drugs

 
Fusobacterium 
nucleatum 
(F. nucleatum) 

BALB/c nude mice (HCT116); 
AOM/DSS; 
HCT116, DLD1, SW480, HT29, 
LoVo, SW480, CT26

Activating Wnt/β-catenin signaling 
pathway[14]; 
Activating NF-κB signaling pathway and 
upregulating miR-21[15]; 
Activating MyD88 signaling pathway[16]

 
Small molecule compound inhibitors: 
Azelnidipine and liothyronine[18]. 
Sodium New Houttuyfonate (SNH)[18]. 
Antimicrobial peptides (AMPs)[20]. 
Phage-guided therapy[21] 

 
Bacteroides fragilis 

  ApcMin/+ mice  E-cadherin of colon epithelial cells[23].
Activating STAT3[25].
Activating NF-κB signaling pathway[27]

Natural product :  
zerumbone, α-humulene, 
polysaccharides[29] 
Anti-inflammatory drugs: auranofin[33]. 
Probiotic therapy[35]

Clostridium butyricum 
(CB)

BALB/c nude mice (HCT116); 
AOM/DSS;  
HCT116, DLD1, RKO

Inhibiting MyD88-NF-κB signal 
pathway[37]; 
Inhibiting Wnt/β-catenin signaling 
pathway[38]; 
Inhibiting MYC-TYMS signaling 
pathway[39]

1. Increase the SCFA content and 
activate probiotics[38]. 
2. Prebiotics-Encapsulated Probiotic 
Spores[42]

Streptococcus 
gallolyticus 
(S.gallolyticus)

HT-29, SW480, HCT116, Caco-2 Inducing CYP1[45] /

Peptostreptococcus 
anaerobius

ApcMin/+ mice, 
HT-29, Caco-2, NCM460

Activating α2/β1-PI3K-Akt-NF-κB 
signalling axis[47]

Potential therapeutic targets PCWBR2-
integrin α2/β1 axis[47]

antibiotics. Transplanting these bacteria into the host gut in an appropriate manner could be an effective 
trial to clear LPS and regulate the CRC microenvironment[49].

Lachnospiraceae
Lachnospiraceae belongs to Firmicutes, an obligate anaerobes found in most healthy people. 
Lachnospiraceae is involved in the production of SCFAs, an important energy source for intestinal epithelial 
cells[50]. Spirochetes participate in host immune system by producing short-chain fatty acids, converting 
primary to secondary bile acids, and promoting colonization resistance to enteric pathogens[51]. In 2023, 
Zhang et al. found that commensal bacteria Ruminococcus (Rg), Bacillus (Bp), and Proteus (Df) of the 
Spirillaceae family were enriched in normal tissues, while Fusobacterium nucleatum (Fn) and anaerobic 
Streptococcus gasteri (Pa) were enriched in tumor tissues. Depletion of Rg and Bp promoted the antitumor 
effect of CD8+ T cells, and thus inhibited the progression of CRC, which could be a potential combination 
approach with immunotherapy[52].

Lactobacillus gallinarum
In 2022, Sugimura et al. identified Lactobacillus gallinarum as a potential adjuvant that could enhance the 
effect of anti-PD1 immunotherapy on CRC. Indole-3-lactic acid (ILA), a tryptophan metabolite produced 
by Lactobacillus gallinarum, can be further derived to indole-3-carboxylic acid (ICA), a functional 
metabolite that could inhibit the production of kynurenine (Kyn) in tumors by inhibiting the expression of 
indoleamine 2,3-dioxygenase (IDO1). In addition, Lactobacillus gallinarum-derived ICA competed with 
Kyn for the binding site of AHR and antagonized the binding of Kyn to CD4+ T cells. In conclusion, 
Lactobacillus gallinarum enhanced the efficiency of anti-PD1 therapy in CRC by inhibiting differentiation of 
Treg, and enhancing CD8+ T cell function through IDO1/Kyn/AHR axis[53].

Streptococcus thermophilus
Streptococcus thermophilus is a Gram-positive anaerobes that protects the intestinal epithelium by 
preventing invasive Escherichia coli[54]; it has also been shown to increase ceramide levels both in vitro and 
in vivo[55]. Li et al. found in 2021 that S. thermophilus inhibited colorectal tumorigenesis by secreting β-
galactosidase. β-galactosidase secreted by S. thermophilus inhibits cell proliferation, reduces colony 
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formation, induces cell cycle arrest, promotes CRC cell apoptosis, and retards the growth of CRC 
xenografts. Mutant S. thermophilus without functional β-galactosidase loses its tumor suppressive effect. As 
a novel drug for CRC prevention, S. thermophilus has a promising application prospect[56].

Lactobacillus paracasei
Lactobacillus paracasei is a Gram-positive and facultative anaerobic fermentative Lactobacillus that is widely 
distributed in fermented dairy products, vegetables, cereal products, and the gastrointestinal tract of 
humans and animals[57]. In recent years, L. paracasei has been shown to have a variety of health effects, such 
as antitumor immunity, improvement of functional dyspepsia, and improvement of lipid metabolism[58,59]. 
In 2018, Chang et al. found that the combination of NTU101-FM extract with 5-fluorouracil (5-FU), a 
chemotherapeutic drug, could induce CRC cell viability without toxicity to colonic epithelial cells[60]. In 
2022, Zhang et al. demonstrated that L. paracasei sh2020 could induce antitumor immunity in mice and 
synergize with anti-PD-1 to delay tumor progression. The team found that the microbiome from healthy 
individuals had considerable sensitivity to anti-PD-1, which was absent from the gut microbiome of CRC 
patients. L. paracasei sh2020 was identified to exhibit significant antitumor immunity in mice with gut 
dysbiosis. Mechanistically, L. paracasei sh2020 stimulation led to the upregulation of CXCL10 expression in 
tumors and enhanced CD8+ T cell recruitment[57]. In the same year, Shi et al. found that L. paracasei PC-H1 
could use extracellular vesicles to induce apoptosis of colorectal cancer cells and delay the progression of 
CRC by using the PDK1/AKT/Bcl-2 signaling pathway[61]. Taken together, the regulation of intestinal 
microbiota by L. paracasei may play a synergistic role in enhancing immunotherapy and provide a new 
target for the treatment of CRC, which may have a broad prospect in the clinical treatment of CRC.

Clostridium
Clostridium is a general term for gram-positive, anaerobic, microaerobic and coarse bacillus species. 
Montalban et al. found that the abundance of Clostridium was decreased in CRC patients. Mice 
administrated orally with four Clostridium species (CC4) exhibited the activation of IFN-γ+, granzyme B+, 
CD8+ T cells and downregulation of immune checkpoint molecules, which resulted in the activation of 
antitumor immune response and further CRC inhibition[62].

Fusobacterium nucleatum
In addition to targeted treatment of CRC, Fusobacterium nucleatum can also work with immune pathways 
to inhibit CRC progression. TIGIT (T cell Ig and ITIM domain) is an inhibitory receptor expressed on 
regulatory T cells (Treg), activated T cells, and natural killer cells (NK cells). CEACAM1 is a cell adhesion 
molecule involved in tumor metastasis by binding to TIGIT. Fap2 is an outer membrane protein capable of 
binding to TIGIT/CEACAM1, thereby inhibiting the activity of natural killer cells and promoting the 
development and progression of CRC[63]. Specific antibodies targeting anti-FAP2 protein antibodies/anti-
CEACAM1 and TIGIT can be used to block the interaction between Fn and immune cells, thereby 
enhancing the function of natural killer cells and inhibiting the progression of colorectal cancer.

We summarized the mechanism of action and target cells of gut microbiota in CRC- immunotherapy in 
Table 2.

MICROBIOTA IN RELATION TO DIETS AND CRC
Dietary impacts and drug resistance
There are many other factors that influence the gut microbiota in CRC, and the current approach to 
analyzing these factors involves the concept of Molecular pathological epidemiology. Molecular pathological 
epidemiology (MPE) is based on molecular pathology and disease heterogeneity, using epidemiological 
study design methods to comprehensively analyze the effects of exposure factors, lifestyle habits, and 
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Table 2. Gut microbiota in CRC- immunotherapy

Bacteria Animal model & cell
line

Targeted 
cell Mechanism

Lachnospiraceae   ApcMin/+ mice;
MC38, CT26

CD8+ T cell Promoting the antitumor effect of CD8+ T cell[47]

Lactobacillus gallinarum AOM/DSS; 
HCT116, LoVo, MC38

CD4+ T cell 
CD8+ T cell

Inhibition of IDO1 expression, suppressing Kyn production; Inhibition of Treg 
differentiation[53]

Lacticaseibacillus 
paracasei 

L. paracasei

MC38. CD8+ T cell Enhancing CD8+ T cell recruitment[57]

Clostridium AOM/DSS; 
MC38, CT26

CD8+ T cell Activation of CD8+ T cells[62]

changes at the molecular level on disease development, prognosis, and outcomes[64,65]. Therefore, analyzing 
the impact of factors such as diet on disease progression in a clinical sample of colorectal cancer patients is a 
novel and interesting aspect.

Yang et al. found that a high-fat diet can lead to an increase in some bacteria associated with colorectal 
cancer in the intestinal tract of mice, and a high-fat diet can alter the levels of intestinal metabolites, for 
example, an increase in the expression of lysophosphatidic acid (LPA) can stimulate proliferation and 
inflammation of intestinal epithelial cells[66].

In addition, a high-fat diet can impair the function of the intestinal epithelial barrier, making the gut more 
vulnerable to bacteria and metabolites. It has also been shown that high-fat diets and APC mutations can 
alter bile acid (BA) levels in the body, leading to proliferation and DNA damage in intestinal stem cells, 
which promotes the formation and progression of CRC[67].

In addition, calorie restriction, fasting food during fasting phase, Vitamin D and ketone bodies can decrease 
CRC risk in humans/animal models while fructose in diets can increase it in animal models and some 
epidemiological associations[68]. All of the above evidence suggests a correlation between diet and the 
development of colorectal cancer, and diet control may be able to serve as a new target and strategy for the 
prevention and treatment of colorectal cancer.

The emergence of drug-resistant pathogens can also have an impact on the efficacy of clinical treatment. 
The presence of antibiotic resistance genes (ARGs) in the microbiota is characterized by quantity, identity, 
and function, which are collectively referred to as resistome[69]. There are already a number of strategies to 
combat drug-resistant microorganisms, such as those that utilize the CRISPR Cas9 system to eliminate 
selected bacterial targets[70]. Furthermore, combining molecular pathological epidemiology with microbial 
resistance and other factors, the strategy of rationally creating treatment methods to achieve better clinical 
treatment outcomes may have broad prospects.

Probiotic interventions
Studies have shown that the composition of gut microbiota changes significantly with the progression of 
CRC[71]. Driver bacteria increase in the early stages of CRC, providing conditions for tumor formation. 
Passenger bacteria are able to maintain CRC through metabolites. Furthermore, some probiotics can inhibit 
the progression of colorectal cancer. In conclusion, alterations in the ratio of gut microbiota may lead to 
dysregulation of homeostasis in the intestinal environment. Therefore, effective utilization of gut microbiota 
that play different functions in CRC may provide new ideas and methods for its prevention and treatment.
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Notable among these is probiotic supplementation. Probiotics are active bacteria isolated from the gut or 
fermented foods that can be used as food or food supplements for improving gut microbiota homeostasis or 
for preventive treatment of specific diseases[72]. Some studies have shown that patients who underwent 
surgical resection of CRC displayed a decrease in CRC-associated bacteria (Fusobacterium, Porphyromonas, 
and Alloprevotella) after being given probiotic (Clostridium butyricum, Lactobacillus plantarum, and 
Bifidobacterium) treatments and a reduction in postoperative complications[73,74].

CONCLUSION
Although our current understanding of microorganisms is limited, it is undeniable that microorganisms, as 
an important part of the animal body, have broad therapeutic prospects. In recent years, more and more 
attention has been paid to the study of gut microbes. Existing studies confirmed that the efficiency of gut 
microbiota has been extensively studied in CRC treatment, and certain results have been achieved, such as 
the enhancement of activation of CD8+ T cells by microorganisms and the enhancement of anti-PD-1 
immunotherapy. This signals that gut microbes may be able to act as an adjuvant to enhance 
immunotherapy. In addition, intestinal microbes can also use some targeted pathways, such as the MyD88-
NF-κB signaling pathway, to regulate the levels of inflammatory factors such as IL-6 and IL-10, thereby 
inhibiting CRC progression. However, most of the results have only been verified in vivo in mice and have 
not been applied in clinical practice. Due to the similarities in the immune environment between humans 
and mice, there are still great limitations in clinical application.

Despite many difficulties, current research still shows that therapeutic strategies targeting microbiota will 
become a key area of personalized cancer treatment, and the strategies of microbes as adjuvants in various 
therapies also have broad prospects.
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