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Abstract
In the evolving landscape of quantum technology, the increasing prominence of quantum computing poses a signifi-
cant threat to the security of conventional public key infrastructure. Quantum key distribution (QKD), an established
quantum technology at a high readiness level, emerges as a viable solution with commercial adoption potential. QKD
facilitates the establishment of secure symmetric random bit strings between two geographically separated, trust-
worthy entities, safeguarding communications from potential eavesdropping. In particular, data centre interconnects
can leverage the potential of QKD devices to ensure the secure transmission of critical and sensitive information in
preserving the confidentiality, security, and integrity of their stored data. In this article, we present the successful im-
plementation of a QKD field trial within a commercial data centre environment that utilises the existing fibre network
infrastructure. The achieved average secret key rate of 2.392 kbps and an average quantum bit error rate of less than
2% demonstrate the commercial feasibility of QKD in real-world scenarios. As a use case study, we demonstrate
the secure transfer of files between two data centres through the Quantum-Secured Virtual Private Network, utilising
secret keys generated by the QKD devices.
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1. INTRODUCTION
As the quantum technology landscape evolves, there is recognition of a threat on the horizon: quantum com-
puting poses a threat to the security of existing asymmetric encryption techniques [1,2]. In order to circumvent
possible breaches of long-term information security, it would be prudent to begin evaluating possible quantum-
safe technologies as candidate solutions. An existing quantum technology that is of relevant high readiness
level and ready for commercial adoption is quantum key distribution (QKD). QKD enables two distant, honest
parties to work together to create shared symmetric random bit strings that remain secure from a potential
eavesdropper. Current-day key establishment protocols, such as the Rivest Shamir Adleman (RSA), rely on
the assumption that an adversary has limited computational power relative to the hardness of a mathematical
problem. In contrast, the security of QKD protocol can be proven even against an eavesdropper with un-
bounded computational power (including quantum computers). This security is called information-theoretic
security (ITS) [3]. Furthermore, QKD is among the first technologies based on quantum information that is
commercially available and has been deployed in fibre networks and free space setups worldwide.

The overall performance of QKD hardware in a commercial environment is indicated by two key parameters:
the secret key rate (SKR) and quantum bit error rate (QBER) [4]. The SKR indicates the achieved rate of secret
keys produced by the QKD devices, whereas QBER provides an error percentage for quantum signal transmis-
sions between the QKD end nodes over a quantum channel. (For a continuous variable type QKD system, the
quantum channel is characterised by the channel transmission and the excess noise [5].) To get a glimpse of
the performance of production-grade QKD deployments in a commercial environment, as early as 2008, one
of the QKD networks in the SECOQC project recorded an average SKR of 3.1 kbps and QBER of 2.6% over
a 33 km fibre distance with a fibre loss of 7.5 dB in Vienna [5]. In Switzerland, an average SKR of 2.5 bps and
QBER of 5% were achieved with the QKD system that uses the coherent one-way (COW) protocol [6,7] over a
fibre link of 150 km with loss of 43 dB from Neuchatel to Geneva [8]. In 2012, a long-term field demonstration
of a QKD network that links two metropolitan cities with a trusted node was established in China, where the
longest link spans a distance of 85.1 km, with a fibre loss of 18.4 dB, recorded an average SKR of 0.77 kbps and
QBER of 5.26% for decoy-state BB84 protocol [9]. More recently, the quantum network established in Cam-
bridge, United Kingdom, which uses BB84 protocol [10], recorded an average SKR of 2,580 kbps and an average
QBER below 2.5% over a fibre distance of 10.6 km with a loss of 3.9 dB [11]. Beyond the general performance of
the QKD system, the potential for seamless integration between QKD technology and encryption-based appli-
cations offers a captivating prospect for its potential commercial use cases. For instance, the generated QKD
keys can be used to establish point-to-point quantum-secure communication links to transfer data [4,12] and
perform video conferencing [13]. Furthermore, the possibility of a secure financial transaction over a quantum-
secure optical channel with a QKD system using BB84 protocol has been demonstrated by a financial bank in
a lab environment recently [14].

Securing the transmission of private and sensitive data is an important application for the integration of QKD
devices, especially for critical information infrastructure. Data centres, in particular, can leverage the QKD
devices for this very purpose [15–17]. They are infrastructures for companies or organisations to house their
IT equipment, allowing them to perform tasks such as data storage, remote applications, and accessing cloud
computation services. The data traffic experienced by these data centres is growing rapidly and a forecast done
by Cisco in 2018 shows that this traffic will reach 19.5 zettabytes by the year 2021 globally [18]. This is expected
to increase evenmore in recent years given the increasing demand for cloud storage and advancement of cloud
services, and more data centres will be needed to handle these large amounts of data traffic. In addition, com-
munication between these data centres is required to fetch and retrieve data seamlessly. This communication
link is called the Data Centre Interconnect and it is responsible for establishing a network connecting all data
centres together [19]. Most often, these interconnects are established using a virtual private network (VPN),
and it is crucial for them to be secure to prevent compromising the confidentiality, security and integrity of
the data within the data centres [17]. Therefore, various stakeholders have begun to employ quantum-safe cryp-
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tography solutions by deploying QKD devices to provide secure keys for encrypting these interconnects for
secure data transfer [15,20] and cloud computing [21]. In addition, an essential consideration when integrating
QKDdevices into the data centre is that this process should not require anymajormodification to their current
network configuration, or building a new fibre infrastructure specifically for the QKD devices; in fact, these
QKD devices should be seen as an upgrade to their existing interconnect network for quantum-safe readiness.
Field trials done under this consideration will provide a good indication of the commercial viability of QKD
devices.

In this article, we report the demonstration of a successful QKD field trial in a commercial data centre environ-
ment over existing fibre network infrastructure. This deployment was conducted by the National Quantum-
Safe Network of Singapore (NQSN), a nationwide testbed for quantum-safe technology, in collaboration with
Singapore Technologies Telemedia Global Data Centres (STT-GDC). The goal was to examine the technical
feasibility and reliability of production-grade QKD equipment in the context of Singapore’s commercial oper-
ating environment. We covered the entire deployment life cycle: starting from the installation of QKD devices
in the data centres and network equipment setup, to the subsequent monitoring of the physical layer of the
quantum network. At the same time, as a case study, we explore the possibility of utilising the keys gener-
ated via the QKD devices to create a quantum-secured virtual private network to demonstrate secure data
transmission between two interconnected data centres.

2. METHODS
2.1 QKD background and QKD protocol
The basic functionalities of a general QKD commercial system are illustrated in Figure 1. The QKD system is
made up of two parts: a QKD transmitter and a QKD receiver, commonly known as Alice and Bob, respec-
tively. Alice and Bob will generate identical random bit strings as QKD-keys based on the underlying protocol
consisting of two stages: raw data exchanges over the quantum channel and post-processing over the classical
channel to produce symmetric secret keys [22]. Finally, the key management organises these symmetric secret
keys for use in different encryption applications via the designated interfaces. The key management channel
is required when expanding the QKD network with multiple users, as it can securely distribute and relay these
secret keys within this network.

For this field trial, the QKD equipment vendor collaborating for this demonstration is ID Quantique (IDQ),
and the QKD system used is the Cerberis XGR Series [23]. This system has a repetition rate of 1.25 GHz [24] and
uses the coherent one way (COW) protocol [6,7], which is patented by IDQ. The implemented COW protocol
is secure against restricted types of collective attacks [25–27]. The schematic description of the COW protocol
is illustrated in Figure 2. In this demonstration, the latest version of the COW protocol with an additional
vacuum state, specifically referred to as the COW-4 protocol here, is employed to foil the zero-error attacks
against COW protocol [28,29]. We note that the QKD system deployed is an implementation of a QKD proto-
col, where there is necessarily a gap with the ideal theoretical QKD protocol (which is ITS) and its realistic
implementation.

In the setup, the laser in the transmitter in Alice emits a continuous wave (CW) beam, which is subsequently
modulated at the intensity modulator, to provide coherent optical pulses with bit patterns corresponding to
the bit value of zeros, ones, decoy and vacuum states. These pulses are attenuated at the optical attenuator
to reach single photon levels and travel from Alice to Bob via the quantum channel. In the receiver at Bob,
some pulses reach the bit-generation detector, denoted by Dbit, through the beam splitter and they are used
for generating the QKD keys in the key distillation process. The other pulses, reflected by the beam splitter,
enter the path containing the monitoring interferometer to measure the coherence between adjacent pulses at
the monitoring detector, denoted by Dmon, to monitor for the presence of eavesdroppers [23]. For this above
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Figure 1. The basic components for a QKD system. The quantum channel (red arrow) exchanges the raw keys between Alice and Bob.
Afterwards, post-processing takes place over the classical service channel (blue arrow), while the key management channel (green arrow)
organises these secret keys and supplies them upon demand to different encryption applications. QKD: Quantum key distribution.

Figure 2. The schematic description of COW-4 protocol. Single-photon-level pulseswith bit values of zeros, ones, decoy and vacuum states
are sent from Alice to Bob via the quantum channel. At Bob, the bit-generation detector Dbit generates the QKD keys, while the monitoring
interferometer measures the coherence between adjacent pulses at detector Dmon. The key distillation process commences thereafter and
the sifting, error correction, privacy amplification and key management process happen over the classical channel (indicated by the blue
dashed arrow) to generate the secret keys. COW: Coherent one-way; QKD: quantum key distribution.

process to work, Alice and Bob need to be synchronised through the classical channel. After the pulses are
exchanged between Alice and Bob, the key distillation process commences on the classical channel, where the
QKD keys are generated through processes such as sifting, error correction with Low Density Parity Code
(LDPC) algorithm, and privacy amplification using the Wegman-Carter Strongly Universal Hashing to obtain
secret keys that are uniformly random, identical and secure against an eavesdropper [23]. These keys are then
forwarded to the key management, where a portion is employed for authenticating the classical channel, while
the remainder becomes the secret keys shared among Alice and Bob [30,31].
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Figure 3. The quantum (red arrow), service (blue arrow) and KMS (green arrow) channels of the QKD systems are connected via optical
fibres. The connections established between each QKD system and the IT equipment are made by RJ45 (brown arrow). Within the server,
various software containers are deployed, including the QMS, as well as the Web API container, which is managed by the management
link (orange arrows). The QKD keys are pushed out of the QKD devices into the server using the ETSI GS QKD 014 REST API via the key
delivery link (black arrow). KMS: Key management system; QKD: quantum key distribution; IT: information technology; QMS: Quantum
Management System; API: application programming interface; STT GDC: Singapore Technologies Telemedia Global Data Centres.

2.2 QKD deployment
The architecture for the physical setup of the field trial demonstration is depicted in Figure 3. The quantum,
service and key management system (KMS) channels of the two QKD devices are made via optical fibres
for transmitting signals with different wavelengths at C-band. The connections for the quantum channel are
Subscriber Connector (SC)/Ultra Physical Contact (UPC), whereas each of the service and KMS channel con-
nections are established with Lucent Connector (LC)/UPC (duplex) connecting to a transceiver. All three
channels are transmitted through their own dedicated fibres. At each site, the QKD device is set up as follows:

1. Two RJ45 Ethernet connections are available from the IDQ Cerberis XGR device, one for the key delivery
link and the other for the management of the appliances. The connection for the appliance management is
extended into an Ethernet network switch.

2. A typical server with dual Ethernet connections is subsequently connected to the switch to control the
management of the appliances, while the other is used to control the key delivery link.

3. Within the server, various software containers are deployed. Important containers include the quantum
management system (QMS), as well as the Web API container [23], which can set up, control, and monitor
the QKD devices, and the ETSI GS QKD 014 [32] Representation State Transfer (REST) API container that
pushes the secret keys out of the QKD devices via the key delivery link.

4. A mobile hotspot router is used for internet purposes. The router utilises publicly available consumer mo-
bile networks with either 4G or 5G connectivity. The router is connected to the switch for the management
network. We note that the cellular networks are from different operators, and there is no direct communi-
cation link setup between both locations; hence, both locations reside in two separate IP networks.

In our demonstration, the QKD deployment employs the trusted node configuration. In particular, the server
and the QKD, which is connected via the ETSI GS QKD 014 REST API interface, are co-located within a
trusted environment. We note that in this trusted node setting, we have assumed that the eavesdroppers do
not have access to the ETSI GS QKD 014 API interface. The performance of the deployed QKD over time is
evaluated and the most critical parameters to monitor are the following:

• QBER.This is defined as the ratio of non-identical bits between the QKD transmitter (Alice) and QKD re-
ceiver (Bob), which is an error rate due to the quantum signal transmitting via the open quantum channel.
In the security proof, all errors are attributed to the eavesdropping action on the open channel. In other
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Table 1. Results for fibre network infrastructure for the optical fibres between the two data centres

Location 1 Location 2
Measured fibre length

(OTDR)
Measured fibre loss at 1,550 nm

(OTDR)

STT GDC-A STT GDC-B 19.87 km 12.47 dB

OTDR: Optical time-domain reflectometer; STT GDC: Singapore Technologies Telemedia
Global Data Centres.

words, QBER directly impacts the final SKR, and thus the QKD channel security and performance. A high
QBER will result in the aborting of QKD protocol [33], and for a given QKD protocol, a certain threshold of
QBER forbids the QKD protocol to generate any secret key. For instance, in a BB84 QKD protocol, QBER ≈
11% is the theoretical limit to have a positive key rate [34,35]. In practice, the noise presence in the quantum
channel and imperfection of realistic QKD transmitter and receiver will also contribute to QBER.

• SKR. This indicates the amount of secret keys that can be generated per time period, with the unit of bits
per second (bps). Here, the SKR for the COW protocol is derived as a function of QBER, other security
parameters and accounting for various eavesdropping attack models, such as sequential [36], collective [25]

or zero-error attack [37] that could potentially be executed on the QKD system [22,33]. In practical implemen-
tations, the actual SKR will involve a real-time QKD operation time period, which includes the time for the
key distillation and post-processing [30,31]. Generally, a QKD system with a higher SKR will have a greater
advantage in supporting applications that consume keys rapidly.

2.3 Fibre network infrastructure
The production-grade fibre network infrastructure is provided by NetLink Trust (NLT). As mentioned in the
INTRODUCTION Section, minimal alterations need to be made to this existing fibre network in this de-
ployment. In particular, apart from the establishment of the last-mile connectivity, the QKD devices can be
connected to the existing fibre networks without laying new fibre cables in between. Based on theoretical fibre
study conducted by NLT to estimate the fibre length distance and fibre loss via the network planning tool, two
data centres from STT-GDC are chosen for this trial demonstration, where QKD Alice and Bob are located at
STT GDC-A and STT GDC-B, respectively. The location of the two sites is depicted in Figure 4. The fibre con-
nection consists of a total of seven hops from STT GDC-A to STT GDC-B that are in compliance with G.657A
standards [38] and the G.652D standards [39]. Upon completion of the fibre connection, an end-to-end optical
time-domain reflectometer (OTDR) measurement on the final fibre cable link is conducted. The equipment
used in the measurement is a VIAVI SmartOTDR measurement tool. The measured fibre cable link results
between these two data centres are shown in Table 1. These results are crucial to ensure the QKD equipment
continues to operate within its acceptable capability and operation range.

2.4 QKD application
To emulate a secure file transfer using the QKD system, we demonstrate the application of using symmetric
QKD-generated keys to encrypt and decrypt the data that is sent across the two data centres. To this end, a
quantum-secured VPN (Q-VPN) application is deployed over the connecting sites. This Q-VPN consumes
the QKD keys from the key buffer storage in the QKD system and performs Advanced Encryption Standard-
256 (AES-256) encryption thereafter to establish a quantum-safe VPN tunnel for secure data transfer. AES-
256 is a symmetric algorithm that is quantum-safe and remains secure even against quantum attacks such
as Grover’s algorithm. When used in conjunction with a QKD protocol, the overall security of the Q-VPN
remains quantum-safe at the protocol level. For the purpose of this demonstration of functionality, cloud
resources are utilised to establish the VPN tunnel due to their robustness and ease of implementation in a
simplified network setting (In practice, the edge cloud resources can also be located at the trusted nodes, as
demonstrated by the NQSN in another trial [21]).
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Figure 4. Location of QKD devices at STT GDC-A and STT GDC-B shown on the map. The red line indicates the fibre connection between
the two sites with a measured length of 19.87 km and a measured loss of 12.47 dB. QKD: Quantum key distribution; STT GDC: Singapore
Technologies Telemedia Global Data Centres.

The architecture of the QKD application is illustrated in Figure 5. The symmetric secret keys generated by
both Alice and Bob are channelled via the ETSI GS QKD 014 REST API to the server, then onto the cloud
computers. After the Transport Layer Security (TLS) handshake is established between Alice and Bob, these
secret keys are stored in the internal SQLite3 database of the Q-VPN application. We note that the connection
between the server and the cloud is not assumed to be quantum-safe and only for demonstration purposes.
These stored keys are synced between the two points and can be accessed to encrypt the network between
them using AES-256 encryption, with the keys renewed every ten seconds. The used keys will be discarded
and the Q-VPN will request more secret keys from the QKD devices to replenish keys in its database. A file
transfer client/server application can be achieved. The data is transferred from the sender to the receiver using
the Secure Copy Protocol (SCP) command between the cloud computers via this encrypted Q-VPN tunnel.

3. RESULTS
3.1 Performance and reliability analysis of the QKD equipment
The stability of SKR and QBER is monitored continuously, and the results are shown in Figure 6. The SKR
and QBER from the QKD equipment are relatively consistent throughout the time window of ten days. The
standard deviation of SKR is less than 4.3% of its average, indicating a relatively stable performance over the
operating period. Meanwhile, the average QBER is relatively low at 1.9%. More than 97% of the data points
recorded are below 2.9% of QBER, and maximum recorded QBER is less than 6%. The total key generated
amounts to more than 2 Gigabits, or equivalently more than 8 million AES-256 keys.

There are two other parameters that are crucial to the performance and reliability specifically to the COW
protocol: the dark-count corrected (Dcc) Visibility and the Total Detection Count. The Dcc Visibility is the in-
terference visibility detected at the Dmon after correcting for the dark counts (detection without incident light).
Preferably, the Dcc Visibility should be near, but strictly below, 100 % and the recorded result is sufficiently
high, averaging 99.12 % with a small standard deviation of 0.16 %. The Total Detection Count accounts for
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Figure 5. QKD application architecture. The secret keys generated by Alice and Bob are sent to their respective cloud computer via the
ETSI GS QKD 014 REST API with the help of the key delivery link (black arrow) and the Ethernet link (brown arrow). These secret keys
are stored in the internal SQLite3 database of the Q-VPN application. These stored keys are synced between the two points to encrypt
the link between them. Once the Q-VPN link is established, a file transfer client/server application can be achieved. QKD: Quantum key
distribution; Q-VPN: quantum-secured virtual private network.

Table 2. Average and standard deviation of the key parameters for the stability test

Key parameters Average Standard deviation

Secret key rate 2,392 bps 126 bps
QBER 1.90% 0.50%

Dcc visibility 99.12% 0.16%
Total detection count 18,199 65

QBER: Quantum bit error rate; Dcc: dark-count corrected.

the total number of detection, including incoming photons and dark counts at Dbit. The respective plots for
the Dcc Visibility and Total Detection Count are also presented in Figure 6. The average and the standard
deviation of these parameters are presented in Table 2.

3.2 Attenuation test on key parameters
An attenuation test is done to ascertain the relationship between the attenuator added and the two key parame-
ters. This analysis could provide an estimation of the potential QKD performance on the fibre for scenarios of
different distances. The attenuation is added using fixed attenuators to the optical fibre for the quantum chan-
nel. Figure 7 illustrates the combined results obtained for the key parameters and Table 3 shows the values of
the key parameters with the respective attenuation added. The SKR decreases with the increase in attenuation.
During the test, we have further added an attenuation of 12 dB, which has resulted in a zero key rate. This
indicates that the loss value has exceeded the QKD system tolerable limit.

3.3 QKD application integration
The QKD application showcases a secure file transfer via the Q-VPN tunnel from Alice to Bob (without ad-
ditional attenuation). The sample files are successfully encrypted and transferred through the Q-VPN every
minute, and the content is successfully decrypted at the receiving end. Since the Q-VPN uses AES-256 encryp-
tion, the average SKR generated by the QKD devices can provide an AES-256 key refresh rate of 11 keys per
second. Given that the Q-VPN renews its key every ten seconds, the QKDdevices operating in the commercial
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Figure 6. The SKR, QBER, Visibility and Total Detection Count measurement over a period of 10 days. (A) The recorded SKR over time, with
an average SKR of 2,392 bps (indicated by the red dotted line); (B) the recordedQBER over time, with an averageQBER of 1.9% (indicated by
a red dotted line) and all the recorded QBER is less than 6%; (C) the Dcc Visibility recorded over time, with an average of 99.12% (indicated
by a red dotted line); (D) the Total Detection Count recorded over time, with an average of 18,199 (indicated by a red dotted line). SKR:
Secret key rate; QBER: quantum bit error rate; Dcc: dark-count corrected.

Table 3. Attenuation test for key parameters

Attenuator added (dB) Secret key rate (bps) QBER (%)

3 ± 0.2 2,303 ± 135 1.62 ± 0.84
5 ± 0.2 1,730 ± 126 1.13 ± 0.48
7 ± 0.2 1,473 ± 141 1.30 ± 0.47
8 ± 0.4 1,016 ± 164 1.13 ± 0.59
10 ± 0.4 746 ± 110 1.19 ± 0.66

environment have the capability to generate sufficient keys to support the operation of the Q-VPN tunnel.

4. DISCUSSION AND OUTLOOK
The successful demonstration of the QKD keys distributed among the two secured sites, together with a simple
application of establishing a Q-VPN, paves the way for quantum-safe connectivity in real-world use cases and
further advanced applications. In the case of the QKD systems, this field trial demonstrates the commercial
viability of QKD integration with the existing production-grade fibre network in Singapore within a data cen-
tre environment. This is an important milestone, without taking for granted that the data centre environment
is ideal for QKD devices. For instance, these QKD devices can be co-located with other telecommunication
equipment, including encryptors, servers, plus computational intensive devices, impacting the surrounding
temperature stability. In comparison to other works demonstrating a similar QKD protocol in controlled lab
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Figure 7. The graphs of attenuation added and its impact on the respective key parameters. (A) SKR against Attenuator(s) Added. The SKR
axis scales in a logarithmicmanner to illustrate the relationship between the SKR and added attenuation. The standard deviation for the SKR
is included in the figure as error bars. The error bars are relatively small, indicating a relatively constant SKR; (B) QBER against Attenuator
Added. The standard deviation for the QBER is included in the figure as error bars. In both plots, the error bars for the attenuation account
for the insertion loss uncertainties, with the larger uncertainty indicating a combination of two attenuators. SKR: Secret key rate; QBER:
quantum bit error rate.

settings [26,40], by showcasing stable secret keys exchanged, our work bears a better resemblance to an opera-
tional environment and provides insight into understanding the practical challenges for the QKD system.

Another important aspect studied in our demonstration covers the organisation of fibre connectivity for the
QKD deployment. For this demonstration, there are seven patches across Alice and Bob, giving a measured
fibre distance of 19.87 km and 12.47 dB of fibre loss. Apart from ensuring that the total fibre loss is within
the capability and operation range of the QKD devices, no further optimisation is required. In principle, the
insertion loss from the fibre patches can be furtherminimised via fibre splicing to reduce the number of patches.
In our demonstration, while dedicated dark fibres are used for the quantum and the classical channels, in
principle one can utilise wavelength-division multiplexing (WDM) technique to conserve the fibre resources.
For instance, by having the quantum signal operating at a different optical band (e.g., O-band) with respect to
the classical data signals, channel multiplexing over a single fibre core can be performed [23].

In this demonstration, a point-to-point QKD architecture linking two data centres was employed. It is cru-
cial to recognise that these data centres are part of an interconnected network made up of multiple data cen-
tres, which ultimately need to be scaled beyond mere point-to-point connections to guarantee quantum safety
across the network. With the multi-layer approach of QKD network architecture [41,42], it allows scalability
and interoperability from point-to-point QKD to multi-point QKD network topology. Under the trusted relay
node-based QKD network, this is enabled by the key management (KM) layer to interconnect the QKD pairs
with key supply interfaces as well as key relaying and storage functions inside KM layers. Beyond trusted nodes,
there are other quantum technologies under active development to extend and enhance theQKDnetwork, such
as measurement-device-assisted QKD (measurement-device-independent QKD [43], twin-field QKD [44]) and
quantum repeater [45]. Examples of multi-point QKD topology include a mesh [5,9,13], a ring [11], a star [46–48]

or a mixed type architecture [49]. Moreover, the performance study of different QKD protocols and vendors
in the market can also be done to analyse their performance and commercial viability within the data centre
or other mission critical infrastructure environment. Some examples of the QKD protocols are the BB84 sys-
tem, entanglement-based system, and continuous variable system. The utilisation of emerging technologies
could further enhance the performance of QKD devices and their realisation could also be examined in future
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Table 4. Comparison between PQC and QKD

PQC QKD

Implementation Software and hardware Hardware
Protocol security Computational complexity ITS
Implementation loopholes Exist Exist
Application and usage Public-key encryption and key establishment, Digital signature Key establishment
Migration Software and hardware upgrade Infrastructure and hardware upgrade
Standardisation and certification Required Required

PQC: Post quantum crytography; QKD: quantum key distribution; ITS: information-theoretic security.

demonstrations. These advancements include fast single photon detectors [50], integrated transmitter and re-
ceiver [51], qubit-based time synchronisation technique [52] and digital signal processing [53,54]. Apart from the
Q-VPN applications, different use cases at different Open Systems Interconnection (OSI) layers could also be
explored in the future.

On the other hand, it is instructive to mention another quantum-safe cryptography alternative, which is the
post-quantum cryptography (PQC) [55]. PQC is a cryptographic algorithm that is believed to be secured and
resilient under known quantum algorithm attacks. It finds applications in cryptography such as digital sig-
natures, public-key encryption and key establishment. PQC, being primarily software based, suggests that
quantum-safe migration and implementation could be cost-effective and scalable. However, to maintain a
certain degree of performance, hardware upgrade might be required as well. For QKD and PQC, though both
offer quantum-safe solution in the post-quantum era, they still require standardisation and certification. This
is to ensure that the respective encryption protocols are implemented properly, preventing potential vulner-
ability and loopholes in their implementation security before its widespread adoption. Here, we provide a
high-level comparison between PQC and QKD in Table 4. A hybrid framework that captures the strengths of
the QKD devices and PQC could be implemented to improve the overall resiliency [56,57].

5. CONCLUSIONS
We confirmed the feasibility of operating QKD devices over an existing production-grade fibre network within
a commercial data centre environment. In terms of the QKD device’s performance, the secret key rate and
QBER are stable and consistent over the trial period. In particular, we achieved an average SKR of 2.392 kbps,
which is largely achievable due to a low average QBER of less than 2%. A total of more than 2 Gigabits of AES-
256 keys are accumulated, with the rates of around 690 sets of keys per minute. The attenuation test verifies
the functionality of the QKD equipment over different quantum channel losses between Alice and Bob. For
the application, files are successfully transferred between two data centres via the Q-VPN which makes use of
the secret key generated by the QKD devices. Our efforts mark the inaugural stride towards the widespread
deployment of QKD throughout Singapore, thereby bolstering the infrastructure for practical, quantum-safe
communication.
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