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Abstract
Ports act as hubs for international trade and transport, strengthening the economies of the regions they serve. Tomain-
tain their undisrupted operations, efficient port management systems rely on Structural Health Monitoring practices
to detect defects and assess infrastructure performance. Regarding port concrete pavements, condition assessment
includes crack detection. Currently, advanced algorithms and methodologies for image processing or machine learn-
ing applications are used for surface crack detectionwith images capturedduring in-situ inspections. The growing urge
to employ unmanned aerial vehicles (UAVs) equipped with high-resolution cameras is driving further research into
image processing methods. This study provides an insightful approach for real-time crack detection in port concrete
pavements that takes advantage of the geospatial information included in UAV imagery. The proposed methodology
is based on the synergetic application of programming and Geographic Information System tools. Widely used crack
detection methods and algorithms are herein enhanced with geospatial analysis modules that help to manage pho-
togrammetry metadata generated by processing UAV data. Geographic Information System tools are employed to
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add a new perspective to crack detection by supporting the visualization and interpretation of geospatial processed
images to locate cracks and examine crack propagation. The investigation includes a periodic field test conducted at
Lavrio Port, a Greek port located at the southeastern tip of Attica. Overall, the combinedmethodology returns results
with high accuracy (approximately 95%), thus having a practical application in the engineering community that shifts
to scalable solutions for mapping cracks in large port concrete surfaces remotely inspected with UAVs.

Keywords: Port pavements, port concrete infrastructure, structural health monitoring (SHM), condition assessment,
unmanned aerial vehicles (UAVs), crack detection, image analysis, geographic information systems (GIS)

1 INTRODUCTION
Ports are key nodes having a dynamizing effect on trade, maritime connectivity and transportation, logis-
tics chain, and the blue economy [1]. They are capital-intensive infrastructure assets whose performance is
disturbed by natural disasters (e.g., earthquakes and storms), human-induced threats (e.g., human accidents),
adverse marine conditions, and climate change impact [2,3],necessitating continuous maintenance and upgrade
actions [4–6]. To implement a proactive intervention plan, optimize maintenance resources, and enhance the
structural integrity of port infrastructure, port managers are tasked to establish effective asset management
programs [7].

Nowadays, Structural Health Monitoring (SHM) of infrastructure is gaining importance in asset manage-
ment [6,8]. Within the port industry, SHM of constructed port concrete facilities can be measured using an
index that requires structural condition data linked to cracking, spalling, corrosion, and other defects [4]. Crack-
ing in port concrete pavements of mooring facilities is often caused by traffic loading conditions (e.g., loading
from heavy truck vehicles), inadequate design, construction defects, humidity conditions, etc. [9]. Crack detec-
tion in such facilities is essential to retain structural and functional performance, ensure public safety, reduce
maintenance costs, and prevent operational delays associated with non-targeted repair interventions [9,10].

Computer vision-based techniques for SHM of concrete structures have gained rapid popularity in terms of
crack detection [4]. They include both processing-based (i.e., image processing) and learning-based (i.e., deep
learning) techniques [11,12]. Digital Image Processing (DIP) is widely used to apply crack detection on concrete
surfaces aiming at enhancing the procedures of assessing existing condition [12]. DIP is applied with several
methodologies that involve data collection, data pre-processing, and algorithms’ implementation for crack de-
tection. Imagery acquisition involves both manual (e.g., handheld cameras) or automated applications (e.g.,
cameras mounted on Unmanned Aerial Vehicles, UAVs) [10]. The latter can be extremely beneficial for struc-
tures that occupy large areas, e.g., the port concrete pavements of mooring facilities, where limited handheld
photography may not representatively illustrate the in-situ condition of such infrastructure.

Current literature identifies the need to integrate UAV datasets into crack detection practices. The unique
characteristics of images captured by cameras mounted onUAVs such as resolution, lighting conditions, image
distortion, capturing distance, and lens’ characteristics differ from those taken with handheld cameras [13,14].
Hence, different studies have been focused on developing methods for crack detection by adapting to the re-
quirements of analyzing UAV datasets. For example, approaches for pixel-level crack identification [15] and
noise reduction [16] have been investigated. Despite the ever-increasing interest in crack detection using UAV
imagery, as noted by [17], few studies have focused on localizing cracks in concrete structures with UAV-
collected images. In the specific study, the localization was achieved by considering the relative position be-
tween objects. Another study focused on locating cracks in the world coordinate system using two UAV-based
images [18]. However, the potential of geospatial information in large UAV datasets required to illustrate large
structures remains largely untapped.
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The growing trend of UAV-driven SHM of port concrete pavements assists in identifying cracks in geospatial
output produced by photogrammetry methods and inserted into Geographic Information Systems (GIS) [19].
GIS tools have proven to be promising for manually mapping cracks albeit the lack of engaging automated
or semi-automated approaches for crack detection. Although advancing automation in crack detection with
coding for image processing and deep learning techniques has occupied several researchers, the synergetic
application of programming and GIS tools has not yet been explored. Programming languages can be used to
implement algorithms for crack detection [20] while GIS tools allow formanaging the geospatial information [21]

included in orthophotos that are generated by analyzing UAV imagery. Hence, interrelating both approaches
can be quite compelling in terms of assisting an SHM program for port concrete pavements. Except for com-
bining programming and GIS tools for concrete crack detection, proposed practices included in existing works
are not tested on UAV imagery acquired on different dates thus searching for changes in crack propagation.
While ensuring a reliable output in crack detection is very important, within the framework of civil engineering
applications a comprehensive understanding of structural changes is also crucial for managing maintenance
interventions.

In light of the above, the present research seeks to contribute to the existing body of knowledge regarding au-
tomating crack detection on port concrete pavements by applying current practices in image analysis enhanced
with tools for working with geospatial information. Such tools include (a) modules imported in programming
languages for managing georeferenced images; and (b) GIS applications for analyzing geospatial metadata ac-
quired by image analysis. The proposed methodology is applied at Lavrio Port, located in the southeastern
tip of Attica, Greece. The investigation includes a periodic SHM scheme that encompasses four UAV-based
in-situ inspections (ISIs), photogrammetry analyses, python coding, and GIS applications, thus providing a
comprehensive outline for facilitating crack detection issues.

To examine the synergistic effect of crack detection algorithms and geospatial tools on advancing structural
condition assessment of port concrete pavements, the paper is organized as follows. The current background
on crack detection practices is firstly summarized in Section 2 by describing pioneering contributions to al-
gorithm development and later-triggered works. Based on the existing framework a structured methodology
is presented that initiates a real-time crack detection approach that utilizes geospatial information of UAV or-
thophotos to map cracking on port concrete slabs of mooring facilities. The methodology is applied at a pilot
area defined within a concrete slab of the domestic ferry mooring facilities of Lavrio port to test its applicabil-
ity. The analysis of the results [Section 3] includes data validation and change detection during ISIs. The most
significant issues noticed while working on the specific case study are further discussed aiming to identify
challenges and search for potential ways to address them [Section 4]. Finally, the major findings of the demo
application are enclosed in Section 5.

2 MATERIALS AND METHODS
2.1 Background and objectives
UAVs are usually equipped with high-resolution Ultra 4K cameras for capturing digital aerial images [22]. In
contrast to the processing of imagery captured with portable cameras, where crack detection can be local-
ized, the analysis of UAV imagery of port concrete infrastructure is compromised by the presence of noise
features [16,23]. This is due to the complexity of the surrounding conditions including the shadows of vehi-
cles and passengers, linear joints, manholes, and other defects such as spalling and corrosion. To address
these challenges, several scientists have turned their research to deep learning techniques for machine learn-
ing applications [24] aiming to classify and recognize cracks with pre-trained algorithms. The efficiency of such
techniques is highly dependent on the amount of available imagery and the quality of the representative train-
ing dataset. Indicatively, both seasonal and daily time variations in UAV-captured images, the presence of wet
pavements, lighting conditions of the sun, and the cracking pattern (e.g., diagonal, transverse, longitudinal,
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wide/narrow cracks, etc.) may affect the dataset. These issues have motivated studies such as the one of Li et
al. [23] where a Convolutional Neural Network (CNN)-based methodology has been applied to bridges with
different crack patterns.

The combination of machine learning techniques with image processing approaches has proven to deliver
promising results [25]. In DIP, color images are represented as a matrix of vector-valued pixels formed by the
intensity values of the red, green, and blue components of the image [26]. DIP techniques may involve spatial
and frequency domain filtering, segmentation (e.g., thresholding or edge-based techniques), and mathemat-
ical methods (e.g., morphological operations) [12,27,28]. Each of these methods encompasses widely accepted
techniques. Indicatively, spatial domain filtering is applied by employing mean, median, Winer, and Gau-
sian methods for denoising converted grayscale images [29]. Thresholding approaches rely on the implementa-
tion of image binarization algorithms presented in leading-edge works including the Otsu (1979) [30], Niblack
(1986) [31], and Sauvola (2000) [32] algorithms. Moreover, among the most commonly used edge detectors for
crack detection are the ones of Sobel (1968) [33] and Canny (1986) [34]. Finally, mathematical methods in-
clude morphological operations such as erosion, dilation, or closing to remove irrelevant pixels to cracks or fill
the gaps to continue the cracking pattern [35]. All of these image-processing aspects are usually combined to
achieve a reliable and accurate cracking output [35] thus triggering several researchers to upgrade practices for
DIP crack detection.

Despite the popularity gained in image processing and deep learning techniques, their implementation inUAV-
collected data is limited to images captured at a very short distance from the structure (e.g., [18,23,36]). This is
mainly attributed to the specifications of image resolution and pixels required to achieve reliable results. Cur-
rently, the issue of pixel-level crack detection has been examined by [37]. The authors reviewed deep-learning-
based crack image segmentation techniques and they presented the requirements for their applications.

Within the context of a UAV-based SHM program for civil structures such as port concrete infrastructure,
UAV flights are typically conducted at higher altitudes than those currently applied for UAV-based crack de-
tection (e.g., [19,38]). The flight altitude is optimized to capture a detailed overview of the entire structure while
obtaining an acceptable number of images for analysis. The set of individual UAV images can be analyzed
with photogrammetry applications to generate surface profiles of the 3D structures (i.e., orthophotos) thus
providing geospatial information for detected defects (e.g., cracks) [39]. Once geospatial metadata is acquired,
GIS tools can be used to examine structural features [19,39]. Despite the positive feedback from current research
on combining UAV-based photogrammetry and GIS applications for assessing the structural condition of con-
crete structures, this synergy has not yet been integrated into DIP practices. Existing image-based methodolo-
gies often overlook geospatial information as their main focus is on a limited and predefined number of UAV
images.

Considering the above, the present paper bridges two research gaps in automating crack detection in port
concrete pavements. The first one is related to taking advantage of UAV geospatial information and mapping
cracks on orthophotos illustrating the entire structure. One of themain challenges is to find suitable UAVflight
altitudes that do not compromise accuracy. The second issue is the unexplored implication of GIS tools in
assisting automation processes for crack detection and propagation monitoring. Within the framework of this
research, an insightful approach is presented to work on geospatial metadata (i.e., orthophotos). A structured
methodology is proposed and tested on orthophotos obtained from periodic inspections. The contribution of
the present work includes the following:

• Retaining the geospatial information throughout the entire process of crack detection in port concrete pave-
ments while processing orthophotos is achieved by importing specific modules and tools in programming
and GIS environments.
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Figure 1. Stages for advanced crack detection in port concrete infrastructure (source: own work).

• The potential of GIS tools in improving crack detection and structural performance assessment is realized.
GIS environments offer a range of features that, when combined effectively, enable visualizing, editing,
locating, and quantifying cracking results.

• The regular update of the GIS database fed with all comprehensive information on the structural condi-
tion of port concrete infrastructure in terms of cracking is encouraged. This enables the identification of
variations in crack patterns and propagation issues over the structure’s lifespan. Moreover, the causal rela-
tionship between crack propagation and forcing factors (e.g., loading conditions) can be examined. Hence,
informed decisions regardingmaintenance and rehabilitation strategies can bemade for effective Life-Cycle
Management of the structure.

• The georeferenced output can be combined with structural data related to different port structures and
included in GIS databases, thus providing a comprehensive understanding of the vulnerabilities within the
entire port system.

2.2 Methodology
The overarching framework for mapping cracks in port concrete infrastructure by combining DIP and GIS
modules includes five Stages [Figure 1]. Data acquisition is achieved by employing high-resolution cameras
mounted on UAVs following a periodic SHM program (Stage 1). Factors such as the flight altitude, the camera
filters, the environmental conditions, etc., affect the quality of the collected imagery. UAV data are processed
with photogrammetry analyses to generate geospatial metadata (i.e., orthophotos) (Stage 2). The implementa-
tion of Stages 1 and 2 is summarized in Figure 2. Further details regarding the principles and the methods for
applying Stages 1 and 2 can be found in the study of [19].

Stages 1 and 2 are crucial for initiating crack detection applications. Once geospatial metadata (i.e., orthopho-
tos) is acquired, Stages 3, 4, and 5 of Figure 1 are applied based on a structured methodology proposed in the
present paper [Figure 3]. These Stages include image-based processing techniques and GIS tools. Two open-
source environments are employed for the programming and GIS processes: (a) QGIS (version 3.22); and
(b) Spyder (version 5.4) for Python language, respectively. QGIS tools are used for visualizing georeferenced
metadata and converting raster data (i.e., images) to vector data for mapping and quantifying cracks (Stages 3,
4, and 5). Python language is used for applying image processing algorithms and validation of the proposed
methodology (Stages 3 and 5).

The novelty of the proposed methodology is identified in two critical points: (a) working on orthophotos
of large surfaces with port concrete pavements and retaining the geospatial information during all steps of
image analysis; and (b) integrating GIS tools in automation processes for detecting cracks and monitoring
propagation. During the implementation of Stages 3, 4, and 5 working with geospatial data is achieved by
integrating the following two libraries into image analysis:
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Figure 2. UAV-based data acquisition and photogrammetry applications - Stages 1 and 2 of Figure 1 (source: own work).

• The Geospatial Data Abstraction Library (GDAL) for translating and processing both vector and raster
data [40].

• The Rasterio library for reading writing and processing geospatial raster data [41].

The methodology outlined in Figure 3 describes how modules and tools for image processing and GIS appli-
cations are interconnected to analyze georeferenced images for crack detection on port concrete pavements.
All programming steps of the proposed methodology are summarized in Figure 4. It is noted that the present
study does not produce new algorithms and methods for crack detection but rather offers a novel approach for
managing orthophotos and leveraging GIS tools. Therefore, existing practices are upgraded with geospatial
information analysis. The methodology can be customized to suit specific needs, such as incorporating edge
detection algorithms. The primary focus is on preserving the geospatial information throughout the image
processing analysis to assess the structural condition of port concrete pavements effectively.

2.2.1 Study area definition
Orthophotos typically represent a large part of port infrastructure. To avoid computer crashes and increase the
speed of computations, orthophotos are clipped with GIS tools to match the area that will be further examined
thus creating a new RGB image. This area is normally defined by considering existing structural conditions
(e.g., the presence of cracks that propagate, the occurrence of a sudden event that caused surface cracking,
𝑒𝑡𝑐.), the application of a maintenance scheme, a future upgrade, 𝑒𝑡𝑐.

2.2.2 Crack digitization
Crack digitization is essential to verify crack detection results. It is performed in the initial color image of the
study area by utilizing GIS tools including changing the layer blending mode, the brightness, the saturation,
the contrast, and the Gamma value [19]. The main challenge in this step is to exclude the linear illustrations
that are irrelevant to cracks such as marks from dragging equipment or loads.

2.2.3 Grayscale conversion of the RGB image
The new georeferenced RGB image is decolorized and converted into a grayscale image with programming
modules [Figure 5]. This modification is important to eliminate color information that complicates compu-
tational requirements for crack detection [42]. The algorithm used for the conversion is described in Equa-
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Figure 3. Methodology for mapping cracking in port concrete infrastructure by working on geospatial metadata - Stages 3, 4, and 5 of
Figure 1 (source: own work).

tion (1) [43].

𝑌 = 0.299 ∗ 𝑅 + 0.587 ∗ 𝐺 + 0.114 ∗ 𝐵 (1)

where 𝑅, 𝐺, and 𝐵 are a linear representation of the Red, Green, and Blue channels of a pixel, respectively.

2.2.4 Median filtering
A common task in DIP is noise removal. Median filtering is applied to the georeferenced grayscale image to
reduce the degree of intensity variation between two pixels while avoiding non-realistic values [44]. To apply
the median filter, a sliding window (i.e., kernel) is placed at a specific pixel of the image and all pixel values
included in this window are placed in ascending order to compute the median value assigned to the pixel [43]

[Figure 6].

2.2.5 Image segmentation with thresholding
Thresholding is a common segmentation approach for partitioning images into regions based on different
ranges of pixel values [26,45]. To achieve this, intensity histograms are built [Figure 7]. The thresholding value 𝑡
can be either constant for the entire image (global thresholding) or changing over the image (local threshold-
ing). Indicatively, local thresholding with Otsu’s algorithm [30] defines different threshold values with block-
based or sliding-based windows depending on the lighting conditions and the different features of the image.
This algorithm searches for a threshold t that maximizes the variance between the foreground (cracking) and
background (no-cracking) groups or minimizes the variance within the group. All pixel values below the
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Figure 4. Flow chat of programming-based image processing for crack detection in port concrete pavements (source: own work).

Figure 5. Procedure for converting an RGB image to a grayscale image (source: own work).

threshold are set to zero, while those above the threshold are set to one (image binarization). The variance
within the groups 𝑣within is given by

http://dx.doi.org/10.20517/ces.2024.28
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Figure 6. Example of median filtering (source: own work).

𝑣𝑤𝑖𝑡ℎ𝑖𝑛 = 𝑃𝑏 (𝑡) ∗ 𝑣𝑏 + 𝑃 𝑓 (𝑡) ∗ 𝑣 𝑓 (2)

while the variance in between the groups 𝑣inbetween is given by

𝑣𝑖𝑛𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 𝑣 − 𝑣𝑤𝑖𝑡ℎ𝑖𝑛 = 𝑃𝑏 ∗ 𝑃 𝑓 (𝑚𝑏 − 𝑚 𝑓 )2 (3)

where 𝑃𝑏 (𝑡) =
∑𝑡

𝑖=0 𝑝𝑖 is the probability of the background pixels, 𝑃 𝑓 (𝑡) =
∑𝑡

𝑖=0 𝑝𝑖 is the probability of the
foreground pixels, 𝑝𝑖 are the probabilities, 𝑣𝑏 is the variance of the background, 𝑣 𝑓 is the variance of the
foreground, 𝑣 is the variance of the entire image, 𝑚𝑏 =

∑𝑡
𝑖=0 𝑖 · 𝑝𝑖 is the average intensity of the background,

and 𝑚 𝑓 =
∑𝑡

𝑖=0 𝑖 · 𝑝𝑖 is the average intensity of the foreground.

2.2.6 Noise removal in the binary image
The presence of shadows, tire marks, and other image noises may be translated as cracking during image
thresholding. To address this problem and avoid misinterpretation of results, noise removal is repeated by
measuring the properties of the irrelevant-to-cracks black areas in the binary image and isolating them with a
new threshold. Label tagging is conducted based on the calculated area represented by the number of irrelevant
white pixels.

2.2.7 Morphological operations
Two morphological operations are used in the current research: dilation and erosion [43]. With dilation, small
holes in the cracking pattern are filled. A rectangular structural element is placed over every pixel of the binary
image and its pixel values are compared with the ones of the image [Figure 8]. Initially, the dilation process
identifies the boundary pixels of the crack. Thereafter, it grows the boundary by a specified number of pixels.
Multiple iterations are usually required to achieve accuracy in crack detection. On the other hand, erosion is
used to remove pixels from the binary image, once dilation is completed. Similar to dilation, erosion places a
rectangular structural element over every pixel of the image. However, it shrinks the boundary of the crack by
a specified number of pixels.

2.2.8 Vectorization of the detected cracks
The key point of the implementation of all previous steps of the proposed methodology is retaining the geospa-
tial information of the image. Hence, crack detection in port concrete infrastructure is expanded beyond
image-based modules in programming and advanced by employing GIS tools. GIS-based vectorization of
the binary image enables converting raster data (an array of pixels) to polygons [46] thus identifying crack fea-
tures. Once achieved, smoothing processing is also applied to enhance the visual display and the continuity of
the vectorized cracking data by reducing sharp angles and irregularities. The output of the vectorization step
provides geospatial information about the width of the detected cracks [Figure 9].
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Figure 7. Indicative example of a histogram. A: Use of one threshold and B: use of multiple thresholds (source: own work).

Figure 8. The sliding structural element during morphological operations (source: own work).

Figure 9. Vectorization of raster data of the binary image once morphological operations are completed (source: own work).

2.2.9 Skeletonization of vectorized crack data
Except for the width, additional information regarding the crack length is usually required when inspecting
and assessing the condition of concrete structures. GIS-based skeletonization follows vectorization to generate
linear illustrations of the detected cracks. The skeletonization algorithm processes the polygon geometry to
recognize the pattern of the detected cracks [47]. Similar to the vectorized data, smoothing processing is also
applied.

2.2.10 Crack data validation and change detection
Thevalidation of the crack detection results is conducted by forming a confusionmatrix, i.e., an n× n array that
includes information for the automatically detected (predicted) cracks and the manually detected (digitized)
ones [48]. The comparison requires raster data. To ensure comparable datasets, digitized cracks are converted
to raster data (rasterization). During this process, it is important to ensure that the pixel size of the digitized
cracks is equal to the one of the detected cracks. The confusion matrix is used to calculate the sensitivity,
specificity, false-positive rate, false-negative rate, positive predictive value, negative predictive value, accuracy,
and F1 score [49] [Figure 10]:

• The “Sensitivity” or “Recall” is a measure that indicates to what extent the detection model correctly iden-
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Figure 10. Confusion matrix (Source: Own work based on the studies of Obi [48] and Tharwat [49].

tifies the True positive pixels.
• The “Specificity” or “Precision” is a measure for determining the percentage of positive identifications that
are correct.

• The “Accuracy” is a measure that indicates the number of times the detection model correctly identified the
data class (i.e., 0 or 1) across the entire dataset.

• The F1-score links “Sensitivity” to “Specificity” by calculating their harmonic mean.

3 RESULTS
Within the context of the current research, the selected study area includes a concrete part of the domestic
ferry terminal pavement of a Greek port, namely Lavrio port. Lavrio port is located at the southeastern tip of
Attica (37◦42′44′′ N, 24◦3′25′′ E) [Figure 11] and is listed as a port of national importance (https://oll.gr/en/).
The concrete pavement of the domestic ferry terminal is continuously exposed to loading and environmental
conditions, thus threatening its structural integrity. During fourUAV-based ISIs conducted on 2020-02-10 (ISI-
1), 2020-09-04 (ISI-2), 2021-02-10 (ISI-3), and 2021-07-09 (ISI-4), it was observed that the pavement in the
defined concrete area (enclosed within a black outlined rectangle in Figure 11 was severely and continuously
cracked. The ISIs were conducted with the DJI MAVIC 2 pro UAV while UAV collected data was analyzed
with Agisoft software (version 1.6.4) to generate the orthophotos.

The mean flight altitude of each UAV inspection was 48, 56, 76, and 56 m while the ground resolution was
1.06, 1.21, 1.66, and 1.17 cm/pixel for ISI-1, ISI-2, ISI-3, and ISI-4, respectively. The varying altitudes were
applied to investigate the impact of these different flight characteristics on acquiring and analyzing SHM data
for port concrete structures. Further details regarding data collection and analysis (Stages 1 and 2 of Figure 1)
can be accessed through relevant work [19]. The flight altitude and the ground resolution of ISI-3, as well as
the presence of a large shadow within the study area [Figure 12], resulted in the exclusion of the georeferenced

http://dx.doi.org/10.20517/ces.2024.28
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Figure 11. Definition of the study area in Lavrio port, Attica, Greece enclosed within the black outlined rectangle. Red-colored crack lines
are digitized based on ISI-1. Green-colored crack lines are the new and/or propagated digitized cracks based on ISI-2 for the time interval
between ISI-1 and ISI-2. Yellow-colored crack lines are the new and/or propagated digitized cracks based on ISI-3 for the time interval
between ISI-2 and ISI-3. Light blue-colored crack lines are the new and/or propagated digitized cracks based on ISI-4 for the time interval
between ISI-3 and ISI-4. The crack digitization process involved using GIS tools to visually detect cracks by working on the orthophotos of
each ISI. (source: own work).

Figure 12. Georeferenced image of the study area based on ISI-3.

image of ISI-3 from the crack detection process.

Once the study area was defined, the georeferenced image clipped from the orthophotos was converted to
a grayscale image based on the procedure described in Section 2. A median filter with a 3 × 3 kernel was
implemented in the grayscale image to eliminate noise and local thresholding was applied to binarize the
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Figure 13. Illustration of the severely cracked area of the examined concrete pavement of Lavrio port once local thresholding was applied
for each ISI.

image. Figure 13 shows the image results after the segmentation and the values of the window size and the
offset required for the application of the local thresholding algorithm. By examining Figure 13 it is observed
that the noise includes not only linear elements/groups of pixels but also circular or ellipsoid shapes. Following
similar practices for removing noise after segmentation [30], denoising was applied with a threshold of 15, 25,
and 28 pixels for each binary image, respectively [Figure 14].

Although noise removal resulted in improving crack detection, random white pixels remain present. During
the digitalization of cracks [Figure 11], it was observed that cracks thinner than 15mm approximately, detected
while conducting visual inspections at Lavrio port, were difficult to identify in the GIS-based visualization.
Based on the study of Yang et al., the ability to detect thin cracks depends on the image-capturing distance
of the camera, the light conditions, the exposure time, and the pixel size [50]. Cracks thinner than one pixel
cannot be easily measured. Hence, for the present research, white pixels beyond the area of the main cracking
illustrated in Figure 15 were excluded as shown in Figure 16. The cracks shown in Figure 15 were manually
digitized using GIS tools, while the cracks in Figure 16 are the result of applying area thresholding.

By examining Figure 16, it was observed that the continuity of the cracks formed by adjacent pixels was inter-
rupted in some areas, while several white irrelevant pixels were present. Based on the described methodology
in Section 2, the dilation process was first applied to achieve the optimal filling with white pixels without im-
periling over increasing crack width [Figure 17]. A 3 × 3 structural element was used and the process was
repeated twice. Once dilation was completed, erosion was implemented twice with a 3 × 3 structural element
to remove false pixels that existed previously or had occurred during the previous morphological operation
[Figure 18]. Amore detailed example of the significance of themorphological operations is shown in Figure 19.
A crack pattern identified in the initial georeferenced image was effectively detected after the implementation
of all steps of the proposed methodology up to the level of completing erosion even though some gaps still
exist. Furthermore, although a significant part of the noise was removed, some irrelevant white pixels are still
present.
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Figure 14. Illustration of the severely cracked area of the examined concrete pavement of Lavrio port once area thresholding was applied
to the binary images of each ISI.

Figure 15. Isolation of the cracked area showing the digitized crack output acquired through visual examination of the orthophotos.

The GIS-based visualized output of crack detection processing in the study area is shown in Figure 20, while
the rasterized output generated by the application of the morphological operations was vectorized and the
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Figure 16. Isolation of the cracked area in the binary image of Figure 14.

Figure 17. Morphological operations - Dilation output for the considered cracked area.
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Figure 18. Morphological operations - Erosion output for the considered cracked area.

Figure 19. A detailed illustration of the detection of a crack pattern after morphological operations are completed.

final output of the skeletonization is included in Figure 21. Indicatively, the separate steps of subsequently
converting raster data to polygons and lines are reflected in Figure 22 for the example of Figure 19. Moreover,
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Figure 20. The GIS-based visualized output of crack detection processing after morphological operations are completed. Cracks are de-
picted as polygons.

Figure 21. Final output of crack detection based on the proposed methodology. Cracks are depicted as lines with the skeletonization
algorithm.

Figure 23 includes a comparison between digitized (i.e., manually detected) and vectorized (i.e., automatically
detected) cracks for the same area as in Figure 19.

Based on Figure 23, it is noticed that the digitized primary crack of 28 mmwidth of ISI-1 is efficiently detected.
Both crack features (i.e., width and length) and dark appearance in the original image were the main factors
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Figure 22. Vectorization of the rasterized output of the example illustrated in Figure 19.

that facilitated crack detection. However, for the remaining cracks thinner than 15 mm crack detection failed.
Moreover, three additional lines of 10-15 cm length appeared after image processing mainly due to color tone
differentiation from the adjacent pixels. Similar to ISI-1, the primary crack of ISI-2 was also detected along
with some false lines. An additional vertical crack was digitized and partially detected. This crack seems to
propagate during the time intervals of the ISIs as shown in the results of digitization and detection for ISI-4.
Crack detection for ISI-4 resulted in identifying the primary crack and its diagonal propagation, while similar to
the inspections ISI-1 and ISI-2 false lines were also present. Considering the above, it is highly interesting that
the proposed GIS-based methodology enables detecting structural variations during port concrete pavements’
lifetime in terms of crack propagation.

The above observations were validated by building the confusion matrix described in Section 2. Before pro-
ceeding with validation, the digitized (i.e., manually detected) crack lines were converted to polygons to mea-
sure the crack width with GIS rasterization tools, as indicatively shown in Figure 24. The characteristics of
the digitized cracks are included in Table 1. Figure 25 shows a comparative illustration of the digitized and
detected width data for the example of Figure 19. It is obvious that for the specific illustration, the crack width
is increasing between inspections. This observation indicates a continuous progression of the damage in the
concrete pavement, highlighting the need for timely maintenance interventions.

To validate the results for the entire study area, the performancemetrics were calculated based on the developed
confusion matrix illustrated in Figure 10 [Table 2 and Table 3]. More specifically:

• The high “Sensitivity” percentages of ISI-1 and ISI-4 show that a large amount of the digitized cracks was
successfully detected contrary to the digitized cracks of ISI-2 that were partially detected.

• The significantly high “Specificity” percentage of all ISIs indicates the high accuracy in classifying the non-
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Figure 23. An indicative comparative illustration between digitized (i.e., manually detected) and vectorized (i.e., automatically detected)
cracks for the example of Figure 19.

cracked areas.
• The average “Precision” percentage of the order of 68% of all ISIs demonstrates that within the total amount
of cracks detected by applying the methodology, approximately 32% of them were false.

• The significantly high “Negative Predictive Value” of all ISIs indicates that the probability that a case is truly
negative (non-cracked area) among the cases predicted as negative is very high.

• The high “Accuracy” percentage between 90% and 100% shows that the classification of non-cracked and
cracked areas is mainly correct considering the entire sample.

• The F1-score for the class 0 is between 95% and 100% thus demonstrating that the “Sensitivity” and “Speci-
ficity” do not deviate from each other and the majority of predictions for the non-cracked areas are correct.

• The F1-score for class 1 is between 74% and 76% for ISI-1 and IS-4 thus demonstrating that the “Sensitivity”
and “Specificity” deviate slightly from each other and that 3/4 of predictions for the cracked areas are correct.
On the other hand, the F1-score for ISI-2 is reduced up to approximately 57%. Considering this, it seems
that the detection model can be improved to avoid F1-scores for class 1 below 70%

• The average F1-score is above 70% thus indicating a total satisfactory balance between “Sensitivity” and
“Specificity”. In other words, the detection model is performing well.

• The error rate for ISI-1 and ISI-4 ranges between 2% and 3% thus verifying the high accuracy of the model.
The increased error rate of ISI-2 is linked to the detection model’s liability to falsely detect cracking in some
cases where noise is significantly high. This is attributed to the presence of tire marks [Figure 20] which
causes the detection model to classify the dark marks as cracks.

Analysis of Table 2 and Table 3 revealed that even though ISI-2 and ISI-4 had the same UAV flight altitude,
ISI-4 outperformed ISI-2 in terms of performance metrics and F-score values. The presence of intense noise
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Figure 24. Example of width estimation of digitized crack lines with GIS rasterization tools.

Table 1. GIS-based measurements of the digitized cracks

ISI-i Total length (m) Minimum width (mm) Maximum width (mm) Average width (mm)

ISI-1 23.65 14.4 82.0 28.5
ISI-2 23.15 13.8 96.0 37.5
ISI-4 27.88 15.2 89.0 36.5

Table 2. Performance metrics for validating crack detection results for the example of Figure 19

ISI-i Sensitivity Specificity Precision Negative predictive value Accuracy

(Recall class 1) (Precision class 0) (Precision class 1) (Recall class 0)

ISI-1 84.29% 98.12% 66.22% 99.38% 97.62%
ISI-2 56.09% 96.90% 60.81% 95.39% 92.91%
ISI-4 73.53% 98.65% 79.35% 98.17% 97.02%

from the tire marks in ISI-2 had a negative impact on result precision. However, despite this noise, the perfor-
mance values were still relatively high, indicating that the proposed methodology shows promise even in the
presence of noise. Additionally, a variation of 10 m in the UAV flight altitude did not seem to adversely affect
the performance of the proposed methodology. Crack detection using data collected from flights at altitudes
ranging from 48 to 56 m exhibits high precision. Hence, the methodology maintains its robustness across this
range of altitudes.

By combining the GIS-based quantified results for the digitized cracks included in Table 1 and the F-scores of
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Figure 25. A comparative illustration of the digitized and automatically detected width data for the example of Figure 19.

Table 3. F-score values for validating crack detection results for the example of Figure 19

ISI-i F1-score - non-crack area F1-score - crack area F1-score Error rate

(class 0) (class 1) Avg

ISI-1 98.75% 74.04% 86.39% 2.38%
ISI-2 96.13% 57.44% 76.78% 7.09%
ISI-4 98.41% 76.12% 87.26% 2.98%

Table 3, the measurements of the truly detected cracks can be derived [Table 4]. During the time period from
ISI-1 to ISI-4, there was a noticeable increase in the cracked area, which expanded by 3.71 m in length. This
time-induced variation can be visually representedwithGIS tools as indicatively shown in Figure 25. Therefore,
it can be viewed that distressed areas and the extent of damage are identified through GIS-based mapping
and assessment by comparing crack detection results from each ISI. In this context, geospatial metadata that
changes over time, such as crack propagation, can be efficiently monitored and analyzed using the proposed
GIS-based crack detection methodology. The results of ISI-2 were not considered for change detection due to
the lower F1-score for class 1.

4 DISCUSSION
Automation in damage detection with structural monitoring data is currently one of the most prominent ar-
eas of research in various industry fields (e.g., manufacturing systems [51,52]). Regarding concrete civil infras-
tructure working on automatically detecting cracks is a growing trend that has occupied several researchers
(e.g., [23,24,36,50]). Their main focus was on advancing current methodologies and improving efficiency in de-
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Table 4. Measurements of the truly detected cracks.

ISI-i Total length (m) Maximum width (mm)

ISI-1 17.51 60.71
ISI-2 13.30 55.14
ISI-4 21.22 67.75

tecting actual cracks with either image processing or machine learning approaches. The impact of such crack
detection approaches can be amplified by the competitive advantages of GIS tools. A GIS-based structural con-
dition assessment of port concrete pavements enables geospatially visualizing cracks, straightforwardly mea-
suring crack features, storing geospatial crack data, and creating databases for gaining a deep insight into the
structure’s vulnerabilities (e.g., causes of crack propagation) [19]. Hence, the proposed methodology combines
image processing programming modules with GIS applications to support SHM of port concrete pavements.

One of the main issues encountered during the entire process was the impact of the UAV flight altitude. Crack
detection for the ISIs with the lower flight altitudes (i.e., ISI-1 with 48 m, and ISI-2 and ISI-4 with 56 m) was
effective due to the smaller pixel size of the generated orthophotos. Therefore , the GIS-based crack visualiza-
tion was conducted with more pixels. Except for the UAV flight altitude, the presence of intense noise such
as large shadows from vessels or tire marks affected the results. The orthophoto of ISI-3 was excluded from
the analysis from the beginning since the large shadowed area was represented with a dark color tone that can
be misinterpreted as a cracked area. In contrast to ISI-3, the orthophoto of ISI-2 was included in the crack
detection analysis to assess how tire marks on the concrete pavement surface impacted the effectiveness of
the proposed methodology. By removing the noise with thresholding and labeling it seemed that the negative
effect of the tire marks was limited.

Furthermore, the specific research was based on routine ISIs the main function of which is to gather infor-
mation for planning future maintenance actions [7]. The inspections dictated the course and the priority for
maintaining the herein-examined concrete slab due to the high-density cracking. The latter ismainly attributed
to the large dimensions of the slab (i.e., the absence of construction joints within a large part of the concrete
surface) thus allowing for the forming of significant cracks due to movements (e.g., shrinkage, thermal con-
traction, 𝑒𝑡𝑐.). This fact was aggravated by the absence of repair measures. During the routine inspections,
UAV flight altitudes were selected so that not only the entire concrete pavement of the mooring facilities but
also other structures such as rubble mound structures were depicted by optimizing inspection and computa-
tion time [19]. However, flight altitude can be reduced for targeted inspections of the specific concrete slab to
further quantify detected deterioration and determine its structural significance [7].

Although the present paper focuses on port concrete pavements, the application of the GIS-based proposed
methodology can be valuable for other similar structural systems such as airports with concrete aprons. Factors
including tire marks, building or vehicle shadows, passengers’ moving, and others are common challenges
encountered in both port and airport systems. For a successful SHM program of these systems, the updating
of GIS databases with cracking information is crucial.

Finally, it is noted that the methodology used in this research relies on parameter selection based on common
practices that were most suitable for the specific case study. A trial and error process is required when applying
the methodology for the first time. However, once the parameters are finalized, the methodology can be easily
repeated. Based on the overall investigation, the following aspects should be considered for the iterative process
of trial and error to maximize accuracy:

• The kernel size in the median filtering should preserve details and edges while controlling noise reduction.
Using a smaller kernel (e.g., 3 × 3) can retain fine details, enhancing the accuracy. Employing a larger kernel
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may smooth out or blur fine cracks, potentially causing false negatives that lower accuracy.
• Thewindow size in the local thresholding determines the local area for thresholding. A smaller window size
(e.g., 19 × 19) increases sensitivity to local intensity variations, aiding in the detection of fine cracks, thus
improving accuracy. A larger window may overlook fine cracks, leading to false negatives and decreasing
accuracy.

• The offset in the local thresholding affects the inclusivity or exclusivity of cracks. A positive offset (e.g., 3)
increases exclusivity, thus reducing false positives and improving accuracy. On the contrary, negative offset
increases inclusivity, potentially mistaking noise for cracks and decreasing accuracy.

• Area thresholding refines the binary output of crack detection by eliminating irrelevant white pixels. During
the analysis, it was observed that the optimal area threshold varied for each image of the ISIs due to the
presence of noise. A lower area threshold was found to be appropriate for ISI-1 since it preserved finer
cracks, whereas, for ISI-2 and ISI-4, the area threshold was increased to improve accuracy by filtering out
irrelevant pixels.

• The structural element in morphological operations affects the number of false positives and negatives.
A smaller structural element (e.g., 3 × 3) can help preserve fine cracks and increase accuracy. A larger
structural element may distort or merge cracks resulting in false positives that can compromise accuracy.

• Repetitions in morphological operations are important to refine cracks. A limited number of repetitions is
preferred over excessive repetitions since the latter may thicken, merge or remove cracks leading to false
positives or false negatives that reduce accuracy.

5 CONCLUSIONS
The overall investigation indicated the significance of expanding crack detection approaches beyond mathe-
matical computations. Interrelating cracking data with structural issues of port concrete pavements is achieved
by retaining the geospatial information throughout the process to support GIS-based structural condition
assessment applications. By building a GIS database, it was concluded that despite the small time interval
between the ISIs (approximately every half a year), crack propagation was a continuous issue. This ongoing
process imperils the structural integrity of the examined concrete slab, highlighting the importance of planning
inspection schemes for in-service port concrete pavements.

One of the main challenges during the analysis was the presence of various noises in orthophotos, such as
surface scratches or tire marks, unlike images focusing on limited cracked parts of a structure. The implemen-
tation of the combined methodology showed that high reliability and accuracy (average 95%) can be achieved
while preserving all geospatial information. This finding is significant as it encourages the use of orthophotos
for analyzing port concrete pavements without compromising accuracy. Additionally, once the approach is
applied for the first time to a specific port structure and the arrangement of the steps is determined, processing
data and returning results quickly enhance the real-time performance of the methodology.

Although the proposed methodology was applied to cracks wider than 15 mm, it was concluded that once all
steps were completed it was more effective for detecting cracks wider than 20 mm. If required, UAV flight
altitude can be reduced to detect thinner cracks. For this task, it is essential to investigate the balance between
inspection and computation time, while considering a potential entanglement with port operations. There-
fore, further research may include sensitivity analysis to define the optimal UAV flight altitude based on the
surrounding height conditions and restrictions, the accuracy of the outcome, and the collected amount of data.
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