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Abstract
Mitochondrial diseases collectively represent the most common cause of inherited metabolic disease. They are 
estimated to affect at least 1 in 8,000 adults and at least 1 in 250 adults carry a disease-causing genetic mutation. 
They comprise a heterogeneous group of disorders caused by mutations in either the nuclear or mitochondrial 
genome, which ultimately result in dysfunction of the critical cellular energy producing mitochondrial respiratory 
chain. Owing to the key role of mitochondria in energy production, mitochondrial disorders predominantly 
manifest in tissues with high metabolic demand. However, they demonstrate significant phenotypic and genotypic 
variability, often rendering the diagnostic process protracted and challenging. Since Luft’s first description of 
mitochondrial disease nearly 60 years ago, substantial evolution in diagnostic techniques have simultaneously 
improved the diagnosis and understanding of mitochondrial disease and biology, but the standard diagnostic 
approach has failed to evolve at the same pace. Although sequencing technologies and analysis for the diagnosis 
of mitochondrial disease continue to evolve, advances to date, our expanding understanding of mitochondrial 
diseases and the increasing affordability of these new technologies justify a paradigm shift in the diagnostic 
approach. We review the progression, impact and challenges of diagnosing mitochondrial diseases and propose a 
minimally invasive “genetics first” approach incorporating stratification using non-invasive biomarkers, followed 
by non-targeted next-generation sequencing, such as whole genome sequencing. Such an approach may improve 
diagnostic yield and streamline diagnosis, leaving invasive investigations to address diagnostic challenges and 
functional validation of novel variants.
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INTRODUCTION
Mitochondrial diseases comprise a diverse group of genetic disorders characterised by disrupted cellular 
energy metabolism, which may arise due to mutations in either the mitochondrial (mtDNA) or nuclear 
(nDNA) genome[1-4]. Collectively, mitochondrial diseases represent the most common cause of inherited 
metabolic disease[1], estimated to affect at least 1 in 8000 adults[5]. However, population-based studies 
indicate that the prevalence of mitochondrial disease may be as high as 1 in 250 adults, with the majority of 
cases being under-recognised[6-8]. 

Present in all nucleated cells of the body, mitochondria are dynamic intracellular organelles that are 
central to cellular homeostasis and metabolism. They host a variety of biochemical pathways and play a 
primary role in energy generation[9]. Consequently, mitochondrial diseases frequently manifest in tissues 
with high energy requirements[10]. Although mitochondrial diseases may present with one of many well-
defined clinical syndromes, clinical manifestations are protean, ranging from single organ, mild or oligo-
asymptomatic disease to severe or life-threatening multi-organ dysfunction. Moreover, symptoms and signs 
may overlap with more common conditions and evolve throughout an individual’s lifespan[4,11-13]. Even 
for experienced clinicians, the vast clinical and genetic variability can render specific genetic diagnoses 
challenging, and the process may become a protracted “odyssey”, taking years before achieving molecular 
diagnosis[14].

Mitochondrial medicine has seen substantial advances in diagnostic technologies over the last 50 years, 
from the pre-molecular era of histological analysis of muscle to rapidly accelerating identification of the 
molecular aetiologies of disease using next-generation sequencing (NGS) technologies. The notoriously 
heterogeneous nature of mitochondrial diseases, their individual rarity, genotypic and phenotypic 
variability and overlapping presentations with other genetic disorders, make them an ideal candidate group 
for a non-targeted approach to genetic diagnosis. Although there remain important challenges to such an 
approach, including optimising bioinformatic pipelines, classification and functional validation of variants 
and cost, early studies support their utility[3,4,15-23]. Whole exome sequencing (WES) approaches have 
markedly improved diagnostic yield, highlighted the genetic variability of diseases, facilitated the diagnosis 
of monogenic mitochondrial mimics and advanced the understanding of mitochondrial biology, opening 
up potential therapeutic avenues[3,4,15-23]. Whole genome sequencing (WGS) offers further potential, through 
unbiased, simultaneous bigenomic sequencing with improved coverage, incorporation of non-coding 
regions and excellent mtDNA coverage depth[24-26].

The traditional and prevailing diagnostic approach, however, recapitulates the technological evolution in 
mitochondrial disease diagnosis, moving from clinical evaluation to invasive biopsy and subsequently, 
targeted sequencing, reserving WES or WGS for consideration in undiagnosed cases[4]. In this article, 
we briefly review the history of mitochondrial disease diagnosis, its evolution, impact and outstanding 
challenges, and propose an alternative, minimally invasive “genetics first” approach, which complements 
clinical evaluation with serum biomarkers for stratification, followed by exploratory bigenomic NGS. 
Recourse to more invasive techniques, including muscle biopsy, is reserved for aetiological uncertainty, 
identification of tissue-specific variants and functional validation of novel variants. Such an approach has 
the potential to streamline diagnosis and limit invasive investigations, without increasing costs, whilst 
optimising reciprocal gains in the understanding of mitochondrial biology and potential therapeutic 
avenues.
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AN HISTORICAL PERSPECTIVE ON THE APPROACH TO DIAGNOSIS
Techniques for diagnosing mitochondrial disease have significantly advanced since Ernster and colleagues 
described the enzyme activity of skeletal muscle mitochondria in 1959 [27], paving the way for their 
identification of Luft’s first reported case of mitochondrial disease[28]. Subsequent development of the 
modified Gomori trichrome stain[29] allowed rapid identification of “ragged red” fibres on muscle biopsy, 
the first pathologic hallmark of mitochondrial disease. Clinical-histological descriptions of mitochondrial 
diseases ensued, and early diagnostic criteria were based on recognising a constellation of features 
comprising a clinical syndrome - such as mitochondrial encephalomyopathy with lactic acidosis and 
stroke-like episodes (MELAS) - combined with biochemical and/or histopathological evidence from 
muscle tissues[30-36]. This approach resulted in biases towards identified disease syndromes, and led to 
underdiagnosis of those with non-classical symptoms[37].

The mitochondrial genome was sequenced in its entirety in 1981[38] and the first two reports of genetic 
causes of mitochondrial diseases were published in 1988[39,40]. Shortly afterward, the m.3243A>G mutation 
was identified as the (most common) cause for the MELAS syndrome[41]. Since this discovery, more than 
300 pathogenic mtDNA point mutations, deletions and rearrangements have been reported, involving 
almost all 37 mtDNA-encoded genes[1,42]. Although the nuclear genome encodes a vastly greater proportion 
of the mitochondrial proteome (~1200 genes)[43], including over 320 genes implicated in disease to 
date[1,3,4,44-46], causative nuclear gene involvement was only definitively established some years after the 
first mtDNA mutations were identified[47,48]. Nuclear disease plays a significantly greater role than initially 
appreciated, accounting for the majority of childhood-onset disease[16] and a substantial proportion of 
adult-onset mitochondrial disease[5]. Early tools for genetic diagnosis were limited, testing one or a small 
panel of common mtDNA point mutations, with poor sensitivity for heteroplasmy below ~30%-50% by 
Sanger sequencing[42]. Despite limitations, the advent of genetic diagnosis permitted greater appreciation 
of the broad spectrum and phenotypic variability associated with specific mutations and mitochondrial 
diseases in general[49-52], which has continued to expand alongside improving sequencing techniques.

Technology to facilitate routine clinical genetic diagnosis did not become readily available until the mid-
2000s[42] and, historically, relied on sequential Sanger sequencing of clinically prioritised individual genes 
- a costly, laborious and limited approach, which necessarily biased towards known genotype-phenotype 
correlations. Consequently, definitive genetic diagnosis was difficult to achieve and molecular diagnosis 
rates remained low[53], with clinical and biochemical characterisation of greatest utility (albeit imperfect) in 
confirming or excluding mitochondrial disease. This embedded a “biopsy first” approach, with the clinical 
and biochemical phenotype guiding targeted genetic testing[4,54]. The advent of powerful, high-throughput, 
NGS technologies enabling simultaneous interrogation of many, or all genes[55], has transformed genetic 
diagnosis. Consequently, the genetic landscape of mitochondrial diseases - and understanding of 
mitochondrial biology - has expanded rapidly over the last two decades, challenging established aetiological 
concepts of disease and clinical diagnostic approaches.

LIMITATIONS OF THE TRADITIONAL FUNCTION TO GENE APPROACH
Numerous iterations of a diagnostic algorithm for mitochondrial diseases have been proposed. Although 
the complexity of the disease has precluded consensus, common is a “function to gene” approach centred 
on muscle biopsy: combining clinical features with biochemical and enzymatic characterisation from 
muscle biopsy to guide targeted genetic testing. However, there are significant limitations of this approach, 
prompting calls for a paradigm shift to a “genetics first” approach followed by functional validation.[54,56,57] 
Figure 1 provides a comparative summary of these approaches.

Muscle biopsy can be a helpful diagnostic tool, demonstrating histological and - often more sensitive - 
ultrastructural changes, as well as providing biochemical and enzymatic information. Muscle tissue may 
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also be utilised for genetic analysis, particularly mtDNA rearrangements, deletion and depletion studies 
where sensitivity in blood is limited due to heteroplasmy[13,58,59]. However, technological improvements have 
increased the sensitivity for detecting point mutations and certain deletions in blood or urine[60].

Biopsy is an invasive procedure, which often requires general anaesthetic, presenting significant risk to 
those with mitochondrial disease, and adding significant cost to the diagnostic process. Furthermore, 
appropriate preparation, analysis and interpretation of muscle biopsy presents many technical challenges 
that can impact upon results and in turn, diagnosis and care[61]. Specimen handling, transport and the varied 
preparation requirements are therefore critical for reliable and reproducible findings, as is interpretation 
by a clinician with appropriate expertise[13,37,58,62,63]. Biochemical and enzymatic analysis are best performed 
at an experienced laboratory with established normal criteria. As assays can vary between laboratories, 
inter-laboratory comparison is challenging[58,62,64,65]. Both false positive and false negative results occur; 
light microscopy can be normal in up to half of affected patients and findings may evolve over time[37]. 
Sensitivity is limited, especially for ragged red fibres, which are age-dependent, and in young children and 
young adults with mitochondrial disease. Specificity is also limited, with mitochondrial changes occurring 
in a variety of other myopathies including toxic exposures[13,63,66,67]. Ultrastructural changes identified on 
electron microscopy, although present in up to a third of patients in whom light microscopy is normal, may 
also be absent in affected patients, and can similarly be seen in various other conditions[37,63], whilst normal 
respiratory chain biochemical activity in muscle does not exclude mitochondrial disease[68,69]. Although 
microscopic and biochemical findings from biopsy may provide strong evidence for mitochondrial disease 
when present, they cannot always differentiate between primary mitochondrial disease and secondary 
mitochondrial dysfunction, have limited utility to guide specific management and prognosis, and cannot 
inform genetic counselling[54,58,63].

Figure 1. Comparative summary of traditional and proposed diagnostic approaches to mitochondrial diseases. Adapted from Liang et al .[13]
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Clinical characterisation remains imperative - not least to identify and proactively manage organ 
involvement - with certain phenotypes indicative of a specific or restricted genotype, particularly amongst 
“classical” mtDNA-based syndromes, such as MELAS. However, even where a defined syndrome is present, 
genetic heterogeneity is common (e.g., Leigh Syndrome[52]). More often, clinical features do not neatly 
fit a specific clinical syndrome and presentations can be heterogeneous, with poor phenotype-genotype 
correlation and therefore, low predictive value for specific genetic diagnosis[61,70]. Muscle biopsy findings do 
not reliably predict specific genetic aetiologies either[71]. Accordingly, the traditional biopsy-first approach, 
followed by Sanger sequencing of clinically prioritised individual genes has been estimated to achieve 
genetic diagnosis in only approximately 11% of patients overall[53]. Further, incremental sequencing costs 
can exceed the costs of WES with targeted panel analysis[53] whilst the iterative process can prolong the 
diagnostic odyssey for individuals and reinforce diagnostic bias[14,37].

THE IMPACT AND CHALLENGES OF EVOLVING NGS TECHNOLOGIES
Targeted nuclear gene panels incrementally improve diagnosis compared to traditional single-gene 
Sanger sequencing, with rates reported between 6%-37% after mtDNA sequencing and dependent on the 
selected gene set and patient group, as summarised in Table 1[22,23,53,61,71-74]. However, the vast majority of 
patients remain undiagnosed. This approach focuses on commonly known disease genes and mutations, 
contributing less to the collective understanding of mitochondrial biology and disease. Unsurprisingly 
then, approaches utilising WES combined with mtDNA sequencing (either in advance, or incorporated 
into WES[75-77]) have further improved genetic diagnosis rates to between 35%-68%, depending on the 
selected patient group, as summarised in Table 2[15-21,23]. In one study, 31% of cases resolved through WES 
would have been missed using contemporaneous MitoCarta-based panels[15]. These results have included 
many novel disease genes and mutations, (43%-51% of cases in two paediatric studies[16,17]), thus expanding 
genotypic heterogeneity, whilst demonstrating greater phenotypic heterogeneity of known disease 
genes[3,23,78], highlighting the shortcomings of candidate gene approaches.

NGS technologies have dramatically accelerated the identification of novel mitochondrial disease genes 
and mutations, with around 15-20 new genes discovered annually over the past decade and more than 
350 genes across the nuclear and mitochondrial genome implicated in disease[3,4,46]. Identification and 
functional validation of novel gene and mutation candidates have in turn provided novel insights into 
mitochondrial structure, function, dynamics, and mechanisms of disease[23,79]. Even early studies evaluating 
NGS technologies recognised their potential to revolutionise the diagnostic process for heterogeneous 
disorders, such as mitochondrial disease[42]. WES or WGS are already resolving many outstanding 
challenges associated with mitochondrial disease genetics, in turn improving patient care[21]. However, a 
distinction must be drawn between routine clinical genetic testing and the ongoing interchange between 
research and genetic diagnosis. The latter is critical for expanding the list of known pathogenic variants, 
improving the understanding of mitochondrial biology and disease, enabling refinement of the diagnostic 
pipeline and enhancing the routine interpretation of genetic variants. This is necessary to positively impact 
the evolution of genetic diagnosis from here, as well as inform clinical management, family planning and 
potential therapeutic avenues.

A further important benefit of comprehensive, non-targeted sequencing is the identification of pathogenic 
non-mitochondrial disease variants: mimics and phenocopies, especially neurological disorders and 
neuromuscular diseases, amongst other monogenic disorders, providing definitive genetic diagnosis, 
and, at times, important therapeutic options[56]. Depending on the cohort selection criteria for WES 
studies, proportions of (solved) cases attributable to mitochondrial diseases range from 25%-89%[15,17,19-21] 
underscoring the clinically important overlap with other monogenic disorders. Given the broad range of 
overlapping disorders to be considered, necessitating multiple sequential panels, the additional cost of 
exome sequencing is rapidly negated - and costs continue to decrease. In contrast to targeted gene panels, 

Page 192                                      Watson et al. J Transl Genet Genom 2020;4:188-202  I  http://dx.doi.org/10.20517/jtgg.2020.31                                   



Ta
bl

e 
1.

 D
ia

gn
os

ti
c 

yi
el

d 
fr

om
 N

G
S 

pa
ne

l s
tu

di
es

 in
 m

it
oc

ho
nd

ri
al

 d
is

ea
se

A
ut

ho
rs

Pa
ti

en
ts

(n
)

A
ge

D
is

ea
se

 
ch

ar
ac

te
ri

st
ic

s
Pr

io
r 

se
qu

en
ci

ng

Se
qu

en
ci

ng
 a

pp
ro

ac
h

m
tD

N
A

 (n
; %

)
nD

N
A

 (n
; %

)
N

uc
le

ar
 g

en
es

Y
ie

ld
: o

ve
ra

ll
m

tD
N

A
 %

 (n
) 

[o
f s

ol
ve

d]
nD

N
A

 %
 (n

) 
[o

f s
ol

ve
d]

M
D

 %
 (n

)
of

 s
ol

ve
d 

ca
se

s
N

ov
el

 %
 (n

) 
of

 s
ol

ve
d 

ca
se

s

Sc
ho

on
en

 et
 a

l.[2
2]

20
19

12
7

Pa
ed

 a
ll

O
ns

et
 <

 2
0

 y
o 

M
os

t <
 1

 y
o

A
ll 

M
D

Bi
oc

 R
C

D
N

il
m

tD
N

A
, n

D
N

A
 p

an
el

 ±
 W

ES
 

N
G

S 
m

tD
N

A
 (

M
) 

(a
ll)

Pa
ne

l (
68

%
) 

W
ES

 (
6%

)

13
6 

ge
ne

s 
(3

 c
us

to
m

 
pa

ne
ls

)

6%
 (

8/
12

7)
; 7

5%
 (

6/
8)

 o
f W

ES
0

%
 (

0
/1

27
)

6%
 (

8
/1

27
) 

[a
ll 

so
lv

ed
]

63
%

 (
5/

8
 p

ts
)

62
%

 (
8

/1
3 

va
r)

62
%

 (
8

/1
3 

va
r)

Pl
ut

in
o 

et
 a

l.[7
2]

20
18

8
0

A
du

lt 
pr

ed
om

70
%

 a
du

lt
30

%
 p

ae
d

A
ll 

M
D

C
lin

/b
io

c/
hi

st
ol

og
y

N
S

2 
st

ep
 N

G
S

N
G

S 
m

tD
N

A
 s

cr
ee

n 
(a

ll)
Pa

ne
l: 

ta
rg

et
ed

 (
al

l)

28
1 

ge
ne

s 
(c

us
to

m
)

29
%

 (
23

/8
0

)
19

%
 (

15
/8

0
) 

[6
5%

 (
15

/2
3)

]
10

%
 (

8
/8

0
) 

[3
5%

 (
8

/2
3)

]

N
/A

 
(o

nl
y 

an
al

ys
ed

 
M

D
 g

en
es

)

4
0

%
 

(4
/1

0
 n

D
N

A
 

va
r)

Le
ga

ti 
et

 a
l.[2

3]

20
16

12
5

Pa
ed

 p
re

do
m

62
%

 <
 1

yo
A

ll 
M

D
C

lin
/b

io
c

m
tD

N
A

 
an

al
ys

is
Si

ng
le

 n
 g

en
es

2 
st

ep
: p

an
el

 ±
 W

ES
N

/A
Pa

ne
l (

al
l)

; W
ES

 (
8

%
)

13
2 

ge
ne

s 
(c

us
to

m
)

20
%

 (
25

/1
25

):
 1

5%
 p

an
el

; 5
%

 
W

ES
N

/A
20

%
 (

25
/1

25
) 

19
/1

25
 p

an
el

; 
6/

10
 W

ES

8
4

%
 (

21
/2

5)
N

S

Li
eb

er
 et

 a
l.[7

3]

20
13

10
2

M
ix

ed
Ra

ng
e:

 0
-6

4
M

ea
n:

 2
7 

yo

D
ef

/H
S 

8
0

%
IS

/L
S 

20
%

+
 c

on
tr

ol
 1

8
%

V
ar

ie
d 

m
tD

N
A

Si
ng

le
 n

 g
en

es

m
tD

N
A

 +
 e

xo
m

e 
pa

ne
l

M
ito

Ex
om

e 
m

tD
N

A
 (

al
l)

M
ito

Ex
om

e 
pa

ne
l (

al
l)

15
98

 g
en

es
 

(M
ito

Ex
om

e,
 

ex
pa

nd
ed

)

23
%

 (
23

/1
0

2)
; 1

7/
18

 c
on

tr
ol

, 
6/

8
4

 n
ew

12
%

 (
12

/1
0

2)
 [

52
%

 (
12

/2
3)

]
11

%
 (

11
/1

0
2)

 [
4

8
%

 (
11

/2
3)

]

50
%

 (
3/

6 
ne

w
 

di
ag

no
se

s)
17

%
 

(1
/6

 n
ew

 
di

ag
no

se
s)

D
aR

e 
et

 a
l.[6

1]

20
13

14
8

Pa
ed

 p
re

do
m

8
3%

 <
 1

8
 y

o
Ra

ng
e 

0
-8

3

M
ix

ed
D

ef
/H

S-
M

D
36

%
 b

io
c 

RC
D

V
ar

ie
d 

m
tD

N
A

Si
ng

le
 n

 g
en

es

Ta
rg

et
ed

 e
xo

m
e 

pa
ne

l
N

/A
Pa

ne
l: 

ta
rg

et
ed

 (
al

l)

4
4

7 
ge

ne
s 

(c
us

to
m

)
9%

 (
13

/1
4

8
)

N
/A

9%
 (

13
/1

4
8

) 
[a

ll 
so

lv
ed

] 

31
%

 (
4

/1
3 

pt
s)

4
8

%
 (

10
/2

1 
va

r)

N
ev

el
in

g 
et

 a
l.[5

3]

20
13

4
4

M
ix

ed
M

ea
n 

11
.4

Ra
ng

e 
2-

30

A
ll 

M
D

Bi
oc

 (
M

/F
ib

)
m

tD
N

A
, 

PO
LG

, ≤
 1

0
 n

 
ge

ne
s

Ta
rg

et
ed

 e
xo

m
e 

pa
ne

l
N

/A
Pa

ne
l: 

ta
rg

et
ed

 (
al

l)

21
1 

ge
ne

s 
(c

us
to

m
)

16
%

 (
7/

4
4

)
N

/A
16

%
 (

7/
4

4
) 

[a
ll 

so
lv

ed
]

10
0

%
 (

7/
7 

pt
s)

N
S

C
al

vo
 et

 a
l.[7

4
]

20
12

4
2

Pa
ed

A
ll 

N
N

/I
A

ll 
M

D
C

lin
/B

io
c 

RC
D

N
S

m
tD

N
A

 +
 e

xo
m

e 
pa

ne
l

M
ito

Ex
om

e 
m

tD
N

A
 (

al
l)

M
ito

Ex
om

e 
pa

ne
l (

al
l)

10
34

 g
en

es
 

(M
ito

Ex
om

e)
31

%
 (

13
/4

2)
2%

 (
1/

4
2)

 [
8

%
 (

1/
13

)]
29

%
 (

12
/4

2)
 [

92
%

 1
2/

13
)]

10
0

%
 (

13
/1

3)
23

%
 (

3/
13

 p
ts

)

V
as

ta
 et

 a
l.[7

1]

20
12

26
Pa

ed
 a

ll
O

ns
et

 <
 1

 y
o 

8
8

%

M
ix

ed
: D

ef
, H

S 
an

d 
LS

-M
D

2 
+

 c
on

tr
ol

10
/2

6 
m

tD
N

A
 

se
q

Ta
rg

et
ed

 N
G

S 
pa

ne
l

N
/A

N
G

S 
pa

ne
l (

al
l)

90
8

 g
en

es
 

27
%

 (
7/

26
);

 2
/2

 c
on

tr
ol

, 5
/2

4
 

ne
w

N
/A

27
%

 (
7/

26
) 

[a
ll 

so
lv

ed
]

71
%

 (
5/

7 
pt

s)
62

%
 (

8
/1

3 
va

r)

Bi
oc

: b
io

ch
em

ic
al

; C
lin

: c
lin

ic
al

; D
ef

: d
ef

in
it

e;
 F

ib
: f

ib
ro

bl
as

t;
 H

S-
M

D
: h

ig
h 

su
sp

ic
io

n 
M

D
; I

S-
M

D
: i

nt
er

m
ed

ia
te

 s
us

pi
ci

on
 M

D
; L

S-
M

D
: l

ow
 s

us
pi

ci
on

 M
D

; L
R-

PC
R

: l
on

g 
ra

ng
e 

PC
R

; M
: m

us
cl

e;
 M

D
: 

m
ito

ch
on

dr
ia

l d
is

ea
se

; m
o:

 m
on

th
s;

 R
C

D
: r

es
pi

ra
to

ry
 c

ha
in

 d
ef

ic
ie

nc
ie

s;
 m

tD
N

A
: m

ito
ch

on
dr

ia
l D

N
A

; n
: n

uc
le

ar
; n

: n
um

be
r;

 N
/A

: n
ot

 a
pp

lic
ab

le
; N

G
S:

 n
ex

t g
en

er
at

io
n 

se
qu

en
ci

ng
; N

N
: n

eo
na

ta
l; 

N
N

/I
: 

ne
on

at
al

/i
nf

an
t; 

N
S:

 n
ot

 s
ta

te
d;

 P
ae

d:
 p

ae
di

at
ri

c;
 +

 c
on

tr
ol

: p
os

it
iv

e 
co

nt
ro

l; 
pr

ed
om

: p
re

do
m

in
an

t; 
pt

s:
 p

at
ie

nt
s;

 v
ar

: v
ar

ia
nt

s;
 W

ES
: w

ho
le

 e
xo

m
e 

se
qu

en
ci

ng
; y

o:
 y

ea
rs

 o
ld

W
ES

 o
r W

G
S 

is 
ap

pl
ic

ab
le

 fo
r m

os
t g

en
et

ic
 d

is
or

de
rs

[8
0]

, c
an

 in
co

rp
or

at
e 

a 
vi

rt
ua

l g
en

e 
pa

ne
l i

ni
tia

lly
 if

 d
es

ire
d,

 a
nd

 e
xp

an
d 

if 
in

co
nc

lu
siv

e,
 im

pr
ov

in
g 

co
st

-
eff

ec
tiv

en
es

s, 
an

d 
ca

n 
be

 re
ad

ily
 re

-in
ve

st
ig

at
ed

[1
9]

.

W
hi

lst
 th

e 
su

bs
ta

nt
ia

l b
en

efi
ts

 a
re

 e
vi

de
nt

, t
he

re
 a

re
 e

vo
lv

in
g 

ch
al

le
ng

es
 to

o.
 V

as
t a

m
ou

nt
s 

of
 d

at
a 

ar
e 

ge
ne

ra
te

d 
by

 e
xo

m
e 

an
d 

ge
no

m
e 

se
qu

en
ci

ng
. Th

is 
pr

es
en

ts
 im

po
rt

an
t p

ra
ct

ic
al

 c
ha

lle
ng

es
 fo

r 
bo

th
 s

uffi
ci

en
t, 

se
cu

re
 d

at
a 

st
or

ag
e 

an
d 

co
m

pr
eh

en
siv

e 
an

d 
ac

cu
ra

te
 a

na
ly

sis
 -

 p
ar

tic
ul

ar
ly

 o
f t

he
 m

an
y 

va
ria

nt
s 

of
 u

nc
er

ta
in

 s
ig

ni
fic

an
ce

 a
nd

 n
ov

el
 v

ar
ia

nt
s 

re
qu

ir
in

g 
fu

nc
tio

na
l v

al
id

at
io

n 
- 

as
 w

el
l a

s 
et

hi
ca

l q
ue

st
io

ns
 p

er
ta

in
in

g 
to

 t
he

 id
en

tif
ic

at
io

n 
an

d 
re

po
rt

in
g 

Watson et al. J Transl Genet Genom 2020;4:188-202  I  http://dx.doi.org/10.20517/jtgg.2020.31                                 Page 193 



Ta
bl

e 
2.

 D
ia

gn
os

ti
c 

yi
el

d 
fr

om
 W

ES
 s

tu
di

es
 in

 m
it

oc
ho

nd
ri

al
 d

is
ea

se

of
 in

ci
de

nt
al

 fi
nd

in
gs

. I
n 

20
15

, t
he

 A
m

er
ic

an
 C

ol
le

ge
 o

f M
ed

ic
al

 G
en

et
ic

s 
an

d 
G

en
om

ic
s 

an
d 

th
e 

A
ss

oc
ia

tio
n 

fo
r 

M
ol

ec
ul

ar
 P

at
ho

lo
gy

 r
el

ea
se

d 
re

vi
se

d 
gu

id
el

in
es

 in
fo

rm
in

g 
se

qu
en

ce
 v

ar
ia

nt
 in

te
rp

re
ta

tio
n,

 in
co

rp
or

at
in

g 
lim

ite
d 

gu
id

el
in

es
 fo

r m
ito

ch
on

dr
ia

l v
ar

ia
nt

 in
te

rp
re

ta
tio

n 
an

d 
no

tin
g 

sp
ec

ifi
c 

as
so

ci
at

ed
 

ch
al

le
ng

es
[8

1]
. D

es
pi

te
 th

is 
fr

am
ew

or
k,

 in
te

rp
re

ta
tio

n 
re

m
ai

ns
 c

ha
lle

ng
in

g 
an

d 
in

he
re

nt
ly

 s
ub

je
ct

iv
e,

 p
ar

tic
ul

ar
ly

 fo
r 

m
tD

N
A

 v
ar

ia
nt

s[8
2]

. Th
er

ef
or

e,
 c

lin
ic

al
 

an
d 

bi
oc

he
m

ic
al

 p
he

no
ty

pi
ng

 r
em

ai
n 

im
po

rt
an

t f
or

 s
uc

ce
ss

fu
l u

til
isa

tio
n 

an
d 

ac
cu

ra
te

 in
te

rp
re

ta
tio

n 
of

 e
vo

lv
in

g 
se

qu
en

ci
ng

 te
ch

ni
qu

es
[1

9]
, w

ith
 fa

m
ily

 tr
io

 
se

qu
en

ci
ng

 in
co

rp
or

at
ed

 w
he

re
 fe

as
ib

le
, e

sp
ec

ia
lly

 fo
r p

ae
di

at
ric

 c
as

es
 a

nd
 se

gr
eg

at
io

n 
st

ud
ie

s i
n 

ad
ul

ts
, t

o 
ra

pi
dl

y 
pr

io
rit

is
e 

de
 n

ov
o 

va
ria

nt
s. 

In
cr

ea
sin

g 
us

e 
of

 W
ES

 a
nd

 W
G

S 
co

m
bi

ne
d 

w
ith

 e
vo

lv
in

g 
“o

m
ic

s”
 te

ch
ni

qu
es

, i
nc

lu
di

ng
 m

et
ab

ol
om

ic
s, 

pr
ot

eo
m

ic
s 

an
d 

tr
an

sc
rip

to
m

ic
s, 

ar
e 

en
ab

lin
g 

fu
rt

he
r 

in
te

rr
og

at
io

n 
an

d 
ev

al
ua

tio
n 

of
 v

ar
ia

nt
s, 

ge
ne

ra
tin

g 
da

ta
 to

 in
fo

rm
 v

ar
ia

nt
 p

rio
rit

isa
tio

n 
an

d 
as

sig
nm

en
t, 

pa
th

op
hy

sio
lo

gi
ca

l i
ns

ig
ht

s a
nd

 th
er

ap
eu

tic
 o

pt
io

ns
[8

3]
. 

A
ut

ho
rs

Pa
ti

en
ts

n
A

ge
D

is
ea

se
 

ch
ar

ac
te

ri
st

ic
s

Pr
io

r 
se

qu
en

ci
ng

Se
qu

en
ci

ng
 a

pp
ro

ac
h

m
tD

N
A

 (n
; %

)
nD

N
A

 (n
; %

)
N

uc
le

ar
 g

en
es

Y
ie

ld
: o

ve
ra

ll
m

tD
N

A
 %

 (n
) 

[o
f s

ol
ve

d]
nD

N
A

 %
 (n

) 
[o

f s
ol

ve
d]

M
D

 %
 (n

)
of

 s
ol

ve
d 

ca
se

s
N

ov
el

 %
 (n

) 
of

 s
ol

ve
d 

ca
se

s

Th
eu

ni
ss

en
 et

 a
l.[1

5]

20
18

11
7

Pa
ed

 p
re

do
m

O
ns

et
 <

 1
8

 y
o 

77
%

M
D

 7
4

%
 (

cl
in

/
bi

oc
)

N
M

 2
6%

N
il

2 
st

ep
 N

G
S:

N
G

S 
w

ho
le

 m
tD

N
A

 (
B 
± 

U
.M

) 
(a

ll)
W

ES
 (

94
/1

17
; 8

0
%

)

U
nf

ilt
er

ed
68

%
 (

8
0

/1
17

)
20

%
 (

23
/1

17
) 

[2
9%

 (
23

/8
0

)]
4

9%
 (

57
/1

17
) 

[7
1%

 (
57

/8
0

)]

73
%

 (
58

/8
0

)
23

 m
tD

N
A

 | 
35

 
nD

N
A

N
S

Pu
us

ep
p 

et
 a

l.[2
0

]

20
18

28
Pa

ed
 a

ll
O

ns
et

 <
 7

 y
o

N
N

/I
 p

re
do

m

D
ef

 M
D

 1
4

%
 

H
S-

M
D

 5
7%

I/
LS

-M
D

 2
9%

Ta
rg

et
ed

 
m

tD
N

A
Si

ng
le

 n
 g

en
es

W
ES

 +
 m

tD
N

A
O

ff
-t

ar
ge

t (
al

l)
W

ES
 (

al
l)

U
nf

ilt
er

ed
57

%
 (

16
/2

8
)

0
%

 (
0

/2
8

) 
[0

%
 (

0
/1

6)
]

57
%

 (
16

/2
8

) 
[1

0
0

%
 (

16
/1

6)
]

25
%

 (
4

/1
6)

75
%

 D
ef

 M
D

 
25

%
 H

S-
M

D
0

%
   

I/
LS

-M
D

70
%

 (
19

/2
7 

va
r)

K
oh

da
 et

 a
l.[2

1]

20
16

14
2

Pa
ed

 a
ll

O
ns

et
 <

 1
5 

yo
4

6%
 <

 1
 m

o

A
ll 

M
D

Bi
oc

 R
C

D
N

S
m

tD
N

A
, W

ES
, C

G
H

LR
-P

C
R 

m
tD

N
A

 (
al

l)
W

ES
 (

al
l)

U
nf

ilt
er

ed
35

%
 (

4
9/

14
2)

7%
 (

10
/1

4
2)

 [
20

%
 (

10
/4

9)
]

25
%

 (
35

/1
4

2)
 [

71
%

 (
35

/4
9)

]

8
6%

 (
4

2/
4

9)
61

%
 (

30
/4

9 
pt

s)
67

%
 (

4
0

/6
0

 v
ar

)

Pr
on

ic
ka

 et
 a

l.[1
7]

20
16

11
3

Pa
ed

 a
ll

4
2%

 N
N

H
S-

M
D

 3
5%

IS
-M

D
 2

7%
LS

-M
D

 3
7%

Ro
ut

in
e 

(N
S)

W
ES

 (
af

te
r 

ro
ut

in
e)

N
S

W
ES

 (
al

l)

U
nf

ilt
er

ed
59

%
 (

67
/1

13
) 

(3
6%

 L
S,

 9
0

%
 

H
S)

5%
 (

6/
11

3)
 [

9%
 (

6/
67

)]
54

%
 (

61
/1

13
) 

[9
1%

 (
61

/6
7)

]

70
%

 (
4

6/
67

 
pt

s)
20

%
 L

S-
M

D
 

97
%

 H
S-

M
D

51
%

 (
50

/9
9 

va
r)

W
or

tm
an

n 
et

 a
l.[1

9]

20
15

10
9

Pa
ed

 
Yo

un
g 

ad
ul

t
A

ll 
<

 2
7 

yo

H
S-

M
D

 3
9%

IS
-M

D
 4

0
%

LS
-M

D
 2

1%

m
tD

N
A

 
an

al
ys

is
C

G
H

2 
st

ep
: V

P 
± 

W
ES

N
/A

W
ES

 (
al

l)

V
P 

(c
us

to
m

)
23

8
 g

en
es

U
nf

ilt
er

ed

38
%

 (
4

2/
10

9)
 (

57
%

 H
S,

 3
5%

 
LS

)
N

/A
38

%
 (

4
2/

10
9)

 [
al

l s
ol

ve
d]

62
%

 (
26

/4
2)

N
S

O
ht

ak
e 

et
 a

l.[1
6]

20
14

10
4

N
S

A
ll 

M
D

Bi
oc

 R
C

D
m

tD
N

A
 

an
al

ys
is

W
ES

 (
af

te
r 

m
tD

N
A

)
N

/A
W

ES
 (

al
l)

U
nf

ilt
er

ed
4

3%
 (

4
5/

10
4

)
N

/A
4

3%
 (

4
5/

10
4

) 
[a

ll 
so

lv
ed

]

10
0

%
 (

4
5/

4
5)

98
%

 (
4

4
/4

5 
pt

s)
17

 v
ar

ia
nt

s,
 2

7 
ge

ne
s

Ta
yl

or
 et

 a
l.[1

8
]

20
14

53
Pa

ed
 a

ll
96

%
 <

 1
5 

yo
66

%
 <

 1
 y

o

A
ll 

M
D

Bi
oc

 M
RC

D
m

tD
N

A
 

an
al

ys
is

C
G

H

W
ES

 (
af

te
r 

m
tD

N
A

)
N

/A
W

ES
 (

al
l)

U
nf

ilt
er

ed
60

%
 (

32
/5

3)
N

/A
60

%
 (

32
/5

3)
 [

al
l s

ol
ve

d]

10
0

%
 (

32
/3

2)
N

S 
(1

2.
5%

 n
ov

el
 

ge
ne

s)

B:
 B

lo
od

; B
io

c:
 b

io
ch

em
ic

al
; C

lin
: c

lin
ic

al
; C

G
H

: c
om

pa
ra

ti
ve

 g
en

om
ic

 h
yb

ri
di

za
ti

on
; D

ef
: d

ef
in

ite
; H

S-
M

D
: h

ig
h 

su
sp

ic
io

n 
M

D
; I

S-
M

D
: i

nt
er

m
ed

ia
te

 s
us

pi
ci

on
 M

D
; L

S-
M

D
: l

ow
 s

us
pi

ci
on

 M
D

; L
R-

PC
R

: 
lo

ng
 r

an
ge

 P
C

R
; M

: m
us

cl
e;

 M
D

: m
ito

ch
on

dr
ia

l d
is

ea
se

; m
o:

 m
on

th
s;

 (
M

)R
C

D
: (

m
ix

ed
) 

re
sp

ira
to

ry
 c

ha
in

 d
ef

ic
ie

nc
ie

s;
 m

tD
N

A
: m

ito
ch

on
dr

ia
l D

N
A

; n
: n

uc
le

ar
; n

: n
um

be
r;

 N
/A

: n
ot

 a
pp

lic
ab

le
; N

G
S:

 
ne

xt
 g

en
er

at
io

n 
se

qu
en

ci
ng

; N
N

: n
eo

na
ta

l; 
N

N
/I

: n
eo

na
ta

l/
in

fa
nt

; N
S:

 n
ot

 s
ta

te
d;

 P
ae

d:
 p

ae
di

at
ri

c;
 p

re
do

m
: p

re
do

m
in

an
t; 

pt
s:

 p
at

ie
nt

s;
 U

: u
ri

ne
; v

ar
: v

ar
ia

nt
s;

 V
P:

 v
ir

tu
al

 p
an

el
; W

ES
: w

ho
le

 e
xo

m
e 

se
qu

en
ci

ng
; y

o:
 y

ea
rs

 o
ld

Page 194                                  Watson et al. J Transl Genet Genom 2020;4:188-202  I  http://dx.doi.org/10.20517/jtgg.2020.31                                   



A PROPOSED NEW APPROACH
We suggest a genetics first diagnostic approach given the technical suitability of NGS for mitochondrial 
disease genetics and the expanding capability to reliably identify and call mitochondrial disease variants[26]. 
A genetics first diagnostic approach is also advocated for by others[56,57] and a proposed process is outlined 
in Figure 2 (adapted from Davis et al.[1]).

The first stage aims to stratify the population for testing by answering two questions: (1) “is mitochondrial 
disease likely?” and, if so, (2) “is there a distinctive phenotype indicative of the genotype?” to inform the 
most appropriate genetic testing strategy. The next stage focuses on molecular diagnosis - either identifying 
a known pathogenic mutation, validating a novel mitochondrial-disease causing variant, or identifying a 
genetic phenocopy.

A careful and comprehensive history, including inheritance pattern where possible, together with 
comprehensive clinical examination, enables accurate clinical phenotyping and should be combined with 
tailored initial investigations to characterise organ involvement and form an initial clinical estimate of the 
likelihood of mitochondrial disease. Routine laboratory investigations, including those aimed at excluding 
infective or inflammatory processes and other mimics, should be undertaken alongside specific evaluation 
of serum lactate and pyruvate, creatine kinase (CK) and a urinary metabolic screen: indicators of disease 
but with limited sensitivity and specificity[54,66]. In adults, neuroimaging typically includes MRI of the brain 
(ideally with MR spectroscopy of CSF), and may demonstrate characteristic or non-specific patterns, or be 
normal[66,84-86]. Electroencephalogram, nerve conduction studies and electromyography may complement 
the initial clinical evaluation. Cardiac evaluation with electrocardiogram, 24-hour holter monitor 
and echocardiogram is critical to evaluate potentially life-threatening organ involvement and bedside 
ophthalmological examination may be augmented by retinal photography, or formal ophthalmological 
evaluation where appropriate.

The incorporation of biomarkers may aid clinical stratification (discussed below). If initial clinical 
evaluation and investigations are equivocal and/or biomarkers are negative, further supportive evidence 
for disease should be sought, prior to initiating comprehensive genetic testing. For example, the yield from 
detailed ophthalmological evaluation is high[87], with findings often specific for mitochondrial disease, 
whereas other investigations, such as GI motility, although predictive of a positive genetic diagnosis when 
present, are less specific for mitochondrial diseases or a particular genetic culprit[88].

The combination of suggestive clinical features, inheritance and initial investigations, together with positive 
biomarkers, should prompt the clinician to progress to genetic evaluation. Where a classical phenotype 
suggests a deletion syndrome, or one of a restricted group of causative genes or mutations, established 
targeted sequencing approaches in an appropriate tissue source (deletions often require uroepithelium or 
muscle) are readily available, rapid and cost-effective. If targeted sequencing returns negative, and in the 
many instances where a specific genetic cause or candidate is not able to be proposed, a comprehensive 
sequencing approach encompassing all potentially causative genes should be considered (discussed further 
below).

If, after comprehensive bigenomic sequencing, a genetic diagnosis still cannot be established, a review of 
the clinical presentation, consideration for further investigations - including muscle biopsy for biochemical 
and enzymatic studies, and genetics (in post-mitotic tissue) - and a periodic review of genetic data should 
be undertaken, as bioinformatics pipelines, variant analysis and the catalogue of known disease genes and 
pathogenic mutations are rapidly evolving. 

With this proposed approach, muscle biopsy is not omitted entirely. Rather, it is selectively utilised to 
achieve specific end-points. Scenarios where early incorporation of muscle biopsy may be relevant include 
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the genetic diagnosis of mtDNA deletion syndromes, where less invasive sources (blood leukocytes/
uroepithelium) have been unrevealing, and for consideration where there is substantial uncertainty 
regarding the underlying aetiology that warrants further evaluation before proceeding further toward 
definitive diagnosis. However, it should be noted that in the latter context, WES has demonstrated utility 
in patients with a lower pre-sequencing likelihood of mitochondrial disease - the “possible” rather than 
“probable” group - as it can identify coding variants causing mitochondrial disease and monogenic 

Figure 2. A proposed diagnostic approach for mitochondrial disease
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disease mimics[15,19,20]. Therefore, careful consideration should be given to whether invasive investigation is 
justified at this stage. Later incorporation of muscle biopsy may be relevant for evaluation and functional 
validation of identified novel variants[4], in cases where definitive genetic diagnosis is not forthcoming, for 
investigation using more disease-relevant post-mitotic tissues, including to interrogate mtDNA deletions[89] 
and/or histological and biochemical evidence of mitochondrial disease in the absence of genetic diagnosis.

THE ROLE OF SERUM BIOMARKERS
The addition of sensitive and specific serum biomarkers to the initial evaluation may aid stratification 
of genetic testing. Traditional and commonly tested serum biomarkers of mitochondrial disease include 
lactate, pyruvate, their ratio, and CK. However, results may vary substantially, depending on factors 
including activity, diet and sample handling[90] and they lack sufficient sensitivity and specificity for clinical 
utility in mitochondrial disease[91]. Recently, more sensitive and specific serum biomarkers have been 
identified, although there remains scope for improvement. 

Elevated levels of fibroblast growth factor-21 (FGF-21) have been demonstrated in people with muscle-
manifesting mitochondrial diseases, compared to non-mitochondrial disease and healthy controls[91-93]. 
Further research indicates FGF-21 levels best correlate with defects of mitochondrial translation and may 
be normal in defects of respiratory chain complexes or their assembly factors[93]. More recent functional 
studies of mitochondrial myopathy in human and mouse models demonstrate the crucial role of FGF-21 in 
the integrated mitochondrial stress response (ISRmt), activating the systemic stress response and inducing 
systemic metabolic consequences[94]. However, FGF-21 levels can also be elevated in non-mitochondrial 
diseases, including some non-mitochondrial myopathies, cancer, obesity, renal disease, diabetes and liver 
disease[90], limiting diagnostic utility independent of clinical context.

The elevation of growth differentiation factor 15 (GDF-15) was identified in Thymidine Kinase (TK2)-
related mitochondrial disease[95]. It was further evaluated in patient cohorts with mitochondrial and 
non-mitochondrial diseases[96-100], with some suggestion that GDF-15 levels may correlate with disease 
severity[97]. Davis and colleagues demonstrated improved diagnostic sensitivity and a higher diagnostic 
odds ratio for GDF-15 compared to FGF-21, noting that GDF-15 was potentially more broadly applicable 
than FGF-21[96]. This was followed by suggestion of better correlation with mitochondrial translation 
and mtDNA maintenance defects[90]. GDF-15 may also be elevated, albeit to a lesser degree, in non-
mitochondrial muscle and metabolic diseases, pregnancy, diabetes, cancer, liver fibrosis and cardiovascular 
disease[90,101], and may reflect oxidative stress[101]. 

Both FGF-21 and GDF-15 are non-invasive serum assays, and although not independently diagnostic[101], 
offer superior utility to classical biomarkers[99]. They therefore complement clinical evaluation and can 
better inform decision making on subsequent costly tests such as NGS, whilst noting clinically relevant 
limitations. 

WHICH SEQUENCING APPROACH?
Although targeted NGS panels achieved early advances in genetic diagnosis, there are clear benefits of WES 
or WGS approaches. Both generate vastly more data and demand upfront resources for analysis, although 
costs are rapidly decreasing, and can simultaneously analyse mtDNA, identify novel disease genes and 
variants, as well as monogenic phenocopies. 

WES has demonstrated increased diagnostic yield in mitochondrial disease studies as outlined above[15-23], 
although it has frequently been utilised only for nuclear genome analysis following dedicated mtDNA 
genome sequencing. Off-target WES reads sufficiently capture mtDNA to assemble a mitochondrial 
genome[102] and analyse mtDNA variants with reasonable precision[75], owing to the abundance of mtDNA 
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relative to nDNA. However, greater depth of coverage is required for reliable detection of low-heteroplasmy 
variants[76]. Dedicated mtDNA enrichment enables simultaneous analysis of mtDNA, with enhanced 
detection of low heteroplasmy variants, down to 8%[76]. Despite vast progress, however, a substantial 
proportion (30%-70%) of patients remain undiagnosed following WES[15-21]. Whilst this may reflect 
bioinformatic prioritisation or evolving analytic pipelines, there remain a number of insufficiencies in 
WES: coverage may be non-uniform and importantly limited in certain regions (especially G-C rich)[103] 
and indels and copy number variations may not be reliably identified[104]. Furthermore, PCR and mtDNA 
enrichment also introduce sequencing error and bias, the nature and extent of which depend on the 
selected kit and methods[103,105]. By definition, causative variants in non-coding regions are also omitted by 
WES. WGS can overcome all of these limitations to offer further utility, with promising early data in rare 
diseases[104] that may justify the modest additional cost.

PCR-free whole genome sequencing avoids sequencing error and biases introduced by library amplification, 
offering more consistent breadth and depth of coverage of coding regions[24] as well as covering the 
extensive non-coding regions. WGS can detect small and large chromosomal copy number variants[82], 
an increased proportion of single nucleotide variants and structural variants[24,25,104]. It also offers superior 
mtDNA coverage (1200-4000× with acceptable coverage depths of the nuclear genome, between 14-30×), 
allowing reliable detection of low-heteroplasmy variants, down to 2% or less[26,57]. Whilst analysis of 
mitochondrial variants presents unique challenges compared to interpretation of nuclear variants[106] which 
have more established bioinformatics pipelines, we have developed a novel dedicated tool, mityTM to offer 
automated, integrated mtDNA variant calling from WGS data[26]. Nuclear and mtDNA bioinformatics 
pipelines may be linked, facilitating simultaneous analysis of both nuclear and mitochondrial genomes 
from a single, minimally-invasive sample[26]. WGS therefore offers comprehensive, simultaneous bigenomic 
sequencing with superior mtDNA coverage depth and heteroplasmy sensitivity, whilst reducing introduced 
sequencing error and bias, and should therefore be the preferred sequencing option. Early WGS results 
from mitochondrial disease studies indicate the yield is at least equivalent for known variants, with 
potential for improved yield with novel variant identification and as analysis - especially of non-coding 
regions - evolves. 

CONCLUSION: A MINIMALLY INVASIVE, STREAMLINED APPROACH TO MITOCHONDRIAL 

DISEASE GENETIC DIAGNOSIS
Despite significant advances in technology and understanding of mitochondrial biology over recent 
decades, the diagnosis of mitochondrial disease continues to present a challenge to the clinician and a large 
proportion of cases remain undiagnosed. Whilst the prevailing diagnostic paradigm advocates a “function-
to-gene” approach centred on muscle biopsy, the substantial benefits of a “genetics-first” approach justify 
a paradigm shift. Such an approach, as proposed here, incorporating clinical evaluation, serum biomarker 
stratification and early bigenomic WGS, offers the potential to streamline a less invasive diagnostic process 
for patients, improve diagnostic yield, inform individual prognosis and the collective understanding of 
mitochondrial biology and ultimately pave the way for substantial therapeutic advances.
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