Feng *et al. Chem Synth* 2024;4:43 **DOI:** 10.20517/cs.2024.12

Review

Chemical Synthesis

Open Access

Solid-state NMR of active sites in TiO₂ photocatalysis: a critical review

Ningdong Feng^{1,2}, Jun Xu^{1,2,*}, Feng Deng^{1,2,*}

¹National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China.

²University of Chinese Academy of Sciences, Beijing 100049, China.

***Correspondence to:** Prof. Jun Xu, Prof. Feng Deng, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, No. 30, Xiaohongshan West District, Wuhan 430071, Hubei, China. E-mail: xujun@wipm.ac.cn; dengf@wipm.ac.cn

How to cite this article: Feng N, Xu J, Deng F. Solid-state NMR of active sites in TiO₂ photocatalysis: a critical review. *Chem Synth* 2024;4:43. https://dx.doi.org/10.20517/cs.2024.12

Received: 30 Jan 2024 First Decision: 11 Jun 2024 Revised: 13 Jun 2024 Accepted: 27 Jun 2024 Published: 5 Aug 2024

Academic Editor: Yann Garcia Copy Editor: Pei-Yun Wang Production Editor: Pei-Yun Wang

Abstract

Titanium dioxide (TiO_2) is one of the optimal semiconductor metal oxide photocatalysts with a wide range of application fields, such as heterogeneous catalysis, energy science, and environmental science. Solid-state nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for characterizing both structure and dynamics at an atomic-molecular level in heterogeneous catalysts. In this review, we first provide a brief discussion on the progress in investigating the structures of titanium and oxygen in bulk and on the surface of TiO_2 by using various solid-state NMR techniques. Advances in the understanding of electronic structure and properties of TiO_2 with distinct surface features, including various crystal facets and heteroatomic adsorption by chemical probe-assisted NMR techniques, are secondly presented. The solid-state NMR characterization of heteroatom active sites (such as ¹³C, ¹⁵N, ¹¹B, ²⁷AI) and their function in TiO_2 photocatalysts is described in detail. Finally, a critical discourse assesses the current limitations and prospects of solid-state NMR in its application to the optimization and design of advanced TiO_2 photocatalysts.

Keywords: Characterization, solid-state NMR, TiO₂, photocatalyst, active sites

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

INTRODUCTION

Titanium dioxide (TiO_2) has emerged as a leading candidate in the field of photocatalysis owing to its unique confluence of desirable attributes: exceptional optical and electronic properties, robust thermal and chemical stability, environmental benignity, and economic viability. This advantageous combination has propelled TiO₂ to the forefront of research in diverse applications, including solar energy harvesting^[1-3], photocatalytic hydrogen generation^[4-6], CO₂ conversion^[7-9], and organic pollutant degradation^[10,11]. Since 2000, the statistical analysis reported that publications on TiO₂ photocatalysis crossed 10,000 per year, suggesting that this field has been intensively interested in research and development.

TiO, exists in three crystalline phases: anatase, rutile, and brookite, and the former two can be used as semiconductor photocatalysts. The structure of both rutile and anatase TiO, consists of chains of [TiO₄] units, where six O²⁻ ions surround one Ti⁴⁺ ion to form an octahedron^[12]. However, due to the differences of each [TiO₆] octahedron distortion, the Ti–Ti and Ti–O distances, octahedron chain assemblies, the energy band structure and mass density between two crystalline phases of TiO, are different. Besides the crystalline phases, the differences in crystallite size and specific surface area, crystalline plane and morphology also cause change of properties in TiO, due to the subsequent change in structures and content of microscopic Ti and O sites on TiO, surface. For example, using K-edge X-ray absorption near edge structure (XANES) techniques, Chen et al. found that compared to the octahedron Ti sites in TiO₂ with big size (50 nm), severe distortion of the Ti site environment exists in TiO₂ nanoparticles with small size $(1.9 \text{ nm})^{[13]}$. Due to the truncation of the lattice, the distorted Ti sites should be a penta-coordinate square pyramidal geometry, located mainly on the nanoparticle surface, responsible for the chemisorption of organic molecules. It was also found that more distorted bond angles of bridging oxygens (O-Ti₂) and more unsaturated Ti sites (pentacoordinated Ti⁴⁺) are present on the (001) facet compared to the (101) facet^[14,15]. All that lead to more active bridging O centers, easier O₂ adsorption, and higher surface energy on the (001) facet^[16,17]. Yu et al. reported that the higher photocatalytic ability of TiO, thinner films was due to lesser opacity and more surface active sites^[18]. Therefore, these microscopic active sites on the TiO₂ surface should play a crucial role in improving photocatalytic activities.

The semiconductors-based photocatalytic reactions should involve three steps [Figure 1]^[6,12,19-21]: Firstly, the electron-hole pairs (carriers) are excited by photons with an energy more than the band gap of TiO,. Secondly, the photogenerated carriers separate or recombine during migration. Finally, the photogenerated carriers react with surface-adsorbed molecules through active sites on the TiO₂ surface. As well known, owing to the wide band gap (rutile of 3.0 eV, and anatase of 3.2 eV), ultraviolet (UV) radiation is a prerequisite to facilitating the formation of the carriers during the photocatalytic reaction. Since ca. 50% of the solar radiation on earth is in the visible (vis) region, UV light makes up only ca. 5% of the natural light spectrum; improving the absorption of solar light by TiO₂ has become one of the most urgent tasks in photocatalytic research and development. To solve this problem, some common and promising modification approaches, such as heteroatoms (ions) doping^[1,22-32] and loading^[1,19,32-41], have been utilized to narrow the band gap and enhance the separation efficiency of photogenerated carriers. Additionally, the reaction of photogenerated carriers on the TiO₂ surface is also crucial in photocatalysis, in which the photogenerated carrier transfers to surface active sites to form active intermediates, and then the active intermediates react with surface molecules^[42-48]. For example, surface hydroxyl (OH)/oxygen (O) sites and adsorbed H₂O on TiO₂ can trap photogenerated holes to form active paramagnetic intermediates (such as •OH and Ti-O•)^[43,44,49,50].

An in-depth understanding of active centers, including heteroatoms (ions) and surface active sites is the key to establishing structure-activity relationships, which can facilitate the rational design of highly efficient

Figure 1. Semiconductors-based photocatalytic mechanism. Reproduced with permission from^[12]. Copyright 1995, American Chemical Society.

TiO₂ photocatalysts. Thus, numerous techniques, such as high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Infrared (IR) spectroscopy, Electron paramagnetic resonance (EPR), solid-state nuclear magnetic resonance spectroscopy (NMR), *etc.*, have been employed to study the structure of photocatalysts and the relevant reaction mechanisms. Generally, the crystal structure is determined by HRTEM, XRD, and Raman spectroscopy^[51-56], and the electronic structures can be studied by X-ray photoelectron and X-ray absorption and emission spectroscopies^[57-60]. EPR has been used to detect defect sites [Ti³⁺ and oxygen vacancy (V_o)], and surface paramagnetic species (O₂[•], O⁻ species, and [•]OH)^[42,50,61], while IR spectroscopy has been used to detect surface OH and reaction intermediates of EPR and NMR silence^[17,53,62].

Among them, solid-state NMR is a powerful tool for characterizing the structure of solid-state materials at the atomic-molecular level^[63-70]. Although research on solid-state NMR techniques for photocatalyst activesite structures and photocatalytic reactions is rapidly increasing [Figure 2], the research interest in the application of solid-state NMR techniques is still relatively low compared to other techniques in the field of photocatalysis. To the best of our knowledge, this article presents the first examination of the application of solid-state NMR to TiO₂ photocatalysis. Specifically, we conduct an overview of the advances made utilizing solid-state NMR techniques to analyze TiO₂ photocatalysts. Through selected examples from the literature, we demonstrate how solid-state NMR has been utilized to reveal the atomic structures and interactions between various sites or components within TiO₂. The review also discusses both the current limitations of solid-state NMR methodology in photocatalyst research and promising future directions for this technique.

TITANIUM AND OXYGEN ACTIVE SITES IN TIO2

The past few decades have witnessed a surge in efforts dedicated to unraveling the structural and electronic intricacies of TiO_2 , employing both experimental and theoretical approaches. However, the structure and coordination environments of Ti and O sites on the TiO_2 surface are very different from those in bulk and thus remain poorly understood due to the complex surface structures. A wide variety of active sites exist on the TiO_2 surface, including distorted Ti sites, low-coordinated Ti sites, bridging O sites, tri-coordinated O

Figure 2. Yearly number of publications and stepwise development for photocatalysts studied by NMR spectroscopy. NMR: Nuclear magnetic resonance.

sites, *etc.* The distorted Ti sites, such as the double-bonded titanyl (Ti=O) groups on the (011) surface of reconstructed rutile TiO₂, can promote the dissociation of part of adsorbed water^[71,72]. The coordinatively unsaturated Ti atoms, including the penta-coordinated Ti sites (TiO₅) on the surface and the tetra-coordinated Ti sites (TiO₄) on the edge/corner, are important anchoring sites for the adsorption of targeted molecules (such as H₂O, HCHO, and ethylene)^[73-76] and for maintaining the high stability of the cocatalysts (such as Pd, Ru, Au, *etc.*)^[77-79]. Theoretical calculations predicted that the bridging O sites (OTi₂) of TiO₂ can interact with the proton and facilitate the dissociation of H₂O, which are closely related to catalytic mechanisms^[80-82]. Furthermore, the coordinatively unsaturated Ti and O sites serve as active sites for charge carrier trapping and molecular adsorption during CO₂ reduction and methanol conversion^[83-85]. Thus, determining the structure and distribution of the Ti and O sites on TiO₂ is a prerequisite for understanding the structure-property relationship.

Titanium active sites in TiO₂

^{47/49}Ti NMR can be utilized to detect the local environments of Ti sites in TiO₂ photocatalysts^[86-88]. However, the isotopes have a low natural abundance, with ⁴⁷Ti at 7.28% and ⁴⁹Ti at 5.51%. They also exhibit low Larmor frequencies, measuring 22.55 MHz at a magnetic field of 9.4 T. Additionally, the Ti atoms in TiO₂ photocatalysts are quadrupole nuclei, with spin quantum numbers of I = 5/2 for ⁴⁷Ti and I = 7/2 for ⁴⁹Ti. These nuclei possess a relatively low gyromagnetic ratio and experience significant quadrupolar interactions, which lead to low sensitivity and resolution of these spectra due to the wide signal lineshape^[89-91]. The ^{47/49}Ti static NMR spectra were used to monitor the transition of the crystalline phases of brookite, anatase, and rutile in as prepared TiO₂ at different annealing temperatures from 400 to 850 °C, and ^{47/49}Ti NMR parameters were extracted from the spectral simulations of the corresponding components of bulk polycrystalline phases [Figure 3]^[92,93]. The size, crystallinity, and crystal phase of TiO₂ can sensitively be reflected on the lineshape of the corresponding NMR signal. For example, the ⁴⁹Ti NMR parameters, including chemical shift (δ_{iso}), quadrupole coupling constant (C_0), and asymmetry parameter (η), for anatase were determined to be -67 ppm, 4.6 MHz, and 0.1, respectively, whereas for rutile the corresponding ⁴⁹Ti NMR parameters are -15 ppm, 13.4 MHz, and 0.2, respectively. It was found that the narrow peak should be the ⁴⁹Ti NMR signal in TiO₂ bulk and the other relatively broad peak should be the ⁴⁷Ti NMR signal in TiO₂ bulk. With the increase of annealing temperature to 700 °C, the quadrupole linear patterns of 47Ti and 49Ti

Figure 3. Experimental and simulated static Hahn-echo^{47/49}Ti NMR spectra of TiO₂. The TiO₂ nanoparticles were annealed before solidstate NMR experiments at variable temperatures. Reproduced with permission from⁽⁹³⁾. Copyright 2001, American Chemical Society. NMR: Nuclear magnetic resonance.

static NMR signals become more pronounced, indicating that the crystallinity of the anatase becomes better. With the further increase of annealing temperature, two NMR signals corresponding to ⁴⁷Ti and ⁴⁹Ti in rutile bulk increase gradually at the expense of the ⁴⁷Ti and ⁴⁹Ti NMR signals in anatase bulk, indicating the transition of crystal phase from anatase to rutile.

However, a long-time (ca. 20 h) acquisition at 33.81 MHz using a CMX Infinity 600 spectrometer and large sample quantity (9.5 mm rotor) was necessary to ensure the signal-to-noise ratio of the spectra, and it is difficult to differentiate and assign the seriously overlapped resonances due to the large chemical shift anisotropy (CSA) and quadrupolar interactions. The advanced NMR techniques have been developed to optimize the signal excitation and acquisition. Bräuniger *et al.* use fast amplitude-modulated (FAM) radiofrequency (RF) pulse trains to enhance the sensitivity of the signal via transferring spin population from the satellite transitions to central transition^[94]. In comparison with Hahn-echo acquisition, the intensity of the ^{47/49}Ti central-transition line has increased by more than twice in the magic angle spinning (MAS) NMR spectra of TiO₂.

As well known, the ⁴⁷Ti and ⁴⁹Ti isotopes exhibit almost identical Larmor frequencies and natural abundances^[89]. Thus, to analyze the Ti sites of TiO₂, it is important to distinguish the ⁴⁷Ti and ⁴⁹Ti signals in the NMR spectra. When these isotopes occur in sites with a significant electric field gradient (EFG), the different nuclear spin quantum numbers would result in varying effective RF fields for the central transition nutation frequencies. As such, Larson *et al.* proposed isotope-selective quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) pulse sequence to selectively excite the ⁴⁷Ti or ⁴⁹Ti powder linear^[95]. The authors performed

Figure 4. Experimental static ⁴⁷Ti and ⁴⁹Ti NMR spectra of anatase using the QCPMG pulse sequence. (A) The ordinary QCPMG pulse sequence; (B) the devised ⁴⁹Ti-selective pulse sequence; and (C) the devised ⁴⁷Ti selective pulse sequence. Reproduced with permission from⁽⁹⁵⁾. Copyright 2006, Elsevier. NMR: Nuclear magnetic resonance; QCPMG: quadrupolar Carr-Purcell Meiboom-Gill.

solid-state NMR experiments and numerical simulations on the anatase and rutile of TiO_2 . The ⁴⁷Ti and ⁴⁹Ti isotopes for anatase, with different quadrupolar interaction between the EFG at the titanium site and their nuclear quadrupole moments (Q), were separated at the field of 21.1 T, and their EFG and CSA tensors were accurately determined [Figure 4].

Precisely discerning the diverse Ti environments in TiO₂ presents a significant analytical challenge in static ^{47/49}Ti NMR due to the significant overlap and inherent broadness of their spectral signatures. To overcome this problem, Epifani *et al.* used the MAS method at 12 kHz. This approach effectively improved the resolution of their NMR signals, allowing for a more detailed and accurate characterization of the titanium environments in both pristine TiO₂ and V₂O₅-loaded TiO₂ samples^[96]. As shown in Figure 5, two resonances at 213 and -245 ppm were present in the ^{47/49}Ti MAS NMR spectrum of amorphous TiO₂ before high-temperature heating (Figure 5, Left), which correspond to surface Ti bonded to OH and lattice Ti sites in TiO₂, respectively. A new dominant ⁴⁹Ti resonance at 792 ppm appeared after heating at 400-500 °C. The resonance at 792 ppm was even more intense in the ^{47/49}Ti MAS NMR spectrum of TiO₂-V₂O₅ nanocrystals (Figure 5, Right). The new signal of 792 ppm should be ascribed to surface Ti sites, having a unique distorted tetrahedral environment unlike that of bulk anatase TiO₂. The V₂O₅ loading facilitates the

Figure 5. $^{47/49}$ Ti MAS NMR spectra. (Left) pristine TiO₂ samples are examined as prepared, and after heating at 400 and 500 °C. (Right) V₂O₅-loaded TiO₂ samples were examined under identical conditions. Reproduced with permission from^[96]. Copyright 2015, Elsevier. MAS: Magic angle spinning; NMR: nuclear magnetic resonance.

rearrangement of surface Ti sites to distorted tetrahedral geometry.

Oxygen active sites in TiO₂

Oxygen is another most important constituent atom of TiO, and plays a critical role in various chemical processes that occur on the catalyst surface. Thus, an understanding of the structure and distribution of the O sites helps develop more efficient and effective catalytic systems for energy storage and conversion. As previously reported^[67-70,97-102], ¹⁷O MAS NMR can be utilized to distinguish the local structures of oxygen sites in oxygen-containing materials. However, the 17 O quadrupolar nucleus (I = 5/2) exhibits a relatively low gyromagnetic ratio (γ = -5.774 MHz·T⁻¹) and low ¹⁷O abundance (0.037%). Thus, it is difficult to use ¹⁷O NMR to study the oxygen-containing materials in conventional magnetic fields (\leq 14.1 T), and the ¹⁷O isotopic entailment is necessary to acquire the ¹⁷O MAS NMR spectra^[103]. In the earlier study, the ¹⁷O enriched TiO, was commonly prepared by hydrolysis of organic titanate [such as Ti(Oi-Pr),] using ¹⁷O enriched $H_2O^{[101]}$ or high-temperature calcination of TiO₂ using ¹⁷O enriched $O_2^{[104]}$. Accordingly, the ¹⁷O NMR signal of bulk oxygen, which is predominant in TiO,, was solely observed. The ¹⁷O MAS NMR spectrum of anatase and rutile TiO, exhibits a single resonance at 562 and 596 ppm, respectively, which was assigned to tri-coordinated oxygen (OTi₃) in the corresponding crystal phase. Besides the resonance in the anatase (562 ppm) or rutile (596 ppm) domain, three resonances at 516, 543, and 572 ppm, corresponding to distorted OTi_{4} or tetra-coordinated oxygen (OTi_{4}) sites on the interface between anatase and rutile, were observed in the spectra of mixed-phase TiO₂ [Figure 6].

Recently, Li *et al.* used 90% ¹⁷O-enriched H₂O to realize surface-selectively ¹⁷O-labeled anatase TiO₂ with dominant exposed (001) facets [TiO₂(001)] and anatase TiO₂ with dominant exposed (001) facets [TiO₂(101)] [Figure 7]^[105]. Based on the ¹⁷O MAS NMR spectra and theoretical calculations, surface O sites on TiO₂ exposing different facets were roughly distinguished. The signals at high frequencies (600-780 ppm) can be attributed to bridging O sites (OTi₂); the peaks at 460-580 ppm should be due to tri-coordinated oxygen (OTi₃) species; the resonances at lower frequencies (100-250 ppm) can be assigned to hydroxyl groups (Ti–OH); the signals at -200-30 ppm can be ascribed to adsorbed H₂O. The ¹⁷O NMR parameters, including quadrupole coupling constant (C_Q) and asymmetry parameter (η) [Table 1]. In addition, it has been accepted that the type, content, and structure of oxygen sites on different crystal surfaces vary greatly due to the difference in surface defects and reconstruction, which can be studied by ¹⁷O MAS NMR spectroscopy. The ¹H → ¹⁷O cross-polarization (CP) MAS and two-dimensional (2D) heteronuclear correlation (HETCOR) NMR have been utilized to probe the spatial proximity of the H and O atoms,

δ_{iso} (ppm)	C _Q (MHz)	η	Assignment	Ref.
600-750	< 1.7	0.3-0.8	OTi ₂ on anatase surface	[105]
535-570	1.1-1.5	0.2-0.8	OTi ₃ in anatase	[105]
530-550	ca. 1.0	0.5-1.0	OTi ₃ on anatase (001) facet	[105]
500-560	1.1-1.7	0.5-0.8	OTi ₃ on anatase (101) facet	[105]
572	2.0	0.1	OTi_3 in low-ordered TiO_2	[104]
596	1.8	0.6	OTi ₃ in rutile	[104]
543	1.6	0.6	Distorted ${\rm OTi_3}$ or ${\rm OTi_4}$ near interface between anatase and rutile	[104]
516	1.8	0.8	Distorted OTi_3 or OTi_4 near interface between anatase and rutile	[104]
100-300	6.2-7.0	0.1-0.5	OH on anatase surface	[105]
21	8.37	0.71	$\rm H_{2}O$ absorbed at step-edge $\rm Ti_{\rm 5C}$ OA	[105]
7	8.58	0.7	$\rm H_2O$ absorbed at step-edge $\rm Ti_{5C}$ OB	[105]

Table 1. Summary of the ¹⁷O MAS NMR signals occurring in the spectra of TiO₂, their chemical shifts (δ_{iso}), quadrupole coupling constants (C_0), asymmetry parameters (η), and assignments according to literature

MAS: Magic angle spinning; NMR: nuclear magnetic resonance; OA: orientation A; OB: orientation B.

Figure 6. ¹⁷O MAS NMR spectra of anatase TiO_2 and mixed-phase TiO_2 of anatase and rutile with ¹⁷O enrichment. Reproduced with permission from ^[104]. Copyright 2014, Elsevier. MAS: Magic angle spinning; NMR: nuclear magnetic resonance.

which, however, is time-consuming and exhibits low detection efficiency for the quadrupolar nucleus with low γ and low surface abundance^[106-108]. These conventional correlation NMR techniques validated the

Figure 7. (A) Experimental and simulated 1D ¹⁷O MAS NMR spectra of TiO₂ (001). The simulated spectra are based on DFT calculations on different structures; (B) The structure model of TiO₂ (101); (C) Experimental and simulated 1D ¹⁷O MAS NMR spectra of the fully dried surface-selectively ¹⁷O-labeled TiO₂ (101) (black line). The simulated spectra (colored lines and peaks) by using parameters obtained from DFT calculations. Reproduced with permission from^[105]. Copyright 2017, Springer Nature. 1D: One-dimensional; MAS: magic angle spinning; NMR: nuclear magnetic resonance; DFT: density functional theory.

assignment of surface OH and adsorbed H_2O on the TiO₂ surface^[106]. To date, it is a great challenge to identify the atomic-level structures of surface O species (including O sites, OH groups, and interfacial H_2O) and the detailed interactions between them on TiO₂ due to the complexity of the interfacial environments, the high mobility of interfacial H_2O , and the interference from outer-layer $H_2O^{[109,110]}$.

SURFACE TITANIUM AND OXYGEN SITES STUDIED BY SURFACE-ENHANCED NMR SPECTROSCOPY

Due to the high price of isotope reagents, low detection sensitivity, and low surface atomic content, it is difficult to acquire the $^{47/49}$ Ti and 17 O NMR spectra in a short time. Dynamic nuclear polarization (DNP) transfers the polarization of paramagnetic centers to nearby nuclei by microwave irradiation, which can enhance NMR signals in the ratio of the gyromagnetic ratio of the electron and the polarized nucleus. The DNP NMR spectroscopy instruments need to set up microwave sources and cryogenic probes (T < 120 K) to achieve efficient polarization transfer via cross effect, solid effect, and Overhauser effect^[111-118]. The NMR signal enhancement techniques have been used to examine the surface structure of a variety of inorganic and hybrid materials^[119-122], known as DNP-surface-enhanced NMR spectroscopy (SENS).

Direct DNP transfers polarization directly to target nuclei ^[123-125], and indirect DNP transfers polarization first to ¹H nuclei and then to target nuclei by $CP^{[126-129]}$. Both of them can be realized for TiO_2 photocatalysts^[130,131]. Chen *et al.* prepared ¹⁷O-enriched TiO_2 by ball milling (BM) with ¹⁷O-enriched H₂O at different times^[130]. In the ¹⁷O MAS NMR spectra [Figure 8A], the signals at around 560 ppm correspond to OTi₃ sites. Additionally, the underlying weaker resonances (at 500-600 ppm) corresponding to distorted/ disordered OTi₃ sites and surface defects were also observable with the help of ultra-high field ¹⁷O NMR [Figure 8B]. However, there was no clear evidence of surface Ti–OH groups (200 ppm) present. The ¹⁷O DNP-SENS technique was utilized to detect the surface oxygen sites [Figure 8C and D]. In the direct-excitation ¹⁷O DNP spectrum [Figure 8C], in addition to the intense signal of OTi₃ sites nearby the TiO₂ surface, another weak signal was observed at ca. 200 ppm, which can be assigned to a small amount of Ti–OH species. The surface Ti–OH species could be selectively detected using ¹H → ¹⁷O DNP CP MAS NMR

Figure 8. (A) ¹⁷O MAS NMR spectra recorded at 14.1T on ¹⁷O enriched TiO₂; (B) ¹⁷O MAS NMR spectrum recorded at 35.2 T on a TiO₂ phase enriched in ¹⁷O; (C) ¹⁷O DNP NMR spectrum of a TiO₂ phase enriched in ¹⁷O; (D) ¹⁷O DNP CPMAS NMR spectra in comparison to the DFS-enhanced echo spectrum. Reproduced with permission from^[130]. Copyright 2020, American Chemical Society. MAS: Magic angle spinning; NMR: nuclear magnetic resonance; DNP: dynamic nuclear polarization; CPMAS: cross-polarization magic angle spinning; DFS: double-frequency sweep.

experiments at a short contact time (50 µs, Figure 8D). With the increase of contact time (3 ms), the weak resonances of disordered/distorted OTi₃ sites could be observed as well, suggesting that these oxygen species were in close spatial proximity to protons.

The long-standing obstacle of acquiring well-resolved ¹⁷O and/or ^{47/49}Ti NMR spectra of TiO₂ photocatalysts at natural abundance has been overcome with the implementation of DNP techniques. To measure the surface O and Ti structures, Nagashima *et al.* developed a novel pulse sequence of refocused insensitive nuclei enhanced by polarization transfer (RINEPT)-SR4²₁ (tt)-QCPMG [Figure 9A] capable of probing the local structure of half-integer spin quadrupolar nuclei^[131]. Compared to CP, this novel method on the basis of the refocused insensitive nuclei enhanced by polarization transfer (RINEPT) and does not result in distorted quadrupolar line shapes. Accordingly, this technique has been used to probe the atomic-level structure of MoO₃-supported TiO₂ (MoO₃/TiO₂) photocatalyst.

The ${}^{1}\text{H} \rightarrow {}^{47/49}\text{Ti}$ DNP-enhanced RINEPT-SR4²₁ (tt)-QCPMG spectrum can observe selectively the signals of ${}^{47/49}\text{Ti}$ species nearby the MoO₃/TiO₂ surface. Four signals were detected in the ${}^{1}\text{H} \rightarrow {}^{47/49}\text{Ti}$ RINEPT-SR4²₁ (tt) spectrum: ${}^{47}\text{Ti}$ of anatase TiO₂, ${}^{49}\text{Ti}$ of another TiO₂, and ${}^{49}\text{Ti}$ surface signal

Figure 9. (A) Pulse sequence of RINEPT-SR4²₁ (tt)-QCPMG used to transfer the DNP-enhanced ¹H polarization to the half-integer quadrupolar nucleus, S; (B) ^{47/49}Ti QCPMG NMR spectra of unmodified MoO₃/TiO₂ enhanced by indirect DNP using ¹H \rightarrow ^{47/49}Ti RINEPT-SR4²₁ (tt) transfer and DFS scheme; (C) ⁹⁵Mo QCPMG spectra enhanced by indirect DNP using ¹H \rightarrow ⁹⁵Mo RINEPT-SR4²₁ (tt) transfer of MoO₃/TiO₂ and by DFS of MoO₃/TiO₂ and α -MoO₃. Reproduced with permission from⁽¹³¹⁾. Copyright 2020, American Chemical Society. RINEPT: Refocused insensitive nuclei enhanced by polarization transfer; QCPMG: quadrupolar Carr-Purcell Meiboom-Gill; DNP: dynamic nuclear polarization; NMR: nuclear magnetic resonance; DFS: double-frequency sweep.

[⁴⁹Ti(S)] [Figure 9B]. The surface ⁴⁹Ti nuclei should be bonded to OH or OMo groups on MoO₃/TiO₂^[131]. The same DNP-enhanced technique was used to detect the surface Mo species. In the ¹H \rightarrow ⁹⁵Mo RINEPT-SR4²₁ (tt) spectrum [Figure 9C], two kinds of Mo species, MoO₆ and MoO_x (x = 4, 5), were present on MoO₃/TiO₂. Comparing the double-frequency sweep (DFS)-QCPMG spectra of MoO₃/TiO₂ and α -MoO₃ [Figure 9], the ⁹⁵Mo signal of MoO₃/TiO₂ is much more broadened, indicating that there are more disordered structures near the surface and some ⁹⁵Mo nuclei are too far away from the protons on MoO₃/TiO₂.

The ¹H \rightarrow ¹⁷O RINEPT-SR4²₁ (tt)-QCPMG experiments were performed at variable recoupling times to probe protonated and unprotonated oxygen species [Figure 10]^[131]. For a recoupling time (τ) of 1.9 ms, the RINEPT-SR4²₁ (tt) can transfer the polarization from protons to ¹⁷O nuclei. The indirect DNP technique based on RINEPT-SR4²₁ (tt) can transfer the polarization from protons to ¹⁷O nuclei with an estimate of the distance ca. 3.5 Å. Six ¹⁷O signals were present in MoO₃/TiO₂, corresponding to OTi₃ sites (553 ppm) in the bulk of anatase, OTi₂ sites (650 ppm) on the surface of TiO₂, OMo₂ (420 ppm), OMo₃ (285 ppm), OMo₄ (150 ppm) and OMo₅ (20 ppm) sites of the supported MoO₃. For the recoupling time (τ) of 0.1 ms, the ¹H \rightarrow ¹⁷O RINEPT-SR4²₁ (tt) experiment can selectively observe the protonated ¹⁷O sites at the surface, which are at a distance of about 1 Å from the protons. Four ¹⁷O signals were observable on the surface of MoO₃/TiO₂, including Ti–OH (130 ppm) of TiO₂, HOMo (-45 ppm), HOMo₂ (-266 ppm), and HOMo₃ (-390 ppm) of the supported MoO₃. Such detailed information on the various oxygen and titanium structures is expected

Figure 10. DNP-enhanced ${}^{1}H \rightarrow {}^{17}O$ RINEPT-SR4²₁ (tt)-QCPMG spectra of unmodified MoO₃/TiO₂ with τ = (A) 1.9 and (B) 0.1 ms. Reproduced with permission from^[131]. Copyright 2020, American Chemical Society. DNP: Dynamic nuclear polarization; RINEPT: refocused insensitive nuclei enhanced by polarization transfer; QCPMG: quadrupolar Carr-Purcell Meiboom-Gill.

to propose structure models of the anatase surface, which would facilitate the understanding of the structure-activity relationship.

The water adsorption and dissociation on the surface of metal oxide is a subject of immense importance in various fields such as photocatalysis, energy science, and material science^[2,132-138]. This is because water plays a critical role in various chemical processes that occur on the surface of these materials^[42,139-143]. A detailed understanding of the adsorption and dissociation of interfacial H₂O on these surfaces can help researchers develop more efficient and effective catalytic systems and materials for energy storage and conversion. It has been confirmed that a water molecule could react with the oxygen vacancy or rupture over the low coordination surface Ti sites of TiO₂, and form hydroxyls^[141,144-147]. However, water adsorption and dissociation on nondefect titanium sites have been disputed for decades^[82,148-152]. It is difficult to distinguish the Ti–OH groups formed by H₂O dissociation on nondefect TiO₂ surface from either the Ti–OH groups generated by H₂O reaction with defect sites or the original Ti–OH groups present on TiO₂. The DNP-SENS technique would provide the possibilities for exploring the detailed mechanism of water adsorption and dissociation on metal oxide.

SURFACE ELECTRONIC STRUCTURE AND PROPERTIES STUDIED BY PROBE-ASSISTED NMR TECHNIQUES

Surface structural features (including oxygen vacancies, cations, anions, and hydroxyl groups) play crucial roles in the development of efficient catalysts, especially metal oxides, and have been widely investigated^[17,153-164]. The differences in these surface features result in the nano-sized particles with different physical/chemical properties. Taking anatase TiO₂ nanocrystallite as an example, each facet [including (101) and (001) facet] possesses distinctive chemical properties due to the differences in both the content and

electronic structure of the surface species from facet to facet. Probe molecules, including ¹³C-carbon monoxide, ¹⁵N-pyridine, and ³¹P-trimethylphosphine (TMP), can be adsorbed onto catalysts, and their different NMR chemical shift values can reflect the various microenvironments of catalyst surfaces. Thus, the chemical probe-assisted NMR has been used to characterize the electronic structure in catalyst structures. Among them, TMP is a sensitive and reliable chemical probe to clarify qualitative and quantitative information on the adsorbed sites of the various catalysts^[165-168]. In general, the ³¹P chemical shift of -2~-5 ppm is ascribed to the TMP interacting with surface H⁺ (Brönsted acid, BA site), while the ³¹P chemical shift of -20~-58 ppm corresponds to the TMP interacting with surface exposed metal sites (i.e., Lewis acid, LA site), and a linear correlation between the ³¹P chemical shift and the LA strength (or the binding energy) was found^[169,170].

For TiO, nanoparticles, TMP, as the nucleophilic probe molecule, can strongly interact with the unsaturated coordinated Ti sites on the surface (that is, the surface TMP-Ti complex). Based on the ³¹P chemical shift of the TMP-Ti complexes, surface Ti sites on various facets with different strengths of LA, surface energies, and spatial structure can be identified. Recently, Peng et al. prepared high-quality anatase TiO₂ nanocrystals with different exposed facets using hydrothermal synthesis with variable hydrogen fluoride (HF, 0-6 mL), labeled as TiO, powder with 90% (101) facet, (101)-dominated TiO, with 80% (101) facet, and (001)dominated TiO, with 75% (001) facet [Figure 11A-C]^[162,164]. Probe-assisted ³¹P solid-state NMR spectroscopy was employed to study the surface features and provided extraordinary sensitivity to their chemical states [Figure 11D-F]. There was almost no TMP-H⁺ complex at -2~-5 ppm present on the TiO₂ powder but the TMP-LA complex had a main signal at -36 ppm and a small shoulder at -29 ppm. According to a previous report^[171], the major peak and the shoulder with the integrated area ratios of 89.8% and 10.2% were attributed to the interaction between TMP and surface five-coordinate Ti sites (Ti_{sC}) on (101) and (001) facets, respectively, which is consistent with the density functional theory (DFT) calculation [Figure 11G and H]. When the TMP interacts with the Ti_{5C} sites on the reconstructed (1 × 4) (001) facet [(001)_{RC}], the chemical shift of ³¹P NMR should be 50 ppm [Figure 11I]. Thus, the TMP-assisted NMR experiment can differentiate between facets of decreasing energy through their chemical shift values: $(001) > (101) > (001)_{RC}$ [Figure 11G-I]. Noteworthily, F ions are retained on the (101) and (001) facets when the TiO₂ samples were prepared with HF. Owing to the electronic withdrawing effect of surface F ions exerted on Ti_{5C} on these two facets, around 5-7 ppm downshift in chemical shift of the (101) and (001)-dominated TiO, retained F ions from the corresponding facets of -36 ppm (101) and -29 ppm (001) in the powder sample to -31 and -22.5 ppm, respectively. The NMR signal of -42.5 ppm was ascribed to the formation of F-containing surface oxygen vacancies on unstable (001) facets. Additionally, the significant increase of the Brønsted acid signal (-2~-3 ppm) was rationalized by the interaction of protons with the fluorine (F). The surface F on the (001) and (101) facets significantly enhanced the LA strength of Ti_{5C} sites by reflecting a downshift of ³¹P chemical shift. On the other hand, the post calcination of the prepared TiO, led to partially replacing F with OH, rendering an upshift of $^{\rm 31}{\rm P}$ chemical shift, suggesting the LA strength of ${\rm Ti}_{\rm 5C}$ decreased. The TiO_ surfaces tend to adsorb various surface impurity groups (including F, OH, and SO₄) to relax surface energy, and they have a substantial influence on LA strength of Ti_{sC} sites on TiO₂ surfaces, which is closely related to photocatalytic activity.

It has been shown that the surface features play a crucial role in photocatalytic H₂ evolution^[160]. According to the TMP-assisted solid-state NMR spectroscopy, it was found that the electron density of surface Ti_{sc} sites strongly decreased near the F ions, forming a dipole electric field ($F^{\delta} \leftarrow Ti^{\delta+}$). The photogenerated holes and electrons can be efficiently separated under the action of the F-induced surface dipole electric field, which greatly prolongs the lifetime of the photogenerated carriers and, consequently, enhances photocatalytic activities. This point was further validated using a series of surface functional groups (–O–, F,

Figure 11. HRTEM images of as-prepared TiO_2 with (A) 90% and (B) 80% (101) facet, and (C) 75% (001) facet, and (D-F) their corresponding ³¹P MAS NMR spectra of TMP-adsorbed TiO_2 . Theoretical models and calculated adsorption energy (E_{ad}) between TMP and Ti_{5C} sites on various TiO_2 facets, including (G) (001) facet, (H) (101) facet, and (I) the reconstructed (1 × 4) (001) facet (Ti: light grey; O: red; P: orange; C: grey; H: white). Reproduced with permission from^[164]. Copyright 2017, Springer Nature. HRTEM: High-resolution transmission electron microscopy; MAS: magic angle spinning; NMR: nuclear magnetic resonance; TMP: trimethylphosphine.

OH, and SO₄), which were systematically investigated by TMP-assisted ³¹P NMR spectroscopy and DFT calculations^[162,164]. The NMR spectra are sensitive to variations in the surface electronic properties for the series of TiO₂ samples [Figure 12A-C], and accordingly, a rational theoretical model is proposed. The highly sensitive ³¹P chemical shift values correlate linearly and positively with the electron-withdrawing capacity of the surface functional groups to the Ti_{5C} sites (OH < $-O- < SO_4 < F$), indicating that these functional groups can provide fine-tuning of LA and BA sites on TiO₂ surface [Figure 12D and E]. Furthermore, the adsorption energies on surfaces modified by these functional groups (OH < $-O- < SO_4 < F$) show a linear relationship with ³¹P chemical shift in the solid-state NMR spectra and the activity of photocatalytic H₂ evolution^[162]. Moreover, the transfer process of photogenerated electrons is more efficient if the reactants are pre-adsorbed on the TiO₂ surface. Thus, the TMP-assisted ³¹P NMR spectroscopy can sensitively probe surface electronic structure and properties, thus facilitating the design and development of efficient photocatalysts.

Figure 12. Summary of the electronic effect (chemical shift) imposed by different adsorbates during sequential treatments/modifications on (A) TiO₂ PD, (B) F-capped (101) facet [F-(101)], and (C) F-capped (001) facet [F-(001)]; (D) Illustration of interaction between TMP and surface features on TiO₂ facet with various treatments/modifications; (E) The summary of ³¹P chemical shift of TMP-adsorbed Ti_{SC} on (001)/(101) facets with different treatments and modification. Reproduced with permission from^[164]. Copyright 2017, Springer Nature. PD: powder; TMP: trimethylphosphine.

HETEROATOM ACTIVE SITES AND THEIR FUNCTION IN PHOTOCATALYSTS

The heteroatom (ions) doping should be one of the most promising methods to narrow the band gap and extend UV-light adsorption to the vis-light region. However, metallic doping (such as Al, V, and Ag) tends to be thermally unstable and inevitably introduces the recombination centers of photogenerated carriers^[172-177]. On the other hand, the non-metallic doping (such as C, B, N, *etc.*) can introduce impurity bands located at 0.8-0.9 eV (i.e., below the conduction band bottom) due to the formation of localized oxygen vacancies^[24,177-179], which results in a low electron mobility in anatase TiO₂. As such, although both metallic and non-metallic implantations can achieve vis-light absorption, they do not warrant enhanced photocatalytic activity of the doped TiO₂ photocatalysts. An in-depth understanding of heteroatoms (ions) sites and their mechanism is the prerequisite to establishing structure-activity relationship, which can promote the rational design of more efficient TiO₂ photocatalysts.

¹³C-carbon

Carbon-doping of TiO_2 can efficiently enhance photocatalytic H₂ production, CO₂ reduction, and degradation of dyes and some small organic molecules under visible irradiation^[180-185]. C-doped TiO₂ can be prepared by a simple sol-gel method using various carbon sources, including glucose, sucrose, and the titanium alkoxide precursor itself^[186-191]. It has been confirmed that the structure and distribution of carbon species are closely correlated with the photocatalytic activity of C-doped TiO₂.

Rockafellow *et al.* achieved ¹³C enrichment of carbon species in C-doped TiO₂ with ¹³C-labeled glucose^[192]. According to the one-dimensional (1D) ¹³C MAS NMR spectra with spectral editing and 2D ¹³C–¹³C correlation NMR spectrum, the detailed six-carbon fragments were present in C-doped TiO₂ before annealing (¹³C₆-TiO₂-0, Figure 13A and B). After annealing, the aromatic species were the main component

Figure 13. (A) ¹³C NMR spectra of ¹³C₆-TiO₂-0. The spectrum of glucose for reference. Spectra of ¹³C₆-TiO₂-0 with spectral editing; (B) 2D ¹³C-¹³C correlation spectrum of ¹³C₆-TiO₂-0. Inserts: two structural fragments consistent with the observed cross peaks; (C) ¹³C NMR spectra of ¹³C₆-TiO₂-5W: quantitative (DP) spectrum of all C and corresponding spectrum of nonprotonated C, J-modulated dephasing spectra, and selection of sp³-hybridized C by a five-pulse CSA filter. Reproduced with permission from⁽¹⁹²⁾. Copyright 2009, American Chemical Society. NMR: Nuclear magnetic resonance; 2D: two-dimensional; DP: direct polarization; CSA: chemical shift anisotropy.

of carbon species in the hybrid TiO_2 materials. Interestingly, when a washing step is added between the initial drying and annealing (${}^{13}C_6$ - TiO_2 -5W), the major carbon species are transformed into an orthocarbonate structure, with C substituting Ti sites inside the TiO_2 [Figure 13C]. However, the reason for this change was still ambiguous. The authors found that the presence or absence of aromatic-carbon species on the TiO_2 surface was unrelated to the rate of photocatalytic degradation of quinoline, but had a significant effect on the product distribution. Instead, the reason for the high reactivity is presumed to be the formation of orthocarbonate centers.

We also reported a study of a minute quantity of carbon species doping on TiO_2 by using the titanium alkoxide precursor itself^[190]. According to the ¹³C MAS NMR experiments, the detailed structural changes of surface carbon species have been clarified [Figure 14]. After the C doping, four types of carbon species were observed, including carboxylate (182.9 ppm), graphite-like C (129 ppm), aromatics C (128.3 ppm), alkyl C (7.6-29.8 ppm). After washing the C-doped TiO₂ with HCl solution, the graphite-like C species should be the main carbon-containing component in the photocatalyst. It was found that graphite-like C species should be the active site to promote the separation of photogenerated carriers, resulting in high photocatalytic efficiency. In contrast, surface alkoxy and carboxylate C species would poison severely the C-doped TiO₂ was proposed [Figure 14]. Most recently, we loaded graphene-like carbon nitride (g-C₃N₄) on TiO₂. According to solid-state NMR and XPS techniques, a strong coupling (Ti)₂–N–C bond is formed at the g-C₃N₄/TiO₂ interface, which efficiently facilitates the transfer of photogenerated carriers at the hybrid interface and efficient photocatalytic activity^[193].

¹⁵N-nitrogen

Nitrogen doping of TiO_2 can efficiently promote vis-light adsorption^[24,194-199]. Reyes-Garcia *et al.* reported the detailed structure of nitrogen species in the N-doped TiO_2 prepared from different dopant precursors and

Figure 14. ¹³C MAS NMR spectra of various C-doped TiO₂ samples (Right). Proposed hole and electron transfer mechanism in the C-doped TiO₂ photocatalyst (Left). Reproduced with permission from^[190]. Copyright 2018, American Chemical Society. MAS: Magic angle spinning; NMR: nuclear magnetic resonance.

methods through ¹⁵N solid-state NMR analysis^[200]. As shown in Figure 15, three types of amino species (at -349.6, -355.1, and -369.5 ppm) were present in the ¹⁵N-doped TiO₂ prepared by sol-gel methods and from ¹⁵NH₄Cl as the dopant precursors. Two types of amino species (at -341.8 and -353 ppm) are also present in the ¹⁵N-doped TiO₂ prepared by sol-gel methods and from ¹⁵N-Urea as the dopant precursors. After calcination in air at 400, 500, or 550 °C, most of the amino-type N species were oxidized into nitrate species at ca. -6 ppm. The TiO₂ powders (P25) and monolayers were also nitrided and subjected to ¹⁵N solid-state NMR analysis to determine the presence of nitridic bonds in these materials. However, besides the nitrate species, only the imido-type species (-150~-200 ppm) was present in the direct nitridation of TiO₂ [Figure 15B]. It was confirmed by the solid-state NMR results that the nitrogen atoms weave into the interstitial sites of N-doped TiO₂ in a highly oxidized state.

¹¹B-boron

The boron-doping can not only narrow the band gap of TiO₂ effectively to extend the absorption band to the vis-light region but also facilitate the separation of photogenerated carriers to promote photocatalytic activities^[23,201-205]. Thus, the categories and structure of boron species have been extensively studied to gain their correlations with the photocatalytic properties. The conclusions of the aforementioned research were mostly obtained by XPS, which, however, remain controversial. For example, the XPS peaks at 190.5-191.8 eV were assigned to the B sites substituting the oxygen (O) sites of TiO₂^[203,206-208], while the similar signals at 191.0-192.0 eV were ascribed to the B sites weaving into the interstitial sites of the TiO, lattice^[201,202,209]. ¹¹B solid-state NMR spectroscopy is a powerful technique for providing detailed structural information on boron species in B-containing materials^[23,201,202,210-213]. However, limited information was obtained in B-doped TiO, by using conventional ¹¹B Solid-State NMR techniques in the early days due to severe overlapping of the quadrupolar (I = 3/2) ¹¹B signals. The 2D multiple-quantum (MQ) MAS NMR has been used to remove the second-order quadrupolar interactions in the indirect dimension of solids containing quadrupolar nuclei^[214-216]. However, for the tri-coordinated B species with large quadrupole coupling constants, the MQ technique was still unable to characterize the boron structure in B-doped TiO₂ photocatalysts with high resolution due to the low conversion efficiency from MQ to single-quantum coherences.

Figure 15. (A) ¹⁵N MAS NMR spectra of ¹⁵N-doped TiO₂ prepared by sol-gel methods; (B) ¹⁵N MAS NMR spectra of ¹⁵N-doped TiO₂ monolayer and powders by direct nitridation. Reproduced with permission from^[200]. Copyright 2007, American Chemical Society. MAS: Magic angle spinning; NMR: nuclear magnetic resonance.

To gain more insights into the structure-activity relationship in photocatalytic reactions, we incorporated FAM RF pulse trains into the MQ MAS sequence, namely the so-called 3QZ-FAM MAS NMR technique, to improve the sensitivity of the "B NMR spectroscopy and investigate the detailed chemical environments of boron in B-doped and (B, Ag)-codoped TiO₂ photocatalysts [Figure 16A and B]^[202]. Up to five B sites were distinguished, corresponding to surface sites (B_5), small B polymer (B_2 and B_3), interstitial T^{*} (tricoordinated, B_{1}), and Q^{*} (pseudo-tetrahedral coordinated, B_{1}) sites. Noteworthily, substituted B sites were absent in the materials. A 2D "B-"B double-quantum (DQ) MAS NMR technique was first used to reveal the spatial distributions of the B sites in the B-doped and (B, Ag)-codoped TiO, photocatalysts [Figure 16C and D]. Accordingly, we found that only the tri-coordinated interstitial boron (T^{*}) species was near the substitutional Ag species to form [T-O-Ag] structural units. Combined with the evolution of the chemical states of the B and Ag dopants revealed by in-situ XPS experiments, a unique intermediate structure was formed by the [T⁻O–Ag] units trapping the photogenerated electron in the (B, Ag)-codoped TiO, during the irradiation as shown in Figure 17. To date, the developed 2D ¹¹B-¹¹B DQ Correlation NMR technique has been used to detect the spatial correlation of the B species in various B-containing materials, including boron nitride (BN), activated carbon impregnated with boric acid (B/OAC), boron-substituted MCM-22 zeolite (B-MWW) and silica-supported boron oxide (B/SiO₂)^[39,212,213,217].

²⁷Al-aluminum

Although aluminum (Al)-doping cannot promote vis-light absorption, it would affect the crystal growth, cation diffusivity, and conductivity of $\text{TiO}_2^{[176,218-220]}$. For photocatalysis, several contradictory results occurred due to the ambiguity of the structure-activity relationship of the Al sites in the Al-doped TiO_2 photocatalysts. Some reports found that Al doping could promote the separation of photogenerated carriers and thus improve photocatalytic activity^[221-223]. On the other hand, others proposed that Al doping might

Figure 16. 2D ¹¹B 3QZ-FAM MAS NMR spectra (sheared) of (A) 10% B-doped and (B) (B, Ag)-codoped TiO₂ samples. 2D ¹¹B DQ MAS NMR spectra of (C) 10% B-doped and (D) (B, Ag)-codoped TiO₂ samples. Possible Boron Species in B-doped and (B, Ag)-codoped TiO₂ were shown at the bottom. Reproduced with permission from^[202]. Copyright 2013, American Chemical Society. 2D: Two-dimensional; FAM: fast amplitude-modulated; MAS: magic angle spinning; NMR: nuclear magnetic resonance; DQ: double-quantum.

Figure 17. Electron/hole transfer mechanism for the (B, Ag)-codoped TiO_2 photocatalyst under irradiation from a solar-light source. Reproduced with permission from^[202]. Copyright 2013, American Chemical Society.

introduce recombination centers of photogenerated carriers, which could have a negative impact on

photocatalytic activity^[220,224]. Thus, it is essential to identify the active Al species in the Al-doped TiO₂.

To unravel the origins of the exceptional activity of Al-doped TiO₂ with dominant (001) facets [Al-TiO_{2-x}F_x (001)], we employed advanced solid-state NMR methods to elucidate the fine structural details of the dopants, specifically F and Al species [Figure 18]^[225]. Notably, we first applied the 2D ¹⁹F-²⁷Al dipolar heteronuclear multiple-quantum coherence (D-HMQC) NMR technique to probe F–Al proximity, enabling definitive confirmation of the F–Ti₂Al structural motif within the Al-TiO_{2-x}F_x(001) samples. According to the quantitative ¹⁹F NMR measurements, the content of the F–Ti₂Al structure rises with greater Al doping, while that of other structures (including Ti–F–Ti, F–Ti₃, and Ti–F–Al) hardly increases. Combined with the spin-trapping electron spin resonance (ESR) results, it was found that the formation of the F–Ti₂Al structure promotes the separation and transfer of photogenerated carriers in the Al-TiO_{2-x}F_x(001) photocatalyst and is, therefore, considered to be the active site for photocatalytic reactions. However, with the further increase of Al doping, the oxygen vacancies occur, which should be the recombination centers of photogenerated carriers as reported in the previous work^[176,220].

CONCLUSION AND OUTLOOK

Solid-state NMR spectroscopy can provide detailed information about the nature of the active centers and their structure-activity relationships in the TiO, photocatalysts. The local structure and coordination of different sites or species in the TiO, framework or on the TiO, surface can be identified by NMR chemical shift, owing to the high sensitivity of the NMR technique to the surrounding electronic environment. For example, bulk titanium and surface titanium can be distinguished by 47/49Ti chemical shifts, and bulk oxygen, surface oxygen sites, hydroxyl groups, and adsorbed H₂O with different coordination states can be identified by ¹⁷O chemical shifts. Surface electronic structure and properties, including the type, strength, and concentration of diverse adsorption sites, can be detected by probe-assisted NMR techniques. The correlation and connectivity of different sites or species in TiO₂ can be extracted from the specific internuclear interactions, including dipolar-dipolar and J-coupling interactions. Various advanced homonuclear/heteronuclear correlation NMR techniques based on dipole-dipole interaction or J-coupling have been developed to detect the dipolar-dipolar interactions for identifying internuclear proximities or chemical bonding, respectively^[226,227]. For example, the spatial proximity between different active sites on hetero-atom (such as C, B, Al, etc.)-modified TiO₂ can be probed by 2D homonuclear (¹³C–¹³C/¹¹B–¹¹B) and heteronuclear (19F-27Al) correlation NMR spectra, while the 2D 1H-11B/17O/47/49Ti/95Mo correlation NMR can identify the surface B/O/Ti/Mo site in the TiO₂ photocatalysts, which facilitate the solution of the complex surface structure.

Although remarkable progress has been achieved on the application and development of solid-state NMR methods, considerable challenges remain in TiO_2 photocatalysis for solid-state NMR characterization. It is difficult to detect dilute heteroatom sites and low-content surface/interface species (such as surface O and Ti sites) at high resolution. The intrinsic low sensitivity of solid-state NMR limits its application for this aspect, especially for some infamous nuclei with low natural abundances and low- γ features. All these active centers (including surface active sites and heteroatom sites) are fundamentally important in TiO_2 photocatalysis. Moreover, the complexity of complex surface structures, heteroatom distributions, and various covalent and non-covalent interactions in the TiO_2 photocatalysts leaves a huge space for advanced solid-state NMR techniques.

Our understanding of the complex structure of TiO_2 photocatalysts remains limited by the capabilities of existing solid-state NMR hardware and methodologies. An in-depth understanding of their structure-function relationships is essential for the further development of these fields. The increasing availability of

Figure 18. (A) 1D ²⁷AI MAS NMR spectra of TiO_{2-x}F_x(001) and AI–TiO_{2-x}F_x(001) catalysts; (B) 2D ²⁷AI 3Q MAS NMR spectrum of the AI–TiO_{2-x}F_x(001) sample; (C) 1D ¹⁹F MAS NMR spectra of various of TiO_{2-x}F_x(001) and AI–TiO_{2-x}F_x(001) catalysts; (D) 2D ¹⁹F–²⁷AI D-HMQC spectrum of the AI–TiO_{2-x}F_x(001) catalyst. Reproduced with permission from^[225]. Copyright 2022, American Chemical Society. 1D: One-dimensional; MAS: magic angle spinning; NMR: nuclear magnetic resonance; 2D: two-dimensional; D-HMQC: dipolar heteronuclear multiple-quantum coherence.

ultra-high-field magnets and cryoprobes is improving solid-state NMR techniques to a higher level of detection sensitivity and resolution. Further development of sensitivity-enhanced 2D NMR techniques would enable the identification of the microstructure, distribution, and interaction of different active sites. Notably, the typical dopant elements used to modify TiO_2 photocatalysts, such as ⁵¹V, ⁶⁷Zn, ⁷¹Ga, ⁹³Nb, and ¹³⁹La, are characterized by low concentrations and substantial quadrupolar broadening of NMR spectral peaks. This significant line broadening results in an extremely low sensitivity of detection for these elements when using NMR as an analytical technique for studying doped TiO_2 photocatalysts. The utilization of hyperpolarization techniques such as DNP-NMR should be one of the most promising approaches to address such problems. The host-guest interactions typically occur in many important processes on TiO_2 , such as the adsorption of H_2O /reactants and photocatalysis. The interaction between the framework nuclei (host) and the confined species (guest) can be probed by using double-resonance or 2D correlation NMR techniques. For example, 2D 'H–'H, 'H–'¹³C, and 'H–'¹⁷O correlation experiments can be used to characterize the interactions between surface hydroxyl/oxygen and adsorbed H₂O/organic compounds, which offer molecular-level insights into the photocatalytic mechanism (such as photocatalytic H₂O splitting) on TiO₂. Furthermore, in-situ solid-state NMR techniques can be developed to track the time evolution of reaction

intermediates. Therefore, the rapid progress of the solid-state NMR techniques would gain insight into the structure-property relationships in TiO₂ photocatalysts.

DECLARATIONS

Authors' contributions

Prepared and revised the manuscript: Feng N Revised the manuscript: Feng N, Xu J, Deng F

Availability of data and materials

Not applicable.

Financial support and sponsorship

This work was supported by the National Natural Science Foundation of China (22372177, 22127801, 22225205, 22320102002, 22161132028), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0540000), Natural Science Foundation of Hubei Province (S22H120101), Hubei International Scientific and Technological Cooperation Program (2022EHB021), and International Collaborative Center for Sustainable Catalysis and Magnetic Resonance (SH2303).

Conflicts of interest

Xu J served as editorial member of *Chemical Synthesis*, and he is Guest Editor of the Special Issue: "Advanced Characterization Techniques and Applications for Catalytic Materials", while the other authors have declared that they have no conflicts of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Copyright

© The Author(s) 2024.

REFERENCES

- 1. Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing artificial photosynthesis with TiO₂ heterostructures and hybrids: emerging trends in a classical yet contemporary photocatalyst. *Adv Mater* 2024;36:e2305285. DOI PubMed
- 2. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37-8. DOI PubMed
- 3. Tang R, Zhou S, Zhang Z, Zheng R, Huang J. Engineering nanostructure-interface of photoanode materials toward photoelectrochemical water oxidation. *Adv Mater* 2021;33:e2005389. DOI PubMed
- 4. Warnan J, Reisner E. Synthetic organic design for solar fuel systems. *Angew Chem Int Ed Engl* 2020;59:17344-54. DOI PubMed PMC
- 5. Wang Z, Hisatomi T, Li R, et al. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. *Joule* 2021;5:344-59. DOI
- 6. Ismail AA, Bahnemann DW. Photochemical splitting of water for hydrogen production by photocatalysis: a review. *Sol Energy Mater Sol Cells* 2014;128:85-101. DOI
- Rawool SA, Yadav KK, Polshettiwar V. Defective TiO₂ for photocatalytic CO₂ conversion to fuels and chemicals. *Chem Sci* 2021;12:4267-99. DOI PubMed PMC
- 8. Morikawa T, Sato S, Sekizawa K, Suzuki TM, Arai T. Solar-driven CO₂ reduction using a semiconductor/molecule hybrid photosystem: from photocatalysts to a monolithic artificial leaf. *Acc Chem Res* 2022;55:933-43. DOI PubMed
- 9. Li Y, Lei Y, Li D, et al. Recent progress on photocatalytic CO₂ conversion reactions over plasmonic metal-based catalysts. *ACS Catal* 2023;13:10177-204. DOI
- 10. Lin Z, Jiang X, Xu W, et al. The effects of water, substrate, and intermediate adsorption on the photocatalytic decomposition of air

pollutants over nano-TiO₂ photocatalysts. Phys Chem Chem Phys 2024;26:662-78. DOI PubMed

- 11. Wu H, Li L, Wang S, et al. Recent advances of semiconductor photocatalysis for water pollutant treatment: mechanisms, materials and applications. *Phys Chem Chem Phys* 2023;25:25899-924. DOI PubMed
- Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO₂ surfaces: principles, mechanisms, and selected results. *Chem Rev* 1995;95:735-58. DOI
- 13. Chen LX, Rajh T, Jäger W, Nedeljkovic J, Thurnauer MC. X-ray absorption reveals surface structure of titanium dioxide nanoparticles. *J Synchrotron Radiat* 1999;6:445-7. DOI PubMed
- 14. Selloni A. Crystal growth: anatase shows its reactive side. Nat Mater 2008;7:613-5. DOI PubMed
- 15. Pan J, Liu G, Lu GQ, Cheng HM. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO₂ crystals. *Angew Chem Int Ed Engl* 2011;50:2133-7. DOI PubMed
- Yang HG, Sun CH, Qiao SZ, et al. Anatase TiO₂ single crystals with a large percentage of reactive facets. *Nature* 2008;453:638-41. DOI PubMed
- Feng N, Lin H, Song H, et al. Efficient and selective photocatalytic CH₄ conversion to CH₃OH with O₂ by controlling overoxidation on TiO₂. Nat Commun 2021;12:4652. DOI PubMed PMC
- Yu J, Zhao X, Zhao Q. Effect of film thickness on the grain size and photocatalytic activity of the sol-gel derived nanometer TiO₂ thin films. J Mater Sci Lett 2000;19:1015-7. DOI
- 19. Zhu J, Liao M, Zhao C, et al. A comprehensive review on semiconductor-based photocatalysts toward the degradation of persistent pesticides. *Nano Res* 2023;16:6402-43. DOI
- Chen F, Ma T, Zhang T, Zhang Y, Huang H. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv Mater 2021;33:e2005256. DOI PubMed
- Wang H, Liu W, He X, Zhang P, Zhang X, Xie Y. An excitonic perspective on low-dimensional semiconductors for photocatalysis. J Am Chem Soc 2020;142:14007-22. DOI PubMed
- 22. Liu N, Schneider C, Freitag D, et al. Black TiO₂ nanotubes: cocatalyst-free open-circuit hydrogen generation. *Nano Lett* 2014;14:3309-13. DOI PubMed
- Wang F, Jiang Y, Gautam A, Li Y, Amal R. Exploring the origin of enhanced activity and reaction pathway for photocatalytic H₂ production on Au/B-TiO₂ catalysts. ACS Catal 2014;4:1451-7. DOI
- 24. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. *Science* 2001;293:269-71. DOI PubMed
- 25. Chen S, Hu YH. Color TiO₂ materials as emerging catalysts for visible-NIR light photocatalysis, a review. Catal Rev 2023. DOI
- 26. Li X, Wu X, Liu S, Li Y, Fan J, Lv K. Effects of fluorine on photocatalysis. Chin J Catal 2020;41:1451-67. DOI
- Peiris S, de Silva HB, Ranasinghe KN, Bandara SV, Perera IR. Recent development and future prospects of TiO₂ photocatalysis. J Chin Chem Soc 2021;68:738-69. DOI
- Xiu Z, Guo M, Zhao T, et al. Recent advances in Ti³⁺ self-doped nanostructured TiO₂ visible light photocatalysts for environmental and energy applications. *Chem Eng J* 2020;382:123011. DOI
- 29. Medhi R, Marquez MD, Lee TR. Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications. *ACS Appl Nano Mater* 2020;3:6156-85. DOI
- Kovačič Ž, Likozar B, Huš M. Photocatalytic CO₂ reduction: a review of ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catal 2020;10:14984-5007. DOI
- Wu S, Lin Y, Hu YH. Strategies of tuning catalysts for efficient photodegradation of antibiotics in water environments: a review. J Mater Chem A 2021;9:2592-611. DOI
- Rahman MZ, Raziq F, Zhang H, Gascon J. Key strategies for enhancing H₂ production in transition metal oxide based photocatalysts. *Angew Chem Int Ed Engl* 2023;62:e202305385. DOI PubMed
- Chakhtouna H, Benzeid H, Zari N, Qaiss AEK, Bouhfid R. Recent progress on Ag/TiO₂ photocatalysts: photocatalytic and bactericidal behaviors. *Environ Sci Pollut Res Int* 2021;28:44638-66. DOI PubMed PMC
- Li X, Wei H, Song T, Lu H, Wang X. A review of the photocatalytic degradation of organic pollutants in water by modified TiO₂. Water Sci Technol 2023;88:1495-507. DOI PubMed
- Yao S, He J, Gao F, et al. Highly selective semiconductor photocatalysis for CO₂ reduction. J Mater Chem A 2023;11:12539-58. DOI
- Lee D, Kim M, Danish M, Jo W. State-of-the-art review on photocatalysis for efficient wastewater treatment: attractive approach in photocatalyst design and parameters affecting the photocatalytic degradation. *Catal Commun* 2023;183:106764. DOI
- Lin S, Huang H, Ma T, Zhang Y. Photocatalytic oxygen evolution from water splitting. Adv Sci 2020;8:2002458. DOI PubMed PMC
- Cao Y, Zhou P, Tu Y, et al. Modification of TiO₂ nanoparticles with organodiboron molecules inducing stable surface Ti³⁺ complex. *iScience* 2019;20:195-204. DOI PubMed PMC
- Jung D, Saleh LMA, Berkson ZJ, et al. A molecular cross-linking approach for hybrid metal oxides. *Nat Mater* 2018;17:341-8. DOI PubMed
- 40. Kowalska E, Yoshiiri K, Wei Z, et al. Hybrid photocatalysts composed of titania modified with plasmonic nanoparticles and ruthenium complexes for decomposition of organic compounds. *Appl Catal B Environ* 2015;178:133-43. DOI
- 41. Rengifo-herrera JA, Blanco M, Wist J, Florian P, Pizzio LR. TiO2 modified with polyoxotungstates should induce visible-light

absorption and high photocatalytic activity through the formation of surface complexes. *Appl Catal B Environ* 2016;189:99-109. DOI

- 42. Liu F, Feng N, Wang Q, et al. Transfer channel of photoinduced holes on a TiO₂ surface as revealed by solid-state nuclear magnetic resonance and electron spin resonance spectroscopy. *J Am Chem Soc* 2017;139:10020-8. DOI PubMed
- Jaeger CD, Bard AJ. Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems. J Phys Chem 1979;83:3146-52. DOI
- 44. Nosaka Y, Komori S, Yawata K, Hirakawa T, Nosaka AY. Photocatalytic 'OH radical formation in TiO₂ aqueous suspension studied by several detection methods. *Phys Chem Chem Phys* 2003;5:4731-5. DOI
- 45. Liu G, Yang HG, Wang X, et al. Visible light responsive nitrogen doped anatase TiO₂ sheets with dominant {001} facets derived from TiN. *J Am Chem Soc* 2009;131:12868-9. DOI PubMed
- Ishibashi K, Fujishima A, Watanabe T, Hashimoto K. Quantum yields of active oxidative species formed on TiO₂ photocatalyst. J Photoch Photobio A 2000;134:139-42. DOI
- Guan H, Lin J, Qiao B, et al. Catalytically active Rh sub-nanoclusters on TiO₂ for CO oxidation at cryogenic temperatures. *Angew* Chem Int Ed Engl 2016;55:2820-4. DOI PubMed
- Wu N, Wang J, Tafen de N, et al. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO₂ (101) nanobelts. J Am Chem Soc 2010;132:6679-85. DOI PubMed PMC
- Micic OI, Zhang Y, Cromack KR, Trifunac AD, Thurnauer MC. Trapped holes on titania colloids studied by electron paramagnetic resonance. J Phys Chem 1993;97:7277-83. DOI
- Yang L, Feng N, Wang Q, Chu Y, Xu J, Deng F. Surface water loading on titanium dioxide modulates photocatalytic water splitting. *Cell Rep Phys Sci* 2020;1:100013. DOI
- Yuan W, Zhu B, Fang K, et al. In situ manipulation of the active Au-TiO₂ interface with atomic precision during CO oxidation. Science 2021;371:517-21. DOI PubMed
- Song S, Song H, Li L, et al. A selective Au-ZnO/TiO₂ hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. *Nat Catal* 2021;4:1032-42. DOI
- Monai M, Jenkinson K, Melcherts AEM, et al. Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis. Science 2023;380:644-51. DOI PubMed
- Xu M, Qin X, Xu Y, et al. Boosting CO hydrogenation towards C₂₊ hydrocarbons over interfacial TiO_{2-x}/Ni catalysts. *Nat Commun* 2022;13:6720. DOI PubMed PMC
- 55. Wei J, Qin SN, Liu JL, et al. In situ raman monitoring and manipulating of interfacial hydrogen spillover by precise fabrication of Au/TiO₂/Pt sandwich structures. *Angew Chem Int Ed Engl* 2020;59:10343-7. DOI PubMed
- 56. Zhu K, Zhu Q, Jiang M, et al. Modulating Ti t_{2g} orbital occupancy in a Cu/TiO₂ composite for selective photocatalytic CO₂ reduction to CO. *Angew Chem Int Ed Engl* 2022;61:e202207600. DOI PubMed
- 57. Balajka J, Hines MA, DeBenedetti WJI, et al. High-affinity adsorption leads to molecularly ordered interfaces on TiO₂ in air and solution. *Science* 2018;361:786-9. DOI PubMed
- Guo Y, Huang Y, Zeng B, et al. Photo-thermo semi-hydrogenation of acetylene on Pd₁/TiO₂ single-atom catalyst. *Nat Commun* 2022;13:2648. DOI PubMed PMC
- Chen Y, Soler L, Cazorla C, et al. Facet-engineered TiO₂ drives photocatalytic activity and stability of supported noble metal clusters during H₂ evolution. *Nat Commun* 2023;14:6165. DOI PubMed PMC
- 60. Len T, Afanasiev P, Yan Y, Aouine M, Morfin F, Piccolo L. Operando X-ray absorption spectroscopic study of ultradispersed Mo/TiO₂ CO₂-hydrogenation catalysts: why does rutile promote methanol synthesis? ACS Catal 2023;13:13982-93. DOI
- Berger T, Sterrer M, Diwald O, et al. Light-induced charge separation in anatase TiO₂ particles. *J Phys Chem B* 2005;109:6061-8. DOI PubMed
- 62. Nakamura R, Imanishi A, Murakoshi K, Nakato Y. In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO₂ films in contact with aqueous solutions. *J Am Chem Soc* 2003;125:7443-50. DOI PubMed
- 63. Copéret C, Liao WC, Gordon CP, Ong TC. Active sites in supported single-site catalysts: an NMR perspective. *J Am Chem Soc* 2017;139:10588-96. DOI PubMed
- 64. Xu J, Wang Q, Deng F. Metal active sites and their catalytic functions in zeolites: insights from solid-state NMR spectroscopy. Acc Chem Res 2019;52:2179-89. DOI PubMed
- 65. Ashbrook SE, Sneddon S. New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei. *J Am Chem Soc* 2014;136:15440-56. DOI PubMed
- 66. Kwak JH, Hu J, Mei D, et al. Coordinatively unsaturated Al³⁺ centers as binding sites for active catalyst phases of platinum on γ-Al₂O₃. Science 2009;325:1670-3. DOI PubMed
- Wang Q, Li W, Hung I, et al. Mapping the oxygen structure of γ-Al₂O₃ by high-field solid-state NMR spectroscopy. *Nat Commun* 2020;11:3620. DOI PubMed PMC
- Peng L, Liu Y, Kim N, Readman JE, Grey CP. Detection of Brønsted acid sites in zeolite HY with high-field ¹⁷O-MAS-NMR techniques. *Nat Mater* 2005;4:216-9. DOI PubMed
- Ashbrook SE, Smith ME. Solid state ¹⁷O NMR-an introduction to the background principles and applications to inorganic materials. Chem Soc Rev 2006;35:718-35. DOI PubMed
- 70. Wang M, Wu XP, Zheng S, et al. Identification of different oxygen species in oxide nanostructures with ¹⁷O solid-state NMR

spectroscopy. Sci Adv 2015;1:e1400133. DOI PubMed PMC

- 71. Beck TJ, Klust A, Batzill M, Diebold U, Di Valentin C, Selloni A. Surface structure of TiO₂(011)-(2×1). *Phys Rev Lett* 2004;93:036104. DOI PubMed
- 72. Di Valentin C, Tilocca A, Selloni A, et al. Adsorption of water on reconstructed rutile TiO₂(011)-(2 × 1): Ti=O double bonds and surface reactivity. *J Am Chem Soc* 2005;127:9895-903. DOI PubMed
- He Y, Tilocca A, Dulub O, Selloni A, Diebold U. Local ordering and electronic signatures of submonolayer water on anatase TiO₂ (101). *Nat Mater* 2009;8:585-9. DOI PubMed
- Yuan W, Zhu B, Li XY, et al. Visualizing H₂O molecules reacting at TiO₂ active sites with transmission electron microscopy. *Science* 2020;367:428-30. DOI PubMed
- Aronson BJ, Blanford CF, Stein A. Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates: synthesis and structural characterization. *Chem Mater* 1997;9:2842-51. DOI
- Shukri G, Kasai H. Density functional theory study of ethylene adsorption on clean anatase TiO₂ (001) surface. Surf Sci 2014;619:59-66. DOI
- 77. Sanz JF, Hernández NC, Márquez A. A first principles study of Pd deposition on the TiO₂ (110) surface. *TheorChem Acc* 2000;104:317-22. DOI
- Zhou G, Jiang L, Dong Y, Li R, He D. Engineering the exposed facets and open-coordinated sites of brookite TiO₂ to boost the loaded Ru nanoparticle efficiency in benzene selective hydrogenation. *Appl Surf Sci* 2019;486:187-97. DOI
- 79. Vijay A, Mills G, Metiu H. Adsorption of gold on stoichiometric and reduced rutile TiO₂(110) surfaces. *J Chem Phys* 2003;118:6536-51. DOI
- 80. Posternak M, Baldereschi A, Delley B. Dissociation of water on anatase TiO₂ nanoparticles: the role of undercoordinated Ti atoms at edges. *J Phys Chem C* 2009;113:15862-7. DOI
- Dette C, Pérez-osorio MA, Mangel S, Giustino F, Jung SJ, Kern K. Atomic structure of water monolayer on anatase TiO₂ (101) surface. J Phys Chem C 2018;122:11954-60. DOI
- Dette C, Pérez-osorio MA, Mangel S, Giustino F, Jung SJ, Kern K. Single-molecule vibrational spectroscopy of H₂O on anatase TiO₂ (101). J Phys Chem C 2017;121:1182-7. DOI
- Gopal NO, Lo HH, Sheu SC, Ke SC. A potential site for trapping photogenerated holes on rutile TiO₂ surface as revealed by EPR spectroscopy: an avenue for enhancing photocatalytic activity. *J Am Chem Soc* 2010;132:10982-3. DOI PubMed
- Nolan M, Iwaszuk A, Gray KA. Localization of photoexcited electrons and holes on low coordinated Ti and O sites in free and supported TiO, nanoclusters. J Phys Chem C 2014;118:27890-900. DOI
- 85. Xiong F, Yu YY, Wu Z, et al. Methanol conversion into dimethyl ether on the anatase TiO₂(001) surface. *Angew Chem Int Ed Engl* 2016;55:623-8. DOI PubMed
- Dmitrieva LV, Vorotilova LS, Podkorytov IS, Shelyapina ME. A comparison of NMR spectral parameters of ⁴⁷Ti and ⁴⁹Ti nuclei in rutile and anatase. *Phys Solid State* 1999;41:1097-9. DOI
- Ganapathy S, Gore KU, Kumar R, Amoureux JP. Multinuclear (²⁷Al, ²⁹Si, ^{47,49}Ti) solid-state NMR of titanium substituted zeolite USY. *Solid State Nucl Magn Reson* 2003;24:184-95. DOI PubMed
- Yamada K, Saito M, Ohashi R, Nakai T, Deguchi K, Shimizu T. Solid-state ^{47/49}Ti nuclear magnetic resonance of TiO₂. Chem Lett 2014;43:1520-1. DOI
- Quantities, units and symbols in physical chemistry. 2nd editon. 1993. Available from: https://old.iupac.org/publications/books/ gbook/green_book_2ed.pdf. [Last accessed on 5 Jul 2024].
- 90. Stone NJ. Table of nuclear electric quadrupole moments. Atom Data Nucl Data 2016;111-2:1-28. DOI
- 91. Pyykkö P. Year-2008 nuclear quadrupole moments. Mol Phys 2008;106:1965-74. DOI
- 92. Bastow TJ, Whitfield HJ. ^{47,49}Ti NMR: evolution of crystalline TiO₂ from the gel state. *Chem Mater* 1999;11:3518-20. DOI
- **93**. Gervais C, Smith ME, Pottier A, Jolivet J, Babonneau F. Solid-State ^{47,49}Ti NMR determination of the phase distribution of titania nanoparticles. *Chem Mater* 2001;13:462-7. **DOI**
- Bräuniger T, Madhu PK, Pampel A, Reichert D. Application of fast amplitude-modulated pulse trains for signal enhancement in static and magic-angle-spinning ^{47,49}Ti-NMR spectra. *Solid State Nucl Magn Reson* 2004;26:114-20. DOI PubMed
- **95**. Larsen FH, Farnan I, Lipton AS. Separation of ⁴⁷Ti and ⁴⁹Ti solid-state NMR lineshapes by static QCPMG experiments at multiple fields. *J Magn Reson* 2006;178:228-36. DOI PubMed
- 96. Epifani M, Comini E, Díaz R, Force C, Siciliano P, Faglia G. TiO₂ colloidal nanocrystals surface modification by V₂O₅ species: Investigation by ^{47,49}Ti MAS-NMR and H₂, CO and NO₂ sensing properties. *Appl Surf Sci* 2015;351:1169-73. DOI
- 97. Gerothanassis IP. Oxygen-17 NMR spectroscopy: basic principles and applications (part I). *Prog Nucl Magn Reson Spectrosc* 2010;56:95-197. DOI PubMed
- 98. Gerothanassis IP. Oxygen-17 NMR spectroscopy: basic principles and applications. Part II. *Prog Nucl Magn Reson Spectrosc* 2010;57:1-110. DOI PubMed
- Bastow TJ, Doran G, Whitfield HJ. Electron diffraction and ^{47,49}Ti and ¹⁷O NMR studies of natural and synthetic brookite. *Chem Mater* 2000;12:436-9. DOI
- Lafond V, Gervais C, Maquet J, Prochnow D, Babonneau F, Mutin PH. ¹⁷O MAS NMR study of the bonding mode of phosphonate coupling molecules in a titanium oxo-alkoxo-phosphonate and in titania-based hybrid materials. *Chem Mater* 2003;15:4098-103. DOI

- Bastow TJ, Moodie AF, Smith ME, Whitfield HJ. Characterisation of titania gels by ¹⁷O nuclear magnetic resonance and electron diffraction. *J Mater Chem* 1993;3:697. DOI
- 102. Rao Y, Kemp TF, Trudeau M, Smith ME, Antonelli DM. ¹⁷O and ¹⁵N solid state NMR studies on ligand-assisted templating and oxygen coordination in the walls of mesoporous Nb, Ta and Ti oxides. *J Am Chem Soc* 2008;130:15726-31. DOI PubMed
- Métro TX, Gervais C, Martinez A, Bonhomme C, Laurencin D. Unleashing the potential of ¹⁷O NMR spectroscopy using mechanochemistry. *Angew Chem Int Ed Engl* 2017;56:6803-7. DOI PubMed
- 104. Sun X, Dyballa M, Yan J, Li L, Guan N, Hunger M. Solid-state NMR investigation of the ^{16/17}O isotope exchange of oxygen species in pure-anatase and mixed-phase TiO₂. Chem Phys Lett 2014;594:34-40. DOI
- Li Y, Wu XP, Jiang N, et al. Distinguishing faceted oxide nanocrystals with ¹⁷O solid-state NMR spectroscopy. *Nat Commun* 2017;8:581. DOI PubMed PMC
- 106. Li Y, Wu XP, Liu C, et al. NMR and EPR studies of partially reduced TiO₂. Acta Phys Chim Sin 2020;36:1905021. DOI
- 107. Peng L, Huo H, Liu Y, Grey CP. ¹⁷O magic angle spinning NMR studies of Brønsted acid sites in zeolites HY and HZSM-5. J Am Chem Soc 2007;129:335-46. DOI PubMed
- Merle N, Trébosc J, Baudouin A, et al. ¹⁷O NMR gives unprecedented insights into the structure of supported catalysts and their interaction with the silica carrier. *J Am Chem Soc* 2012;134:9263-75. DOI PubMed
- 109. Guo Q, Ma Z, Zhou C, Ren Z, Yang X. Single molecule photocatalysis on TiO₂ surfaces. *Chem Rev* 2019;119:11020-41. DOI PubMed
- Chen J, Hope MA, Lin Z, et al. Interactions of oxide surfaces with water revealed with solid-state NMR spectroscopy. J Am Chem Soc 2020;142:11173-82. DOI PubMed
- Ravera E, Luchinat C, Parigi G. Basic facts and perspectives of Overhauser DNP NMR. J Magn Reson 2016;264:78-87. DOI PubMed
- 112. Gurinov A, Sieland B, Kuzhelev A, et al. Mixed-valence compounds as polarizing agents for overhauser dynamic nuclear polarization in solids^{*}. *Angew Chem Int Ed Engl* 2021;60:15371-5. DOI PubMed PMC
- Küçük SE, Biktagirov T, Sezer D. Carbon and proton Overhauser DNP from MD simulations and ab initio calculations: TEMPOL in acetone. *Phys Chem Chem Phys* 2015;17:24874-84. DOI PubMed
- Wiśniewski D, Karabanov A, Lesanovsky I, Köckenberger W. Solid effect DNP polarization dynamics in a system of many spins. J Magn Reson 2016;264:30-8. DOI PubMed
- 115. Banerjee D, Shimon D, Feintuch A, Vega S, Goldfarb D. The interplay between the solid effect and the cross effect mechanisms in solid state ¹³C DNP at 95 GHz using trityl radicals. *J Magn Reson* 2013;230:212-9. DOI PubMed
- Liao W, Ghaffari B, Gordon CP, Xu J, Copéret C. Dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS): principles, protocols, and practice. *Curr Opin Colloid In* 2018;33:63-71. DOI
- 117. Park H, Uluca-Yazgi B, Heumann S, et al. Heteronuclear cross-relaxation effect modulated by the dynamics of N-functional groups in the solid state under ¹⁵N DP-MAS DNP. J Magn Reson 2020;312:106688. DOI PubMed
- 118. Hovav Y, Feintuch A, Vega S. Theoretical aspects of dynamic nuclear polarization in the solid state the cross effect. *J Magn Reson* 2012;214:29-41. DOI PubMed
- Rankin AGM, Trébosc J, Pourpoint F, Amoureux JP, Lafon O. Recent developments in MAS DNP-NMR of materials. Solid State Nucl Magn Reson 2019;101:116-43. DOI PubMed
- Lesage A, Lelli M, Gajan D, et al. Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J Am Chem Soc 2010;132:15459-61. DOI PubMed
- Rossini AJ, Zagdoun A, Lelli M, Lesage A, Copéret C, Emsley L. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc Chem Res 2013;46:1942-51. DOI PubMed
- 122. Kobayashi T, Perras FA, Slowing II, Sadow AD, Pruski M. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research. *ACS Catal* 2015;5:7055-62. DOI
- 123. Li W, Wang Q, Xu J, et al. Probing the surface of γ-Al₂O₃ by oxygen-17 dynamic nuclear polarization enhanced solid-state NMR spectroscopy. *Phys Chem Chem Phys* 2018;20:17218-25. DOI PubMed
- Blanc F, Sperrin L, Jefferson DA, Pawsey S, Rosay M, Grey CP. Dynamic nuclear polarization enhanced natural abundance ¹⁷O spectroscopy. J Am Chem Soc 2013;135:2975-8. DOI PubMed
- Perras FA, Boteju KC, Slowing II, Sadow AD, Pruski M. Direct ¹⁷O dynamic nuclear polarization of single-site heterogeneous catalysts. *Chem Commun* 2018;54:3472-5. DOI PubMed
- Perras FA, Kobayashi T, Pruski M. Natural Abundance ¹⁷O DNP two-dimensional and surface-enhanced NMR spectroscopy. J Am Chem Soc 2015;137:8336-9. DOI PubMed
- 127. Giovine R, Trébosc J, Pourpoint F, Lafon O, Amoureux JP. Magnetization transfer from protons to quadrupolar nuclei in solid-state NMR using PRESTO or dipolar-mediated refocused INEPT methods. J Magn Reson 2019;299:109-23. DOI PubMed
- 128. Zhao X, Hoffbauer W, Schmedt auf der Günne J, Levitt MH. Heteronuclear polarization transfer by symmetry-based recoupling sequences in solid-state NMR. *Solid State Nucl Magn Reson* 2004;26:57-64. DOI PubMed
- Perras FA, Kobayashi T, Pruski M. PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization. *Phys Chem Chem Phys* 2015;17:22616-22. DOI PubMed
- Chen CH, Gaillard E, Mentink-Vigier F, et al. Direct ¹⁷O isotopic labeling of oxides using mechanochemistry. *Inorg Chem* 2020;59:13050-66. DOI PubMed PMC

- 131. Nagashima H, Trébosc J, Kon Y, Sato K, Lafon O, Amoureux JP. Observation of low-γ quadrupolar nuclei by surface-enhanced NMR spectroscopy. J Am Chem Soc 2020;142:10659-72. DOI PubMed
- 132. Khan SU, Al-Shahry M, Ingler WB Jr. Efficient photochemical water splitting by a chemically modified n-TiO₂. *Science* 2002;297:2243-5. DOI PubMed
- 133. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 2009;38:253-78. DOI PubMed
- 134. Zou Z, Ye J, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. *Nature* 2001;414:625-7. DOI PubMed
- Cortright RD, Davda RR, Dumesic JA. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. *Nature* 2002;418:964-7. DOI PubMed
- Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003;301:935-8. DOI PubMed
- 137. Takata T, Jiang J, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity. *Nature* 2020;581:411-4. DOI PubMed
- Liu Z, Huang E, Orozco I, et al. Water-promoted interfacial pathways in methane oxidation to methanol on a CeO₂-Cu₂O catalyst. Science 2020;368:513-7. DOI PubMed
- Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD. The critical role of water at the gold-titania interface in catalytic CO oxidation. *Science* 2014;345:1599-602. DOI PubMed
- Merte LR, Peng G, Bechstein R, et al. Water-mediated proton hopping on an iron oxide surface. Science 2012;336:889-93. DOI PubMed
- 141. Hussain H, Tocci G, Woolcot T, et al. Structure of a model TiO₂ photocatalytic interface. Nat Mater 2017;16:461-6. DOI PubMed
- 142. Björneholm O, Hansen MH, Hodgson A, et al. Water at interfaces. Chem Rev 2016;116:7698-726. DOI PubMed
- Lin L, Hisatomi T, Chen S, Takata T, Domen K. Visible-light-driven photocatalytic water splitting: recent progress and challenges. *Trends Chem* 2020;2:813-24. DOI
- 144. Wang ZT, Wang YG, Mu R, et al. Probing equilibrium of molecular and deprotonated water on TiO₂(110). Proc Natl Acad Sci U S A 2017;114:1801-5. DOI PubMed PMC
- Du Y, Deskins NA, Zhang Z, Dohnálek Z, Dupuis M, Lyubinetsky I. Two pathways for water interaction with oxygen adatoms on TiO₂(110). *Phys Rev Lett* 2009;102:096102. DOI PubMed
- 146. Kristoffersen HH, Hansen JO, Martinez U, et al. Role of steps in the dissociative adsorption of water on rutile TiO₂(110). Phys Rev Lett 2013;110:146101. DOI PubMed
- Kamal C, Stenberg N, Walle LE, et al. Core-level binding energy reveals hydrogen bonding configurations of water adsorbed on TiO 2(110) surface. *Phys Rev Lett* 2021;126:016102. DOI PubMed
- 148. Vittadini A, Selloni A, Rotzinger FP, Grätzel M. Structure and energetics of water adsorbed at TiO₂ anatase 101 and 001 surfaces. *Phys Rev Lett* 1998;81:2954-7. DOI
- 149. Tilocca A, Selloni A. Vertical and lateral order in adsorbed water layers on anatase TiO₂(101). Langmuir 2004;20:8379-84. DOI PubMed
- 150. Walle LE, Borg A, Johansson EMJ, et al. Mixed dissociative and molecular water adsorption on anatase TiO₂ (101). J Phys Chem C 2011;115:9545-50. DOI
- 151. Patrick CE, Giustino F. Structure of a water monolayer on the anatase TiO₂(101) surface. J Phys Chem C 2018;122:11954-60. DOI
- 152. Fasulo F, Piccini G, Muñoz-garcía AB, Pavone M, Parrinello M. Dynamics of water dissociative adsorption on TiO₂ anatase (101) at monolayer coverage and below. J Phys Chem C 2022;126:15752-8. DOI
- 153. Boles MA, Ling D, Hyeon T, Talapin DV. The surface science of nanocrystals. Nat Mater 2016;15:141-53. DOI PubMed
- 154. Zhang X, Qin J, Xue Y, et al. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. *Sci Rep* 2014;4:4596. DOI PubMed PMC
- Mueller DN, Machala ML, Bluhm H, Chueh WC. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. *Nat Commun* 2015;6:6097. DOI PubMed
- 156. Llordés A, Wang Y, Fernandez-Martinez A, et al. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing. *Nat Mater* 2016;15:1267-73. DOI PubMed
- Zandi O, Hamann TW. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. *Nat Chem* 2016;8:778-83. DOI PubMed
- 158. Feng N, Liu F, Huang M, et al. Unravelling the efficient photocatalytic activity of boron-induced Ti³⁺ species in the surface layer of TiO₂. Sci Rep 2016;6:34765. DOI PubMed PMC
- 159. Setvín M, Aschauer U, Scheiber P, et al. Reaction of O₂ with subsurface oxygen vacancies on TiO₂ anatase (101). Science 2013;341:988-91. DOI PubMed
- 160. Peng YK, Keeling B, Li Y, et al. Unravelling the key role of surface features behind facet-dependent photocatalysis of anatase TiO₂. Chem Commun 2019;55:4415-8. DOI PubMed
- 161. Peng YK, Ye L, Qu J, et al. Trimethylphosphine-assisted surface fingerprinting of metal oxide nanoparticle by ³¹P solid-state NMR: a zinc oxide case study. J Am Chem Soc 2016;138:2225-34. DOI PubMed
- Peng YK, Chou HL, Edman Tsang SC. Differentiating surface titanium chemical states of anatase TiO₂ functionalized with various groups. *Chem Sci* 2018;9:2493-500. DOI PubMed PMC

- 163. Peng Y, Fu Y, Zhang L, et al. Probe-molecule-assisted NMR spectroscopy: a comparison with photoluminescence and electron paramagnetic resonance spectroscopy as a characterization tool in facet-specific photocatalysis. *ChemCatChem* 2017;9:155-60. DOI
- 164. Peng YK, Hu Y, Chou HL, et al. Mapping surface-modified titania nanoparticles with implications for activity and facet control. Nat Commun 2017;8:675. DOI PubMed PMC
- 165. Zheng A, Liu SB, Deng F. ³¹P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts. *Chem Rev* 2017;117:12475-531. DOI PubMed
- 166. Zheng A, Huang SJ, Liu SB, Deng F. Acid properties of solid acid catalysts characterized by solid-state ³¹P NMR of adsorbed phosphorous probe molecules. *Phys Chem Chem Phys* 2011;13:14889-901. DOI PubMed
- 167. Yao Q, Zhang L, Huang D, et al. MAS NMR studies on the formation and structure of oxygen vacancy on the CeO₂ {110} surface under a reducing atmosphere. *J Phys Chem C* 2023;127:13021-33. DOI
- 168. Wu Y, Wang Y, Huang D, et al. Direct quantification of oxygen vacancy on the TiO₂ surface by ³¹P solid-state NMR. *Chem Catal* 2023;3:100556. DOI
- 169. Chu Y, Yu Z, Zheng A, et al. Acidic strengths of Brønsted and lewis acid sites in solid acids scaled by ³¹P NMR chemical shifts of adsorbed trimethylphosphine. J Phys Chem C 2011;115:7660-7. DOI
- Hu Y, Guo B, Fu Y, et al. Facet-dependent acidic and catalytic properties of sulfated titania solid superacids. *Chem Commun* 2015;51:14219-22. DOI PubMed
- 171. Zhang H, Yu H, Zheng A, Li S, Shen W, Deng F. Reactivity enhancement of 2-propanol photocatalysis on SO₄²⁻/TiO₂: insights from solid-state NMR spectroscopy. *Environ Sci Technol* 2008;42:5316-21. DOI PubMed
- 172. Choi W, Termin A, Hoffmann MR. The role of metal ion dopants in quantum-sized TiO₂: correlation between photoreactivity and charge carrier recombination dynamics. *J Phys Chem* 1994;98:13669-79. DOI
- Vamathevan V, Amal R, Beydoun D, Low G, Mcevoy S. Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. J Photoch Photobio A 2002;148:233-45. DOI
- 174. He C, Yu Y, Hu X, Larbot A. Influence of silver doping on the photocatalytic activity of titania films. *Appl Surf Sci* 2002;200:239-47. DOI
- Jaegers NR, Wang Y, Hu JZ, Wachs IE. Impact of hydration on supported V₂O₅/TiO₂ catalysts as explored by magnetic resonance spectroscopy. J Phys Chem C 2021;125:16766-75. DOI
- 176. Stebbins JF. Aluminum substitution in rutile titanium dioxide: new constraints from high-resolution ²⁷Al NMR. *Chem Mater* 2007;19:1862-9. DOI
- Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. *Chem Rev* 2007;107:2891-959. DOI PubMed
- Rumaiz AK, Woicik JC, Cockayne E, Lin HY, Jaffari GH, Shah SI. Oxygen vacancies in N doped anatase TiO₂: experiment and firstprinciples calculations. *Appl Phys Lett* 2009;95:262111. DOI
- 179. Cronemeyer DC. Infrared absorption of reduced rutile TiO₂ single crystals. *Phys Rev* 1959;113:1222-6. DOI
- Tai Z, Sun G, Wang T, Li Z, Tai J. Netted C-doped TiO₂ mesoporous nanostructure decorated by Cu nanoparticles for photocatalytic CO₂ reduction. ACS Appl Nano Mater 2022;5:18070-9. DOI
- Dong Y, Luo X, Wang Y, et al. A robust novel 0D/2D MoS₃ QDs/C-doped atomically thin TiO₂(B) nanosheet composite for highly efficient photocatalytic H₂ evolution. *Appl Surf Sci* 2022;599:153972. DOI
- Li Y, Ren Z, Gu M, Duan Y, Zhang W, Lv K. Synergistic effect of interstitial C doping and oxygen vacancies on the photoreactivity of TiO₂ nanofibers towards CO₂ reduction. *Appl Catal B Environ* 2022;317:121773. DOI
- 183. Shayegan Z, Haghighat F, Lee C. Carbon-doped TiO₂ film to enhance visible and UV light photocatalytic degradation of indoor environment volatile organic compounds. *J Environ Chem Eng* 2020;8:104162. DOI
- 184. Yang Y, Liu L, Qi Q, et al. A low-cost and stable Fe₂O₃/C-TiO₂ system design for highly efficient photocatalytic H₂ production from seawater. *Catal Commun* 2020;143:106047. DOI
- 185. Noorimotlagh Z, Kazeminezhad I, Jaafarzadeh N, Ahmadi M, Ramezani Z. Improved performance of immobilized TiO₂ under visible light for the commercial surfactant degradation: role of carbon doped TiO₂ and anatase/rutile ratio. *Catal Today* 2020;348:277-89. DOI
- Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier WF. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. *Appl Catal B Environ* 2001;32:215-27. DOI
- Ohno T, Tsubota T, Nishijima K, Miyamoto Z. Degradation of methylene blue on carbonate species-doped TiO₂ photocatalysts under visible light. *Chem Lett* 2004;33:750-1. DOI
- Xu C, Killmeyer R, Gray ML, Khan SU. Photocatalytic effect of carbon-modified n-TiO₂ nanoparticles under visible light illumination. *Appl Catal B Environ* 2006;64:312-7. DOI
- Xu C, Shaban YA, Ingler WB, Khan SU. Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO₂ for efficient water splitting. Sol Energy Mater Sol Cells 2007;91:938-43. DOI
- 190. Liu F, Feng N, Yang L, Wang Q, Xu J, Deng F. Enhanced photocatalytic performance of carbon-coated TiO_{2-x} with surface-active carbon species. J Phys Chem C 2018;122:10948-55. DOI
- Chen C, Long M, Zeng H, et al. Preparation, characterization and visible-light activity of carbon modified TiO₂ with two kinds of carbonaceous species. J Mol Catal A Chem 2009;314:35-41. DOI
- 192. Rockafellow EM, Fang X, Trewyn BG, Schmidt-rohr K, Jenks WS. Solid-state ¹³C NMR characterization of carbon-modified TiO₂.

Chem Mater 2009;21:1187-97. DOI

- 193. Feng N, Lin H, Deng F, Ye J. Interfacial-bonding Ti–N–C boosts efficient photocatalytic H₂ evolution in close coupling g-C₃N₄/TiO₂. J Phys Chem C 2021;125:12012-8. DOI
- 194. Feng G, Mao J, Sun T, et al. Nitrogen-doped titanium dioxide for selective photocatalytic oxidation of methane to oxygenates. ACS Appl Mater Interfaces 2024;16:4600-5. DOI PubMed
- 195. Bhowmick S, Saini CP, Santra B, et al. Modulation of the work function of TiO₂ nanotubes by nitrogen doping: implications for the photocatalytic degradation of dyes. ACS Appl Nano Mater 2023;6:50-60. DOI
- 196. Chen C, Wu M, Yang C, et al. Electron-donating N[−]−Ti³⁺−O_v interfacial sites with high selectivity for the oxidation of primary C–H bonds. *Cell Rep Phys Sci* 2022;3:100936. DOI
- 197. Kwon J, Choi K, Schreck M, Liu T, Tervoort E, Niederberger M. Gas-phase nitrogen doping of monolithic TiO₂ nanoparticle-based aerogels for efficient visible light-driven photocatalytic H₂ production. ACS Appl Mater Interfaces 2021;13:53691-701. DOI PubMed
- 198. Liang M, Bai X, Yu F, Ma J. A confinement strategy to in-situ prepare a peanut-like N-doped, C-wrapped TiO₂ electrode with an enhanced desalination capacity and rate for capacitive deionization. *Nano Res* 2021;14:684-91. DOI
- 199. Kong X, Peng Z, Jiang R, et al. Nanolayered heterostructures of N-doped TiO₂ and N-doped carbon for hydrogen evolution. ACS Appl Nano Mater 2020;3:1373-81. DOI
- 200. Reyes-garcia EA, Sun Y, Reyes-gil K, Raftery D. ¹⁵N solid state NMR and EPR characterization of N-doped TiO₂ photocatalysts. J Phys Chem C 2007;111:2738-48. DOI
- 201. Feng N, Zheng A, Wang Q, et al. Boron environments in B-doped and (B, N)-codoped TiO₂ photocatalysts: a combined solid-state NMR and theoretical calculation study. J Phys Chem C 2011;115:2709-19. DOI
- 202. Feng N, Wang Q, Zheng A, et al. Understanding the high photocatalytic activity of (B, Ag)-codoped TiO₂ under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. *J Am Chem Soc* 2013;135:1607-16. DOI PubMed
- 203. Zhao W, Ma W, Chen C, Zhao J, Shuai Z. Efficient degradation of toxic organic pollutants with Ni₂O₃/TiO_{2-x}B_x under visible irradiation. J Am Chem Soc 2004;126:4782-3. DOI PubMed
- 204. Reyes-garcia EA, Sun Y, Raftery D. Solid-state characterization of the nuclear and electronic environments in a boron-fluoride codoped TiO₂ visible-light photocatalyst. J Phys Chem C 2007;111:17146-54. DOI
- 205. Wu T, Xie Y, Yin L, Liu G, Cheng H. Switching photocatalytic H₂ and O₂ generation preferences of rutile TiO₂ microspheres with dominant reactive facets by boron doping. *J Phys Chem C* 2015;119:84-9. DOI
- Liu G, Zhao Y, Sun C, Li F, Lu GQ, Cheng HM. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO₂. Angew Chem Int Ed Engl 2008;47:4516-20. DOI PubMed
- 207. Gopal NO, Lo HH, Ke SC. Chemical state and environment of boron dopant in B,N-codoped anatase TiO₂ nanoparticles: an avenue for probing diamagnetic dopants in TiO₂ by electron paramagnetic resonance spectroscopy. *J Am Chem Soc* 2008;130:2760-1. DOI PubMed
- 208. In S, Orlov A, Berg R, et al. Effective visible light-activated B-doped and B,N-codoped TiO₂ photocatalysts. J Am Chem Soc 2007;129:13790-1. DOI PubMed
- 209. Zaleska A, Sobczak JW, Grabowska E, Hupka J. Preparation and photocatalytic activity of boron-modified TiO₂ under UV and visible light. *Appl Catal B Environ* 2008;78:92-100. DOI
- 210. Coudurier G. Properties of boron-substituted ZSM-5 and ZSM-11 zeolites. J Catal 1987;108:1-14. DOI
- Ruiter R, Kentgens A, Grootendorst J, Jansen J, van Bekkum H. Calcination and deboronation of [B]-MFI single crystals. Zeolites 1993;13:128-38. DOI
- 212. Dorn RW, Heintz PM, Hung I, et al. Atomic-level structure of mesoporous hexagonal boron nitride determined by high-resolution solid-state multinuclear magnetic resonance spectroscopy and density functional theory calculations. *Chem Mater* 2022;34:1649-65. DOI
- Mark LO, Dorn RW, Mcdermott WP, et al. Highly selective carbon-supported boron for oxidative dehydrogenation of propane. ChemCatChem 2021;13:3611-8. DOI
- 214. Medek A, Harwood JS, Frydman L. Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids. *J Am Chem Soc* 1995;117:12779-87. DOI
- 215. Wang SH, Xu Z, Baltisberger JH, Bull LM, Stebbins JF, Pines A. Multiple-quantum magic-angle spinning and dynamic-angle spinning NMR spectroscopy of quadrupolar nuclei. *Solid State Nucl Magn Reson* 1997;8:1-16. DOI PubMed
- 216. Smith M. Recent advances in experimental solid state NMR methodology for half-integer spin quadrupolar nuclei. *Prog Nucl Mag Res Sp* 1999;34:159-201. DOI
- 217. Dorn RW, Cendejas MC, Chen K, et al. Structure determination of boron-based oxidative dehydrogenation heterogeneous catalysts with ultra-high field 35.2 T¹¹B solid-state NMR spectroscopy. ACS Catal 2020;10:13852-66. DOI PubMed PMC
- 218. Sasaki J, Peterson N, Hoshino K. Tracer impurity diffusion in single-crystal rutile (TiO_{2-x}). *J Phys Chem Solids* 1985;46:1267-83. DOI
- 219. Bak T, Burg T, Kang S, et al. Charge transport in polycrystalline titanium dioxide^A. J Phys Chem Solids 2003;64:1089-95. DOI
- **220.** Gesenhues U. Al-doped TiO₂ pigments: influence of doping on the photocatalytic degradation of alkyd resins. *J Photoch Photobio A* 2001;139:243-51. DOI
- 221. Kotzamanidi S, Frontistis Z, Binas V, Kiriakidis G, Mantzavinos D. Solar photocatalytic degradation of propyl paraben in Al-doped

TiO₂ suspensions. Catal Today 2018;313:148-54. DOI

- 222. Murashkina AA, Rudakova AV, Ryabchuk VK, et al. Influence of the dopant concentration on the photoelectrochemical behavior of Al-doped TiO₂. *J Phys Chem C* 2018;122:7975-81. DOI
- 223. Gionco C, Livraghi S, Maurelli S, et al. Al- and Ga-doped TiO₂, ZrO₂, and HfO₂: the nature of O 2p trapped holes from a combined electron paramagnetic resonance (EPR) and density functional theory (DFT) study. *Chem Mater* 2015;27:3936-45. DOI
- 224. Su CY, Wang LC, Liu WS, Wang CC, Perng TP. Photocatalysis and hydrogen evolution of Al- and Zn-doped TiO₂ nanotubes fabricated by atomic layer deposition. *ACS Appl Mater Interfaces* 2018;10:33287-95. DOI PubMed
- 225. Yang L, Feng N, Deng F. Aluminum-doped TiO₂ with dominant {001} facets: microstructure and property evolution and photocatalytic activity. *J Phys Chem C* 2022;126:5555-63. DOI
- 226. Xu J, Wang Q, Li S, Deng F. Solid-state NMR in zeolite catalysis. 1st edition. Singapore: Springer. 2019. DOI
- 227. Qi G, Wang Q, Xu J, Deng F. Solid-state NMR studies of internuclear correlations for characterizing catalytic materials. *Chem Soc Rev* 2021;50:8382-99. DOI PubMed