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Abstract
A suite of novel brominated flame retardants (NBFRs), hexabromocyclododecanes (HBCDDs), polybrominated 
diphenyl ethers (PBDEs) and dechlorane plus were measured in matched samples of house dust (n = 47) and 
human breast milk (n = 40) from Denmark sampled in 2007, i.e., shortly after PBDE restrictions were implemented 
in Europe providing a valuable reference point. The most abundant BFR in breast milk was BDE-153 with a median 
concentration of 0.79 ng/g lipid followed by BDE-47 (median: 0.61 ng/g lipid) and BDE-209 
(median: 0.53 ng/g lipid). Levels of bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP) were comparable (median: 
0.78 ng/g lipid); however, they were based on fewer samples. α-HBCDD was the most abundant HBCDD in breast 
milk (median: 0.24 ng/g lipid) and detected in all samples. The house dust samples were dominated by BDE-209 
(median: 432 ng/g) and γ-HBCDD (median: 177 ng/g); among the NBFRs, the highest levels were found for 
decabromodiphenyl ethane (DBDPE) (median: 86.2 ng/g) and BEH-TEBP (median: 26.7 ng/g). BDE-28, 47 and 153 
were significantly correlated between breast milk and serum (rs = 0.73-0.81, P < 0.0001); however, this was not the 
case for any of the NBFRs. Intake estimates for a 3-month-old infant indicated that for most of the flame retardants, 
breast milk was by far the dominant route of exposure, whereas dust only contributed substantially for BDE-209, γ-
HBCDD, and to some extent α-HBCDD. This study is the first to report on human exposure to NBFRs in Denmark 
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and shows that internal exposure levels of NBFRs were similar to those of most PBDEs already at the time of PBDE 
restrictions.

Keywords: PBDE, NBFR, HBCDD, dechlorane plus, indoor environment, exposure

INTRODUCTION
Brominated flame retardants (BFRs) have been used in consumer products (e.g., home furnishings, 
electronics, and building materials) to reduce their flammability and slow down or prevent fires. 
Polybrominated diphenyl ethers (PBDEs) were among the first classes of additive flame retardants (FRs) 
used worldwide since the 1970s and typically applied in one of three technical mixtures: Penta-, Octa-, and 
Deca-BDE[1]. Due to evidence of persistence, bioaccumulation, long-range transport, and toxicity, the Penta- 
and Octa-BDE mixtures were banned in the EU and phased out in the USA from the mid-2000s[2], with 
their eventual global ban under the Stockholm Convention on Persistent Organic Pollutants (POPs) in 
2009[3]. The use of DecaBDE in electronic applications has been restricted in the European Union (EU) since 
2008, and DecaBDE was added to the Stockholm Convention in 2017[4]. In the early 2000s, 
hexabromocyclododecane (HBCDD) was the second most prominent BFR on the EU market. It was mainly 
used in polystyrene, but also as a replacement for PBDEs[5]. It was banned in the EU and worldwide in 2013 
due to its POP- characteristics. The ban of PBDEs and HBCDD in consumer products led to an increased 
demand for alternatives, which include other brominated chemicals often referred to as novel brominated 
FRs (NBFRs) and the chlorinated flame retardant dechlorane plus (DP, also known as DDC-CO), which 
was recently added to the Stockholm Convention[6]. The use patterns of the different FR classes has varied 
between regions with a notable preference for PentaBDE in North America, HBCDD in Europe, TBBPA in 
Asia, and DecaBDE in all three regions[7]. However, there have also been temporal changes in consumption 
of the commercial mixtures of PBDEs, and later export of waste from more to less industrialized countries 
has altered the emission patterns[8]. Similar information on use patterns has not been identified for NBFRs.

Due to their persistence and the long lifetime of many consumer products, PBDEs and HBCDDs are still 
detected in the environment, including wildlife and abiotic environmental media such as air, soil, and 
indoor dust[9-11]. At the same time, NBFRs have also been widely detected in environmental samples, 
consumer products, and food[12,13]. In humans, PBDEs have been measured all over the world in a variety of 
matrices, including breast milk, blood, placenta, and adipose tissue, while reports on HBCDDs are less 
frequent and only few measurements exist on NBFRs in human matrices[14-18]. NBFRs have also been 
detected in upholstered furniture foam and house dust, and a urinary metabolite of 2-ethylhexyl 2,3,4,5-
tetrabromoethylhexylbenzoate (EH-TBB) has been frequently found in both adults and children[19-22]. 
However, breast milk measurements of NBFRs have been rare and have only been conducted in the UK, 
USA, and China to date[23-26]. Overall, both legacy and current-use BFRs are omnipresent in our 
environment, suggesting chronic exposure and consequently concern about potential adverse health 
impacts.

PBDE congeners have been associated with a variety of negative health outcomes such as thyroid hormone 
disruption and neurodevelopmental deficits in both human and animal studies[27-30]. In particular, prenatal 
and early-life PBDE exposure has been linked to various adverse effects on neurobehavioral development in 
young children, such as poorer attention, fine motor coordination, and cognition as well as lower IQ[28,31,32]. 
Much less is known about the NBFRs[13] and their potential toxicity, but for several of the better-studied 
NBFRs, neurotoxic potential has been shown, possibly linked to endocrine disruption[33]. Specifically, 
components of the Firemaster® 550 mixture, which includes both brominated and organophosphate 
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compounds, have been associated with metabolic and endocrine disruption and activation of nuclear 
receptors regulating adipogenic pathways in in vitro studies[34-36]. Given the long-term effects of PBDE 
exposure and the growing prominence of NBFRs in consumer product use and environmental presence, 
there is a need to elucidate dominant pathways of exposure for these brominated compounds. This is of 
particular concern since children tend to have higher levels of exposure to chemicals including PBDEs, 
compared to adults[37].

Here, we report concentrations of PBDEs, HBCDDs, as well as NBFRs and dechlorane plus in breast milk 
collected from women in the Copenhagen area in 2007-2008. This was a critical point in BFR history with 
the phase-out and global ban of PBDEs in 2009 changing the use pattern of BFRs. Further, the breast milk 
concentrations were compared to house dust concentrations of HBCDDs and NBFRs collected at the same 
time as well as and to previously published paired PBDE concentrations in placenta tissue as well as 
maternal and cord blood. Exposure estimates for breast milk and dust were investigated and compared for 
the infants. These data present a retrospective assessment of breast milk concentrations in Denmark 
immediately following the international PBDE ban and prior to the HBCDD-ban, thus providing a 
benchmark for more recent and future measurements of BFR concentrations in breast milk.

EXPERIMENTAL
Study population and sample collection
Study participants were recruited among healthy, pregnant women scheduled for caesarean section at 
Copenhagen University Hospital from March to December 2007; further details are given elsewhere[15,38]. 
Caesarean section might have subtle influences on nutrient composition in breast milk[39], but potential 
influences on contaminant levels are unknown. In combination with a relatively high rate (approximately 
20%) of caesarean sections in Denmark[40], the samples are likely to represent typical Danish FR levels at the 
time. The women were asked to sample breast milk once a week for 3 months after giving birth using a 
manual breast milk pump supplied by the study; after sampling, the milk was transferred to a pre-clean 
amber glass. The weekly samples were combined in a composite sample stored in the participants' 
household freezer. Each participant recorded the dates of sampling. Three months after birth, both milk 
samples and the participants’ vacuum cleaner bags were collected. The content of the bags was sieved to 
< 75 µm, as also described in Vorkamp et al. (in which the current samples correspond to the "second dust 
sample")[41]. All samples were then stored at -20 °C until analysis. The study was approved by the Regional 
Ethics Committee of the Capital Region of Denmark (H-KF-327603) and the Danish Data Protection 
Agency. PBDE concentrations are also available for placental tissue, maternal and umbilical cord plasma as 
well as air and dust from the participants’ homes sampled before giving birth[15,41-43]; an overview of the 
biological matrices is given in Supplementary Table 1. PBDE data for placenta, fetal blood, and maternal 
blood were used in this study to investigate associations with levels in breast milk and dust.

Chemical analysis
The samples were first analyzed for PBDEs and then later for NBFRs, DPs, and HBCDDs; due to a limited 
sample volume, a few samples were only analyzed for PBDEs; an overview of the different analyses is given 
in Supplementary Figure 1. For the analysis of PBDEs in breast milk, 20 mL of breast milk was dried with 
diatomaceous earth, spiked with 13C-labelled BDE-209 and octachlorobiphenyl (PCB-198) and extracted 
using Soxhlet with hexane:acetone (4:1). The milk extracts were cleaned on a multilayer column including 
sulfuric acid-impregnated silica eluted with 250 mL hexane as described in Vorkamp et al.[44]. The cleaned 
extract was reduced in volume by rotary evaporator, and the final volume was approximated to 0.5 mL and 
analyzed by gas chromatography with electron capture negative ionization-mass spectrometry 
(GC-ECNI-MS). The analysis included 19 PBDEs (BDE-17, 28, 47, 49, 66, 71, 77, 85, 99, 100, 156, 154, 183, 
197, 203, 206, 207, 208 and 209); however BDE-154 was not separated from the polybrominated biphenyl 
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BB-153 in this analysis. Octa to deca PBDEs were quantified using 13C-BDE-209, whereas PCB-198 was used 
for quantification of tri-hepta PBDEs. The dust samples (0.5 g) were extracted as the milk samples and 
cleaned up on a column consisting of 2 g activated aluminum oxide, 2 g sulfuric acid impregnated silica, 
and some Na2SO4, eluted with 60 mL hexane and analyzed by GC-ECNI-MS for the PBDEs given above.

The chemical analyses of HBCDDs and NBFRs included α-, β-, and γ-HBCDD, EH-TBB, 2,3-
dibromopropyl 2,4,6-tribromophenyl ether (DPTE, also known as TBP-DBPE), bis(2-ethylhexyl) 
tetrabromophthalate (BEH-TEBP), decabromodiphenyl ethane (DBDPE), as well as syn- and anti-DP. Their 
analysis in breast milk and dust followed the method described in Vorkamp et al., with some 
modifications[45]. In brief, sub-samples of approximately 0.5 g of house dust or 20 mL breast milk (after 
heating to 37 °C) were dried with diatomaceous earth, spiked with isomer-specific internal standards of 13C-
HBCDD as well as 13C-BEH-TEBP (where relevant) and extracted by Pressurized Liquid Extraction (dust) 
or Soxhlet (milk) using hexane:dichloromethane (1:1). Dust samples were cleaned up on a column 
consisting of 2 g activated aluminum oxide, 2 g deactivated silica and some Na2SO4 and eluted with 60 mL 
hexane:dichloromethane (1:1). For the milk extracts, the column clean-up was the same described in 
Vorkamp et al.[44,45], but applied twice and eluted with 250 mL hexane:dichloromethane (1:1). For both dust 
and milk extracts, the eluates were split equally in two for analysis of NBFRs and HBCDDs, respectively. 
Each of the milk extracts was evaporated to dryness, using silicone-coated vials for NBFRs[45] and 
reconstituted in 200 µL isooctane or methanol for analysis of NBFR and HBCDD, respectively. For NBFRs 
in dust, the extracts were reduced in volume by rotary evaporation and under nitrogen, using 300 µL 
isooctane as a keeper, and adjusted to a precise volume of 1 mL in isooctane. The second dust extract was 
evaporated to dryness and reconstituted in 500 µL methanol for HBCDD analysis. NBFRs were analyzed by 
GC-ECNI-MS using the parameters described in Vorkamp et al., but combining all NBFRs in one analytical 
run on a 15 m DB-1 GC column (0.25 mm i.d., 0,25 µm film thickness, J&W Scientific, Folsom CA, 
USA)[45]. HBCDD-isomers were analyzed by LC-MS-MS as previously described[46]. The NBFR BEH-TEBP 
was analyzed separately in a subset of milk samples (n = 5), using Gel Permeation Chromatography for 
clean-up as described in Vorkamp et al. because BEH-TEBP is not stable to the acid treatment used for 
clean-up of the milk samples[45]. BEH-TEBP was included in all dust analyses.

Each analytical batch included QA/QC measures such as procedural blanks, internal or standard reference 
material (NIST SRM 2585), as described elsewhere[15,41]. For PBDEs in breast milk, a sample of human breast 
milk from the ring test “Dioxins in Food, 2006” was used (with consensus values for BDE-28, 47, 99, 100, 
153, 154, 209)[47]. The obtained results were within ±20% of the consensus values for all congeners except for 
BDE-209 in one batch, which was 37% above the consensus value, and BDE-154, which was generally 
overestimated due to the co-elution with BB-153 described above. NIST SRM 2582 was also used for quality 
control of HBCCDs and NBFRs, based on indicative values published in the literature[22,48]. For the NBFR 
analyses, PCB-198 [and, in some batches, 13C-polychlorinated naphthalene (PCN)-27] were added for 
recovery determination prior to extraction. The recovery rate for dust was 91.5% on average, with a range of 
68%-116%. The recovery standards were difficult to integrate in the milk samples, leading to an average of 
85% (range 52%-120%). However, the low numbers are likely caused by chromatographic challenges due to 
matrix effects, rather than indicating losses in the process.

Statistical analyses
Analyses were conducted using SAS statistical software (version 9.4; SAS Institute Inc., Cary, NC, USA). 
Based on examination of distributions of all PBDEs and NBFRs in breast milk and the biological matrices 
previously analyzed (placenta, fetal and maternal blood), the majority of which were right-skewed, non-
parametric statistics or log10-transformed concentrations were used for all analyses. Statistical analyses were 
conducted only for chemicals with detection frequencies > 65% overall. For any concentrations below the 
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method detection limit (MDL), values were imputed as MDL/2 and normalized in a matrix-specific manner 
(i.e., breast milk, serum, and placenta by lipid concentration and dust by dry mass).

We evaluated associations between breast milk and dust for NBFRs and between breast milk and dust, 
placenta, fetal blood, and maternal blood for PBDEs using Spearman correlations. Relationships among 
NBFRs and PBDEs, separately, were assessed within breast milk samples, also with Spearman correlations. 
We examined additional relationships between log10-transformed concentrations and various predicting 
factors using regression analyses. These factors included mother’s age, pre- and term-pregnancy body mass 
index, and pregnancy weight gain (evaluated as continuous variables) and parity and previous breastfeeding 
(evaluated as categories, dichotomized based on median reported value). For evaluating associations with 
breast milk PBDE concentrations, maternal serum and house dust concentrations were split into tertile 
categories. Beta coefficients from all of these models were exponentiated and used as an estimate of 
multiplicative change in concentrations for each unit of increase for all continuous variables or relative to 
the reference category for any categorical variables.

Exposure estimate calculations
Estimates of daily intake were calculated based on breast milk and house dust concentrations of NBFRs and 
PBDEs with > 65% detection in a matrix. These estimates were calculated for a 3-month-old infant, given 
that the house dust concentrations were collected in homes at 3 months post-delivery. Estimates are 
presented in units of ng/day for comparison of exposure pathways and were not normalized to body mass. 
The US Environmental Protection Agency Exposure Factors Handbook was used for recommended 
estimated daily consumption of breast milk and for unintentionally ingested house dust for 3-month-old 
infants. For human milk intake, the weighted mean intake value for exclusively breastfed infants was 
758 mL/day, with breast milk density estimated to be 1.03 g/mL[49]. Dust ingestion for children < 6 months 
was estimated to be 20 mg/day[50]. The intake equations are shown below:

Furthermore, intake estimates of PBDEs from air were calculated based on air measurements in the same 
homes days prior to birth as previously presented in Vorkamp et al.[41]. A long-term exposure value for 
inhalation of 3.5 m3/d was estimated for infants 1-3 months of age[51]. The equation for intake by inhalation 
was then:

RESULTS & DISCUSSION
Study population
A total of 51 women were recruited for the overall study. Of these, four women did not participate in the
follow-up, and another seven did not wish to or were not able to deliver a breast milk sample. This resulted
in a total of 40 breast milk samples and 47 dust samples collected 3 months after birth; details about the
overall study population have been described previously[15,41,42]. The mean age of mothers of the subset of
participants providing breast milk samples was 32.7 years (range: 24-43 years) [Supplementary Table 2]. The
average number of previous children was one (range: 0-3 children) and mothers had previously breastfed
for about a year prior to starting the sample collection (mean: 11 months; range: 0-30 months). Further
details on descriptors are given in Supplementary Table 2 .
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Breast milk
Levels
BFRs have only previously been reported in breast milk in Denmark in two studies collecting samples 
between 1997 and 2002, which included PBDEs in milk and placenta samples[52] and PBDEs and HBCDDs 
in milk[53]; NBFRs had not previously been measured in breast milk from Denmark. In the current study, we 
measured 19 PBDE congeners, 3 HBCDD diastereomers, 5 NBFRs, and 2 DP isomers. Of these chemicals, 8 
PBDEs, 2 HBCDD diastereomers, and 4 NBFRs were detected in over 65% of the breast milk samples 
[Tables 1 and 2]. Overall, the most abundant BFR measured in breast milk was BDE-153. It had a median 
concentration of 0.79 ng/g lipid and was detected in all samples [Table 1], which could be expected given 
that the half-life of BDE-153 is among the longest of the PBDE congeners[54]. This was, however, not 
observed in Danish breast milk collected 5-10 years earlier where BDE-47 was the dominating 
congener[52,53]. BDE-47 was the congener with the second highest median concentration in our study 
(median = 0.61 ng/g lipid), followed by BDE-209 (median = 0.53 ng/g lipid), which were detected in 100% 
and 95% of the samples, respectively. PBDE congeners 99, 100 and 154 were also detected in more than 95% 
of the samples, but with median concentrations < 0.25 ng/g lipid. However, the high detection frequency of 
BDE-154 may have been affected by the co-elution of BB-153, which was more frequently detected in the 
corresponding blood samples where the two BFRs were quantified separately[42]. These concentrations were 
lower than in those sampled in Denmark 5-10 years earlier with the exception of BDE-209[53]. However, the 
levels were similar to those measured in a large-scale study in Norway between 2003 and 2005, although the 
concentration of BDE-209 in this study was slightly higher (Norwegian study median = 0.32 ng/g lipid)[55]. 
The concentrations were also comparable to breast milk samples collected in Sweden around the same time 
period[56]. Finally the ∑6PBDE is within the range of other European countries for the same sampling period 
as reported by the World Health Organization (WHO), though the number of participating countries was 
low. The observations also match the decreasing trend observed in Western Europe since the year 2000[57].

Of the HBCDD diastereomers, α-HBCDD was detected in all samples and was the most abundant 
diastereomer (median = 0.24 ng/g lipid), with γ detected in 65% and β detected in only 6% of samples 
[Table 2]. α-HBCDD was also the most abundant non-PBDE flame retardant that was measured in the 
breast milk samples if disregarding BEH-TEBP that was only analyzed in five samples. α-HBCDD has also 
previously been the dominant HBCDD diastereomer in diastereomer-specific analyses of breast milk[58,59]. 
Compared to a previous Danish study conducted between 1997 and 2002 (n = 435), our study observed 
slightly lower concentrations of α-HBCDD[53]. Although it is difficult to determine trends in a region from 
just two time points, data suggest that HBCDD concentrations could have decreased in Denmark in the 
2000s, which is in line with Swedish studies indicating decreasing concentrations in the same time 
period[37]. Other studies examining breast milk samples in Europe from the mid to late 2000s detected 
similar albeit slightly higher concentrations, including a cohort of Norwegian women[60] and studies 
conducted in Ireland[61], as well as the recent WHO/UNEP overview[57]. However, other studies conducted in 
the UK showed substantially higher concentrations of HBCDDs[62,63], whereas HBCDDs were not detected in 
a study on breast milk from Sweden, possibly related to a GC-MS method, which is less sensitive than the 
commonly applied LC-MS/MS method[56,64].

Detected in nearly all samples (DF = 91%), the most abundant NBFR in our study was DPTE 
(median = 0.11 ng/g lipid) [Table 2]. DPTE was the main component of the BFR mixture Bromkal 73-5PE 
that was manufactured until the mid-1980s[65,66]. Although production past the 1980s is unknown, it has been 
measured in house dust, in addition to Arctic air, seawater, and biota, indicating persistence, 
bioaccumulation, and long-range transport[12,67,68]. Previous studies conducted in the Netherlands, China, 
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Table 1. Descriptive statistics of PBDEs in milk and dust

Breast milk (n  = 40) 
ng/g lipid

House dust (n  = 47) 
ng/g dry weight

Chemical % Detect Mean Median Range % Detect Mean Median Range

BDE-17 85 0.035 0.024 < 0.014-0.13 60 0.36 0.22 < 0.022-3.09

BDE-28 85 0.076 0.047 < 0.036-0.43 83 0.66 0.35 < 0.022-6.63

BDE-49 43 0.039 n.a. < 0.012-0.13 79 1.18 0.67 < 0.022-8.09

BDE-71 0 n.a. n.a. n.a. 0 n.a. n.a. n.a.

BDE-47 100 1.20 0.61 0.19-9.92 100 35.4 13.7 1.12-316

BDE-66 38 0.021 n.a. < 0.008-0.042 96 1.34 0.75 < 0.082-6.17

BDE-77 0 n.a. n.a. n.a. 0 n.a. n.a. n.a.

BDE-100 95 0.45 0.23 < 0.10-8.14 100 8.56 3.53 0.270-60.0

BDE-99 100 0.28 0.18 0.065-1.48 100 44.7 19.2 1.27-325

BDE-85 18 0.031 n.a. < 0.013-0.10 89 1.80 0.78 < 0.024-13.5

BDE-154$ 98 0.21 0.15 < 0.095-0.81 96 3.85 1.83 < 0.029-26.5

BDE-153 100 1.55 0.79 0.44-25.3 98 5.98 2.71 < 0.057-45.7

BDE-183 30 0.054 n.a. < 0.023-0.43 100 7.19 4.14 0.36-31.2

BDE-197 58 0.098 0.046 < 0.051-0.28 100 3.56 2.14 0.27-15.3

BDE-203 3 n.a. n.a. n.a. 100 2.38 1.84 0.30-13.5

BDE-208 35 0.058 n.a. < 0.022-0.47 87 8.12 2.92 < 0.55-175

BDE-207 43 0.13 na.a < 0.045-1.21 94 22.8 5.47 < 0.95-628

BDE-206 3 n.a. n.a. n.a. 96 65.2 12.0 < 1.95-2,220

BDE-209 95 2.70 0.53 < 0.061-49.8 100 2641 432 54.5-79,800

∑PBDE6* 100 3.73 2.21 0.98-45.2 100 105 53.6 4.64-672

*∑PBDE6: ∑BDE-47, -99, -100, -153, -154, and -183; $co-eluting with BB-153.

Table 2. Descriptive statistics of NBFRs, HBCDD and Dechlorane Plus in milk and dust

Breast milk (n  = 37) 
ng/g lipid

House dust (n  = 43a) 
ng/g dry weight

Chemical % Detect Mean Median Range % Detect Mean Median Range

DPTE 91 0.13 0.11 < 0.028-0.34 93 1.36 0.99 < 0.21-5.76

EH-TBB 43 0.12 n.a. < 0.018-0.60 100 12.0 6.26 1.75-89.1

BTBPE 100 0.087 0.064 0.026-0.28 100 31.7 7.23 2.15-293

BEH-TEBP 100b 0.92 0.78 0.53-1.50 100 39.1 26.7 1.79-200

DBDPE 19 0.21 n.a. < 0.088-2.06 100 141 86.2 10.4-801

Syn-DP 49 0.062 n.a. < 0.008-0.44 98 9.77 1.57 < 0.21-332

Anti-DP 84 0.13 0.073 < 0.022-1.85 100 8.23 4.54 0.55-54.3

α - HBCDD 100 0.53 0.24 0.11-5.68 100 140 92.1 11.4-548

β - HBCDD 6 0.051 n.a. n.a. 100 52.4 32.1 5.52-293

γ - HBCDD 65 0.10 0.051 < 0.020-1.13 100 431 177 18.8-3,310

ain one sample it was not possible to quantify BEH-TBEP, DBDPE, Syn- and Anti-DP due an interference in the chromatogram; bonly measured in 5 
samples with different clean-up technology because BEH-TEBP degraded in the acid treatment.

and Tanzania have analyzed DPTE in breast milk samples, and while concentrations seem similar, detection 
frequencies were much lower (< 50%)[25,69,70]; however, this may be highly method-dependent. Given that 
Given that manufacture and distribution data is unknown, it is unclear why DPTE is still wide-spread in 
environmental and human samples, with relatively high concentrations in this study, similar in 
concentration to BDE-99.
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Although BEH-TEBP was only measured in a subset of five samples due to degradation in the standard 
clean-up procedure, the concentrations were among the highest of any BFR measured in the breast milk 
samples (median = 0.78 ng/g lipid). High levels despite moderate detection frequency were also observed for 
milk samples collected in Norway, Slovakia, and the Netherlands around the same time[71], which 
collectively calls for inclusion of this compound in future studies, despite the analytical challenges, as it 
could be an important pathway of exposure for infants.

The levels of syn- and anti-DP detected here were slightly lower than previously observed across Europe[71] 
but higher than in Canada[72]. However, the literature on NBFRs in human milk is still very limited and thus 
limits the comparison of our results to others; a recent review of contaminants in human milk by Chi et al. 
included several groups of flame retardants but not any of the NBFRs investigated here[73].

Intramatrix correlations
In general, PBDEs, particularly the lower molecular weight congeners and congeners of the commercial 
PentaBDE mixture, were highly correlated in breast milk [Table 3]. Likewise, the two diastereomers of 
HBCDD (α and γ) were also highly correlated (rs = 0.64, P < 0.0001). DPTE in breast milk was positively and 
significantly correlated with BTBPE and anti-DP, but not with the HBCDD diastereomers. Anti-DP was 
further moderately correlated with the two HBCDD diastereomers, whereas BTBPE was correlated with 
BDE-28. α-HBCDD was also positively correlated with BDE-28, -47, -99, and -100 (rs = 0.34-0.47, P < 0.05, 
Table 3). Given their concurrent use as flame retardants, this indicates that HBCDDs and PBDEs could have 
similar routes of exposure or sources.

Relationship with age
Several of the BFR compounds in breast milk were positively associated with the mother’s age. Two NBFRs 
(BTBPE and anti-DP), α-HBCDD, and BDE-154 concentrations increased by almost 10% per one-year 
change in the mother’s age [Figure 1]; however, for BDE-154 it is worth noting that it co-elutes with BB-
153, which is very persistent and its use dates back further than the PBDEs.

Dust
Among the PBDEs, the dust samples were dominated by BDE-209 (median: 432 ng/g), followed by BDE-99 
(median: 19.2 ng/g) and BDE-47 (median: 13.7 ng/g) [Table 1], as previously observed in other European 
studies[16]. The median level of the ΣHBCDDs was comparable to BDE-209, though the maximum values 
were not as pronounced for ΣHBCDDs. DBDPE was also found in high levels though not as high as BDE-
209, which at the time of sampling was still in use in some applications. Substantial amounts of EH-TBB, 
BTBPE, and BEH-TEBP were also detected. Although median levels in the literature span many orders of 
magnitude[13], the medians and ranges in the current study were very similar to levels reported by 
Sahlström et al., who sampled a similar population in Sweden two years later, particularly for the PBDEs[74].

Intermatrix correlations of breast milk
Dust
Of the BFRs analyzed in both breast milk and house dust, three of the seven PBDEs in paired samples were 
significantly correlated (rs = 0.35-0.42, P < 0.05; Table 4), i.e., BDE-28, -47, -99. They are all lower molecular 
weight PBDEs and prominent congeners of the Penta-BDE commercial mix. This suggests that house dust 
could be a recent source of exposure together with toxicokinetic processes, which may favor the transfer to 
and accumulation of lower brominated molecules in milk, despite higher exposure to BDE-209[75]. Positive 
and significant correlations between milk and house dust have been observed previously for PBDE 
congeners, although the strength of correlation varied by congener in different geographical regions. 
Significant associations between breast milk and house dust have been observed in Sweden for 
BDE-47 and -99[56], in the U.S. for summed PBDEs[76], and in New Zealand for BDE-209[77], but not in a study 
performed in Australia[78].
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Table 3. Correlation table within milk for flame retardants detected in > 65% of samples (PBDEs: n = 40, NBFRs: n = 37)

BDE-17 BDE-28 BDE-47 BDE-99 BDE-100 BDE-153 BDE-154 BDE-209 DPTE BTBPE Anti-DP α - HBCDD γ - HBCDD

BDE-17 1

BDE-28 0.15 1

BDE-47 0.06 0.84*** 1

BDE-99 0.34* 0.69*** 0.82*** 1

BDE-100 0.03 0.73*** 0.85*** 0.63*** 1

BDE-153 0.27 0.17 0.18 0.17 0.35* 1

BDE-154 0.30 0.24 0.18 0.24 0.11 0.33* 1

BDE-209 0.29 -0.16 -0.23 -0.11 -0.13 -0.13 -0.06 1

DPTE 0.07 0.19 0.08 0.14 0.14 0.00 -0.03 0.00 1

BTBPE 0.10 0.38* 0.25 0.31 0.25 0.11 0.24 -0.02 0.55*** 1

Anti-DP -0.04 0.17 0.23 0.17 0.04 -0.31 0.13 0.22 0.44** 0.13 1

α - HBCDD 0.12 0.45** 0.43** 0.34* 0.47** -0.02 0.20 0.00 0.23 0.20 0.38* 1

γ - HBCDD 0.14 0.18 0.14 0.23 0.08 -0.12 -0.01 0.07 0.23 0.06 0.35* 0.64*** 1

*P < 0.05; **P < 0.001; ***P < 0.0001.

In general, breast milk concentrations of NBFRs were not significantly correlated with house dust [Supplementary Table 3], although the associations were 
generally positive with the exception of DPTE being notably negatively correlated (rs = -0.32, P = 0.07). This is unlike PBDE exposure, which has historically 
been linked fairly strongly to house dust[79]. It may suggest other exposure pathways than dust; however, the transformation processes of NBFRs are not well-
understood and might differ from those of the relatively persistent PBDEs. Only one other study was identified addressing correlations between HBCDDs in 
milk and dust, but the correlation analysis was not possible due to the low detection frequency in breast milk[56].

Maternal serum
Concentrations of PBDEs in maternal serum of the same individuals were previously described and reported in Frederiksen et al.[42]. In brief, five PBDEs were 
detected in the majority of the samples, and BDE-209 was the most abundant, although it was only measured in 18 samples total, with BDE-153 being the 
second most abundant PBDE in serum [Supplementary Table 1]. PBDEs in breast milk and maternal serum were significantly and positively correlated for the 
three PBDE congeners with full sample overlap (i.e. DF > 65%) between milk and serum (rs = 0.73-0.81, P < 0.0001; Table 4), but not for BDE-209. When 
relationships were adjusted for parity and mother’s age, these relationships were still clearly observed, with mothers who had the highest tertile concentration 

jeea3051-SupplementaryMaterials.pdf
jeea3051-SupplementaryMaterials.pdf
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Table 4. Spearman correlation (rs) between milk vs. dust, placenta, fetal plasma, and maternal plasma for flame retardants detected 

in > 65% of samples

Breast milk

PBDEs BDE-17 BDE-28 BDE-47 BDE-99 BDE-100 BDE-153 BDE-154 BDE-209

BDE-28 0.35* 0.39* 0.36*

BDE-47 0.39* 0.37*

BDE-99 0.39* 0.42*

BDE-100 0.37* 0.39* 0.19

BDE-153 0.37* 0.37* 0.01

BDE-154 0.38* 0.42* 0.19

House dust 
(n = 40)

BDE-209 -0.12

BDE-47 0.56** 0.53** 0.58**

BDE-99 0.37* 0.32* 0.09 0.36*

BDE-100 0.42* 0.45* 0.38* 0.58**

BDE-153 0.42* 0.73***

BDE-154 0.59***

Placenta 
(n = 39)

BDE-209 0.12

BDE-28 0.83*** 0.77*** 0.58*** 0.67***Fetal blood 
(n = 31) BDE-153 0.64*** 0.37*

BDE-28 0.81*** 0.74*** 0.55** 0.62***

BDE-47 0.65** 0.76*** 0.57** 0.67***

BDE-153 0.73***

Maternal blood 
(n = 39)

BDE-209# -0.59* 0.39

#analyzed in only 15 samples. *P < 0.05, **P < 0.001, ***P < 0.0001.

of BDE in their blood having between 2 to 4 times as high concentrations in breast milk, depending on the 
congener [Figure 2].

Cord blood
Concentrations of PBDEs in cord blood were previously reported in Frederiksen et al.[42]. Only BDE-28 and 
-153 were detected in > 65% (cut-off set for statistical analyses) of both the cord blood and breast milk 
samples. Both congeners were highly correlated between cord blood and breast milk (rs = 0.83 and 0.64, 
P < 0.0001; Table 4). This is to be expected given the strong correlations previously observed between 
maternal serum and cord blood[42]. Notably, the concentrations in fetal serum reflect in utero PBDE 
exposure, while PBDEs in breast milk will continue adding to infant exposure post-partum.

Placenta
PBDE concentrations in placenta were previously described in Frederiksen et al., with further investigations 
comparing placenta and dust concentrations in Vorkamp et al.[15,41]. Positive and significant correlations 
were observed for 4 of the 6 PBDEs detected in both placenta and breast milk (BDE-47, -100, -153, and -154 
(rs = 0.53-0.73; P < 0.0001)), and notably, no association was observed for BDE-99 and -209.

Exposure estimates
Exposure estimates for 3-month-old infants in 2007 were calculated based on breast milk and house dust 
measurements for NBFRs, HBCDDs, DPs, and PBDEs; for PBDEs, intake via air was also calculated. For the 
NBFRs and PBDEs, with the exception of BDE-209, breast milk contributed substantially more to the daily 
exposure than house dust [Table 5]. This was in agreement with Toms et al., who reported an intake of 
BDE-47 from breast milk for Australian infants very similar to our calculations (10-440 ng/day) for samples 
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Table 5. Exposure estimates for 3-month-old infant (ng/day), reported if > 65% detection

Breast milk House dust Air*

Chemical Mean Median Range Mean Median Range Mean Median Range

DPTE 2.71 2.55 1.18-14.8 0.03 0.02 < 0.21-5.76

EH-TBB 0.24 0.13 1.75-89.1

BTBPE 1.90 1.34 0.85-5.49 0.63 0.15 2.15-293

BEH-TEBP 24.4 21.5 20.3-50.0 0.78 0.53 1.79-200

DBDPE 2.82 1.72 10.41-801

Syn-DP 0.20 0.03 < 0.21-332

Anti-DP 3.28 1.14 < 0.17-60.5 0.17 0.09 0.55-54.3

α - HBCD 15.2 4.67 2.69-248 2.80 1.84 11.35-548

β - HBCD 1.05 0.64 5.52-293

γ - HBCD 2.74 0.95 < 0.429-37.0 8.62 3.54 18.82-3,310

n.a.

BDE-17 0.59 0.52 < 0.19-1.70 0.01 0.004 < 0.001-0.06 0.05 0.04 < LOQ-0.09

BDE-28 1.77 1.14 < 0.19-18.1 0.02 0.01 < 0.001-0.13 0.05 0.04 0.01-0.16

BDE-49 0.03 0.01 < 0.001-0.16 0.03 0.02 0.01-0.12

BDE-47 28.9 15.0 1.65-419 0.67 0.26 0.02-6.32 0.67 0.48 0.17-2.61

BDE-66 0.03 0.01 < 0.001-0.12 0.02 0.01 < LOQ-0.05

BDE-100 13.6 4.73 < 0.48-344 0.16 0.07 0.01-1.20 0.05 0.05 0.01-0.13

BDE-99 6.08 4.01 1.03-62.7 0.86 0.42 0.03-6.50 0.29 0.23 0.06-1.3

BDE-85 0.04 0.02 < 0.001-0.27

BDE-154$ 4.40 3.23 < 0.81-14.4 0.07 0.03 < 0.001-0.53

BDE-153 44.8 17.1 6.56-1,070 0.11 0.05 < 0.001-0.91

BDE-183 0.08 0.08 0.01-0.62

BDE-197 0.07 0.04 0.01-0.31

BDE-203 0.05 0.04 0.01-0.27

BDE-208 0.17 0.06 < 0.01-3.50

BDE-207 0.48 0.11 < 0.01-12.6

BDE-206 1.36 0.24 < 0.04-44.4

BDE-209 70.9 10.2 < 0.48-1,190 49.4 8.52 0.37-1,596 0.81 0.42 < LOQ-6.41

*Based on pre-birth home air data from Vorkamp et al. (2011)[41]; $not separated from BB-153.

taken the same year[78]. For BDE-209 and α-HBCDD, median exposure estimates were more similar for dust 
and breast milk, although slightly higher in breast milk, while the opposite trend was observed for γ-
HBCDD. Exposure through inhalation only contributed marginally to the total exposure of PBDEs but was 
comparable to the exposure via dust for PBDEs with up to four bromine atoms [Table 5]. These data suggest 
that in addition to in utero exposures, exposure through breast milk plays a dominant role in contributing 
to the cumulated infant exposure to BFRs compared to house dust (and air), and that this trend also 
includes the NBFRs. Although these samples were collected in the late 2000s, they provide a valuable point 
of reference and insight for exploring exposure pathways and prioritizing preventive initiatives, particularly 
for NBFRs, for which much is still unknown. PBDE and HBCDD levels are expected to continue to decline 
in the future due to global restrictions, as was recently demonstrated for breast milk BDE-47 and BDE-99 
concentrations[80], whereas the expected trend for NBFR is less clear as these chemicals are not yet restricted.

The final exposure pathway, dermal uptake, was not assessed directly in the current study as several of the 
required input data such as dust loadings and skin lipid thickness were not available for infants, making the 
estimates highly uncertain. For infant skin in particular, the stratum corneum is thinner than adult skin[81] 
so the permeability coefficients determined on adult skin may not apply. However, estimates of skin 
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Figure 1. Multiplicative change in NBFR and PBDE concentration (log10-transformed) in breast milk and 95% confidence intervals for a 
one-year change in mother’s age. *P < 0.05; $not separated from BB-153.

Figure 2. Tree plot of relationships between PBDEs in maternal blood (as shown in tertiles) compared to multiplicative change in breast 
milk concentrations. These models were adjusted for parity and mother’s age. *P < 0.005.
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permeability of BFRs have shown that dermal uptake of NBFRs does occur, though much is initially trapped 
in the epidermis[82]. The highest dermal uptake is expected for the BFR with lower log Kow such as DPTE, 
HBCDD, and the least brominated PBDEs, and it cannot be ruled out that dermal uptake may be a relevant 
exposure pathway.

CONCLUSION
Despite attention to BFRs over the last few decades, NBFRs have only scarcely been studied with regard to 
human external and internal exposure. This study shows that the internal exposure levels of NBFRs were 
similar to those of most PBDEs already at the time of PBDE restrictions. As opposed to PBDEs, NBFRs were 
not correlated in breast milk and house dust, indicating other prominent exposure pathways than dust 
ingestion and/or transformation and toxicokinetic processes which are not yet understood. These data add 
to the knowledge of exposure pathways and estimated total intake for infants that may be a valuable 
reference point for future BFR studies and assessment of current and future restrictions.
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