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Abstract
Fragile X syndrome (FXS) is caused by a full mutation (> 200 repeats) in the 5’untranslated region of the Fragile X 
Messenger Ribonucleoprotein 1 gene (FMR1 gene), which leads to methylation and silencing of expression, 
generating the total or partial absence of its product, FMR1 protein (FMRP). When the repetitions are between 55 
and 200 cytosine-guanine-guanine (CGG) repeats, it is called a premutation, which is related to a wide spectrum 
of conditions such as Fragile X-associated tremor ataxia syndrome (FXTAS), fragile X-associated primary ovarian 
insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND). High levels of FMR1 mRNA 
are implicated in premutation pathophysiology, which differs from the deficiency or absence of FMRP in FXS. In 
recent years, numerous attempts have been made to find treatments that can counteract the effects of the absence 
of FMRP and improve symptoms associated with the condition such as intellectual disability, anxiety, autism, 
stereotypies, language delay, and aggressive behavior. Here, we review current treatments in addition to targeted 
treatments that can reverse some of the neurobiological abnormalities in those with FXS. We also review molecular 
interventions that will hopefully lead to a promising future for those affected by FXS and their families.
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INTRODUCTION
Much progress has been made in the diagnosis and management of FXS since it was first described in 1943 
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and then known as Martin-Bell Syndrome. In a large meta-analysis, the frequency of the full mutation 
(> 200 CGG repeats) was determined to be 1.4 per 10,000 males and 0.9 per 10,000 females in the general 
population[1]. However, in different parts of the world, the prevalence can be much higher; for instance, in 
Colombia, there is a village (Ricaurte) where the prevalence of FXS is approximately 1 per 100 because of a 
founder effect to this region[2].

FXS is the most frequent cause of intellectual disability (ID) and autism of hereditary origin, caused by an 
expansion of the sequence of CGG trinucleotides repeats to ≥ 200 in the region of the promoter of the FMR1 
located on the long arm of the X chromosome at Xq27.3. This full mutation generates silencing through 
methylation of the gene, leading to the total or partial loss of its product, FMRP. This protein is mainly 
expressed throughout the brain and in the testes, but also in almost all other tissues and organs[3].

The premutation is 55 to 200 CGG repeats in the promoter region of FMR1 and it is usually not methylated. 
Carriers of the premutation usually produce normal levels of FMRP and they are not intellectually impaired; 
however, they do exhibit elevated levels of FMR1 mRNA[4]. The elevated levels of mRNA lead to toxicity to 
the neuron and other cells and this causes clinical problems including FXPOI meaning menopause before 
age 40[5], FXTAS, a neurodegenerative disorder[6], and FXAND affecting approximately 50% of carriers[7].

FMRP binds messenger RNAs, including brain cytoplasmic RNAs and microRNAs, to regulate their 
transport and translation, interacts with nuclear and cytoplasmic proteins,  modulates ionic channels, and is 
present in synaptic compartments, where it controls the translation of specific mRNAs[8]. Structurally, it has 
three main regions: N-terminal region, central region, and C-terminal region. Each of these regions can 
bind to RNA molecules[9] and FMRP’s role in mRNA transport, splicing, and metabolism is important for 
brain development and aging.

The symptoms and signs related to the total or partial loss of FMRP are variable but usually compromise all 
areas of development: cognitive, behavioral, sensory, verbal, and motor, which have lifelong consequences. 
In addition, characteristic physical manifestations such as the elongated face, prominent ears, joint 
hypermobility, soft skin, and macroorchidism in puberty occur in FXS.  The features of FXS require 
complex management in treatment, which should be addressed by a multidisciplinary team. Here, we 
present a review of the literature to try to encompass the current optimal therapeutic intervention strategies 
for these children, adults, and their families affected by fragile X conditions. The literature was selected for 
controlled medication trials in FXS, the inclusion of systematic reviews in this field of study, key search 
engines, and follow-up studies. Single-case or abstract conference studies were excluded.

Molecular mechanisms of fragile X syndrome
FMRP is a multi-functional mRNA binding protein that travels to and from the cell nucleus, with a role in 
the translation, stability, editing, and intracellular transport of hundreds of mRNAs. FMRP also directly 
interacts with proteins and regulates their function. Additionally, FMRP can regulate RNA synthesis by 
either controlling the expression of or modulating the activities of transcription factors and chromatin-
modifying enzymes, many of which are involved in neurodevelopment and the maintenance of neural 
connections[10]. In the synaptic space, FMRP is associated with the activation of glutamate receptors, both 
metabotropic (group 1 mGluR 1 and 5) and ionotropic (AMPA and NMDA). Its deficit, therefore, translates 
into abnormal growth and synaptic plasticity[11]. The expression of these receptors is increased in the 
hippocampus of animals lacking FMRP[12]. Despite the successful use of glutamate receptor inhibitors to 
correct symptoms such as seizures, hyperreactivity, and neural structural changes in knockout (KO) 
mouse[12], studies in fully-methylated FXS patients with an antagonist of mGluR5 were not successful in 
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adults or children with FXS[13,14].

The endocannabinoid system is also regulated by FMRP and endogenous cannabinoid ligands such as 
anandamide (N-arachidonoylethanolamine) and 2-arachidonoylglycerol (2-AG), are postulated to play a 
role in neuronal development and function[15]. These ligands bind to cannabinoid receptors type 1 and 2 
(CB1 and CB2) and modulate synaptic activity. CB1 is expressed in the brain and is present at lower 
concentrations in a variety of peripheral tissues and cells. CB2 receptors are expressed primarily in the 
immune and hematopoietic system, as well as in the brain, pancreas, and bone[16]. CB1 can be found at high 
levels in inhibitory terminals (GABAergic interneurons) and at lower levels in excitatory terminals 
(glutamatergic) and both play a role in mood and behavior modulation. 2-AG is the most abundant 
endocannabinoid in the brain and is produced in dendritic spines by activating mGLUR1 receptors. The 
absence of FMRP in FXS reduces the production of 2-AG, thereby decreasing the activation of CB1 
receptors in the central nervous system (CNS)[17]. Administration of cannabidiol (CBD) appears to increase 
2-AG availability, thereby increasing CB1 receptor activation and attenuating reduced endogenous 
cannabinoid signaling[18].

In another aspect, FMRP modulates the activation of sodium-potassium channels and calcium 
channels[19,20], its absence alters the transport and/or translation of specific mRNAs that can influence 
neuronal excitability.

The GABAergic system is also affected in FXS, leading to an excitatory-inhibitory imbalance, because of 
reduced expression of subunits at GABA receptors and a reduction in GABAergic interneuronal 
signaling[21], which play a central role in the presence of autism spectrum disorder (ASD) and FXS[22]. FMRP 
is broadly expressed in GABAergic neuron populations. The GABAergic system normally mediates the 
inhibitory neurotransmission in the CNS and the lack of FMRP disrupts this system and it was implicated 
in the pathogenesis of FXS based on studies of GABA-A receptor expression in Fmr1 KO mice[22]. These 
alterations increase neuronal excitability and further enhance the imbalance of excitation and inhibition. 
This imbalance leads to enhanced sensitivity to repeated sensory stimuli, a lack of habituation to repetitive 
stimuli, and subsequent sympathetic hyperactivation, causing anxiety in these patients[23,24].

The normal morphology of dendritic spines also derives from physiological processes modulated in part by 
FMRP activity. Its absence or decrease leads to a pathological hyperabundance of long, thin immature 
dendritic protrusions, which result in an abnormal post-synaptic maturation and a failure in the synapse 
elimination process[25].

Another association studied is the relationship between FMRP and metalloproteinase 9 (MMP9) levels. 
MMP9 is an enzyme that encodes an endopeptidase important for the maturation of dendritic spines and 
synaptic formation. MMP9 levels are elevated in FXS because FMRP, which inhibits the translation of the 
MMP9 mRNA, is missing[26]. However, MMP9 levels can be lowered to normal with minocycline 
treatment[27,28]. In fact, in the Fmr1-KO mouse, treatment with minocycline improved the maturation of 
dendritic spines, synapse formation, anxiety levels, and cognitive performance, as well as ultrasonic 
vocalizations[29,30]. In addition, metformin may decrease MMP9 levels in the Fmr1-KO mouse[31]. Such 
studies led to the successful trial of minocycline in the treatment of FXS[28].

This knowledge has made it possible to generate therapeutic interventions with multiple medications that 
can already be applied in clinical practice or are in clinical trials.
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Coping with FXS and their family inheritance and social environment
The complexity of the child affected by FXS and the impact on their family and social environment requires 
that this condition be addressed by a multidisciplinary team guided by a developmental specialist 
(Pediatrician, Neurologist, or Child Psychiatrist), ideally with experience in FXS.

Treatment will then require pharmacological and non-pharmacological therapy such as speech and 
language therapy, occupational therapy (OT), physical therapy (PT), counseling, or behavioral interventions 
such as applied Behavior analysis (ABA) and a healthy lifestyle[32]. The inheritance of the fragile X mutation 
through the pedigree needs to be explained to the family. If a child has the full mutation, the mother is 
always the carrier because the expansion to ≥ 200 CGG repeats only occurs when passed on by the mother. 
The mother usually has a premutation, but on occasion, she may have a full mutation, so she needs the 
fragile X DNA test herself. She has approximately a 50% chance of passing on the full mutation to her 
children because rarely do both X chromosomes carry the mutation. If her premutation is over 90 CGG 
repeats, then the repeat expansion will expand to a full mutation in the next generation. For premutation 
carriers with repeats between 55 and 90, there is an increasing risk of going to a full mutation as the repeat 
number increases. Usually, after every 10 CGG repeats, there is an AGG anchor, and if one or two anchors 
are present in the mother, this will decrease the risk of expanding to the full mutation up until 90 to 100 
repeats when the risk goes to 100% when that mutation is passed on to the next generation[33,34].

If the family has a male premutation carrier, often the father of the mother, then this male will pass on the 
premutation to all his daughters. Therefore, it is helpful to order fragile X DNA testing for the grandparents 
because if the grandfather is the carrier, then all of the mother’s sisters will be carriers and they will be at 
high risk of having children with FXS. In addition, premutation carriers need to know the risk of 
premutation disorders. FXPOI occurs in about 20% of female carriers[35]; FXTAS occurs in about 40% of 
aging male carriers and 16% of aging female carriers[6], and FXAND, which encompasses depression, 
anxiety, insomnia, chronic pain, and chronic fatigue and social deficits, occurs in up to 50% of carriers, 
typically in adulthood, but sometimes also in childhood[7,36,37].

Cognitive-behavioral challenges and neurological symptoms
Patients with FXS may present with significant behavioral problems, which usually manifest with greater 
intensity as they advance in their development, including tactile defensiveness, poor eye contact, hand 
flapping, hand-biting, clothes chewing, hyperactivity, impulsivity, anxiety, aggressive behavior, and sensory 
over-reactivity from the second year of life onward. The manifestations of these problems include overfilling 
or stuffing their mouths with food, and this often translates into obesity. Autism (50%-60% of men, 20% of 
women)[38] or social deficits and attention deficits with/without hyperactivity (80% of boys and 30% of girls) 
are also more frequent than in the general population[9]. Often, in early childhood, sleep difficulties can be 
seen as well[39]. Physical therapy, occupational therapy, speech therapy and ABA[40] for ASD are essential 
within non-pharmacological interventions[41].

ABA is a behavioral intervention commonly used as a therapeutic treatment for ASD. Its premise is to 
reinforce the positive socially-involved actions of the child. The Early Start Denver Model (ESDM), another 
model of behavioral intervention, has ABA principles, but focuses on verbal and social skills through 
interactions with young children ages 1 to 3 in the family environment[40,42,43].

Anxiety is a cardinal symptom in FXS, especially after age 2, and  can increase with age and it can also 
correlate with ASD[24]. Low doses of sertraline, a selective serotonin reuptake inhibitor (SSRI), which then 
prevents the reuptake of serotonin from the synaptic space, has shown significant improvement in anxiety 
and in visual perception, fine motor coordination, and better T score on the Mullen scale for development 
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in a controlled trial of young children with FXS ages 2 to 6 years old[44]. Those who do not respond to SSRIs, 
or who exhibit aggressive behaviors (potentially harming others or themselves), or who exhibit violent 
reactions may respond well to the use of an atypical antipsychotic such as aripiprazole or risperidone, both 
of which are approved for aggression and irritability in ASD[45]. These atypical antipsychotics can block 
dopamine but also stimulate the serotonin receptors, leading to improvement in aggression and irritability, 
decreased hyperactivity, and less anxiety in FXS[46]. Cognitive behavioral therapy has proven helpful for 
emotional dysregulation in FXS[47,48].

Other neuropsychiatric manifestations include social or specific phobias, ritualistic and compulsive 
behaviors, restricted interests, aggressiveness, stereotypies, and self-harming behaviors. Early and intensive 
psychological and environmental interventions can play a positive role in the management of anxiety, 
ADHD, social challenges, and depression[46].

Most men with FXS have ID; however, up to 15% (predominantly those with mosaicism) and 70% of 
women may have an IQ that is normal or close to normal, but still have learning problems and emotional 
control issues. Cognitive abilities in FXS are known to decline with age in childhood and adolescence[49]. 
Most men with FXS in adulthood have cognitive abilities around an IQ of 40 unless they are mosaic with 
the partial lack of methylation in the full mutation or a significant percentage of cells with the premutation. 
The size or methylation mosaicism is associated with a higher IQ than those with a full mutation that is fully 
methylated because these mosaic individuals are producing a higher level of FMRP[50,51]. This is the case of 
females with a full mutation because their normal X produces FMRP and the amount of FMRP depends on 
the activation ratio (AR), meaning the percentage of cells with the normal X as the active X usually 
measured in blood. So, an AR of 0.75 means that 75 percent of her white blood cells have the active X as the 
normal X, and usually the IQ is relatively high. Approximately 1/3 of girls with the full mutation have an IQ 
less than 70, 1/3 have an IQ in the borderline range (70 to 85) and 1/3 have an IQ  in the normal range 
(above 85)[52].

By late adulthood, with aging, up to 17% of men with FXS may develop Parkinsonian symptoms, often 
combined with  some additional cognitive impairment[53].

Seizures and ASD
Seizures can also be associated with FXS, usually complex partial, although they can evolve into generalized 
tonic-clonic seizures or absence seizures[54]. Seizures are common in FXS and up to 14% of males and 6% of 
females have seizures. Seizures often begin between ages 4 and 10 years and data showed that autism was 
significantly associated with seizures as a co-occurring condition[55]. For treatment, Levetiracetam and 
oxcarbazepine are used as the first line of treatment. Valproate can be another choice and has a mood-
stabilizing effect, allowing the improvement of symptoms of aggression or lack of control in some cases[56].

Growth, connective tissue, and involvement of other systems
People affected by FXS may have different associated medical conditions from the spectrum of connective 
tissue disorders. These include  flat feet, scoliosis, joint subluxations, mitral valve prolapse, dilated ureters, 
and vesicoureteral reflux[57]. It is important to rule out aortic root dilation (25%) or mitral valve prolapse 
(MVP) (3%-20%) if a murmur is heard on auscultation. Another possible finding of the cardiovascular 
system is the decrease in parasympathetic vagal tone, especially in children who are hyperaroused. 
Hypertension is common in obese patients and in adulthood, and this may be related to enhanced anxiety. 
If hypertension or a murmur is heard, then referral to cardiology, where an evaluation including an 
ultrasound, is carried out that can document MVP or other cardiac problems. It is worth mentioning that 
carriers of the premutation may also present with cardiovascular symptoms such as arrhythmias and 
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dysautonomia[58].

Obesity occurs in about 35% of those with FXS before they reach adolescence, especially in those with 
hyperphagia and a lack of satiation after meals[59]. In about 10%, these behavioral features can lead to a 
Prader-Willi-like phenotype with severe obesity and this has a biomarker of low cytoplasmic FMRP 
interacting protein (CYFIP) levels reported by Nowicki et al.[60]. These children present with severe 
hyperphagia and early obesity (6-9 years) and typically have small genitalia and delayed puberty. Knowing 
the increased risk of obesity, it is important to encourage regular physical exercise, ideally daily, and to 
promote a healthy diet by avoiding foods rich in saturated fats and sugar. The therapy is complex and 
requires multidisciplinary support from experts in the field for behavioral interventions and medications.

Annual pediatric health checkups should include otoscopy and appropriate treatment of otitis media which 
is often recurrent in the first years of life. It is recommended to have  early  and frequent hearing screens, 
especially if there is a history of recurrent ear infections, to avoid a greater impact on language 
acquisition[61]. Children with FXS may have difficulty communicating discomfort or pain, so in the face of 
otitis, they may hit their head, and this may be the only outward symptom of infection. Recurrent otitis 
media infections often require insertion of Pressure Equalizer tubes (PE tubes) and sometimes 
adenoidectomy and/or tonsillectomy.

An evaluation by an ophthalmologist is recommended between 3 and 4 years of age to evaluate and correct 
visual acuity problems (astigmatism, hypermetropia, strabismus). If strabismus is noted (occurs in about 
20% of FXS patients), it should be evaluated as early as possible to avoid the development of amblyopia. 
Nystagmus, convergence insufficiency, and eyelid ptosis have also been reported, but are less common[54,56].

In the gastrointestinal sphere, loose stools are usually the norm in FXS, but in some rare cases, constipation 
may occur.  Toilet training is typically delayed because of sensory issues and cognitive deficits, but the 
biggest problem is training them to wipe themselves successfully after a bowel movement. OT therapy is 
often helpful in addressing this problem. Gastro-esophageal reflux is more common in infants with FXS 
(leading to frequent emesis) than in the general population. These symptoms should be screened carefully, 
diagnostic studies performed, and treatment implemented if appropriate[62].

Therapies
Almost all young children with FXS need early intervention beginning by 2 years old or earlier and they 
benefit from speech and language therapy, OT, and PT[41]. In general, motor involvement is one of the first 
findings noticed in early development. Most children affected by FXS are hypotonic, which will translate 
into delayed onset of motor milestones such as the ability to sit without support and the onset of walking. In 
the neonatal and infant period, they may have difficulties in sucking and frequent regurgitation. Physical 
therapy and occupational therapy are important for supporting motor development.

They usually have poor language development and some children, especially boys and those with 
comorbidity with autism, may be completely nonverbal for several years. Speech problems of males with 
FXS include variability in rate and stuttering-like repetition of sounds. Also notable among the features 
displayed by males is perseveration on a word, phrase, or topic in conversation, which is probably related to 
the hyperarousal  and frontal-lobe-executive function deficits[63]. Speech therapy is incorporated as a central 
element of intervention in the first years of life. PROMPT therapy can be helpful for the nonverbal child at 
2 years old, and this therapy involves tactile stimulation to the mouth to facilitate the expression of 
language[64]. For those who continue to be nonverbal, sign language can be a bridge to oral communication, 
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in addition to the use of augmentative and assistive communication devices and they are usually initiated by 
the speech and language therapist[41].

School integration programs with special education are necessary for these children when accessing the 
school system. Resources or plans for these children can be found on online portals such as www.fragileX.
org; www.fragilex.org.uk; or www.fragilex.org.au.

PSYCHOPHARMACOLOGY
Attention deficit hyperactivity disorder and treatment
As previously noted, ADHD can be diagnosed in approximately 80% of boys and about 30% of girls with 
FXS. However, the usual treatment of ADHD with stimulants can cause irritability when given to children 
less than 5 years old with FXS[46]. For those who are 5, and older stimulants are usually tolerated well, 
especially the long-acting preparations when once-a-day dosing in the morning leads to a stable level in 
blood during the day. These First-Line medications improve norepinephrine and dopamine levels at the 
synapse in the prefrontal cortex, which play a role in improving motivation, attention, and impulse control. 
For children under 5 years of age with excessive hyperactivity, guanfacine or clonidine may be considered. 
Clonidine is especially helpful for sleep problems when given at bedtime because of its sedative effect. 
Guanfacine has an overall calming effect, which calms down hyperactivity and hyperarousal when given in 
the morning and in the afternoon after school.  In some countries, such as Italy, stimulants are not 
authorized, so an alternative for attention deficit symptoms is L-acetylcarnitine or valproic acid[65,66].

In general, the use of stimulants such as methylphenidate or mixed amphetamine salts should start at a low 
dose and then follow-up visits should follow weight and vitals, particularly blood pressure, since both can be 
affected in children with FXS. If weight loss occurs, then the dose should be lowered or even discontinued 
on weekends, and increased food intake can occur before bed when the medication has worn off. In general, 
the stimulants are well tolerated; however, it is important to note that at higher doses, they can have a 
quieting effect on language. Therefore, it is advisable to avoid administering high doses[46].

Sleep
At each medical visit, it is suggested to check sleep quality and time for sleep because these parameters 
influence the development, learning, and functioning of any child, including those affected by FXS. 
Children under 3 years old with FXS often have wakefulness at night and they may get up and search for 
parents.  Seizures can also occur at night in about 15% of young children with FXS[67]. Sleep apnea also can 
occur in young children, especially if there is a history of snoring and obstruction heard at night by the 
parents. Referral to an Ear Nose and Throat (ENT) specialist and a sleep study can clarify if sleep apnea is 
occurring, and an adenoidectomy/tonsillectomy typically eliminates sleep apnea in a young child with FXS.

The use of melatonin is the most effective medication as a primary treatment of sleep wakening in young 
children with FXS[68]. Not only does melatonin play a role as a sleep inducer, but it also has antioxidant 
properties and it facilitates neuronal plasticity[69]. Melatonin should not be given in the daytime because it 
can cause drowsiness during the day.

Targeted treatments for fragile X syndrome
Most of these treatments, promoted in the last decade, are supported by research conducted in FXS animal 
models with a KO of FMR1 and the neurobiological effect that this entails. The current objective is to be 
able to, on the one hand, reactivate the damaged gene and, on the other hand, replace the effects of the 
absence of the FMRP protein.

http://www.fragileX.org
http://www.fragileX.org
http://www.fragilex.org.uk
http://www.fragilex.org.au
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Early attempts used negative modulators of mGluR5 receptors (mGluR antagonists) since this pathway is 
upregulated in FXS. Favorable results have been shown in animal studies using these antagonists, but in 
humans, the results have been negative[70-72]. Even the use of the mGluR5 antagonist AFQ056 in young 
children with FXS combined with parent-implemented language intervention (PILI) has not demonstrated 
efficacy over a prolonged period of time in a controlled trial[73].

GABA-A and GABA-B receptor agonists can reverse some of the symptoms in the animal model of FXS 
and would be useful under the theory that GABA pathways are also affected in individuals with FXS and 
that problems such as seizures and sleep disturbances are associated with this pathway. FMRP acts as a 
modulator of these GABA receptors. Clinical studies with Arbaclofen (selective GABA-B agonist) showed 
improvement in the symptoms of social isolation and behavioral problems reported by parents of patients 
with FXS, compared to placebo[74]; however, in phase III studies with adolescents and adults, Arbaclofen did 
not show improvement[75]. In the group of 5 to 11 years, an observable improvement was maintained in the 
application of the ABC FX test (Aberrant Behavior Checklist-community Edition, factored for FXS)[76], so 
arbaclofen will be studied again in FXS by the Allos company. Acamprosate (positive allosteric modulator of 
the GABA-A receptor)[77] and metadoxine (an indirect GABA activator) have been tested in small placebo-
control groups of FXS individuals. Metadoxine has shown improvement when evaluated with the Vineland 
Daily Living Skills subscale and in the computerized cognitive Test of Attentional Performance for Children 
(KiTAP) test (executive function tasks) compared with individuals who received placebo[78]. Ganaxolone has 
shown improvement in anxious symptoms in a specific subgroup of participants with greater severity of 
anxiety, but it was not efficacious for the overall group of FXS[79]. A placebo-free study of 3 doses of 
Gaboxadol, a GABA-a receptor agonist, was carried out in 28 adolescent and adult males with FXS, and 
there was a 60% response rate, suggesting that further studies are warranted in a controlled trial with 
placebo[80].

Minocycline, an antibiotic of the tetracycline family acts by lowering matrix metalloproteinase-9 (MMP9) 
expression and activity levels, which, in turn, can improve the maturity and strength of synaptic 
connections in the Fmr1-KO mouse[29]. One controlled study demonstrated significant improvement in 
behavior in children with FXS measured with the Clinical Global Impression Scale and the Visual Analogue 
Scale[28]. Thus, this medication is used in clinics to help with behavioral problems, anxiety, and attention in 
children with FXS at times. Other benefits of minocycline are its antioxidant power and anti-apoptotic 
effects. Unfortunately, it has certain side effects such as the permanent darkening of the teeth (when used in 
children under 8 years) and also, sometimes increasing the levels of antinuclear antibodies (ANA), which 
can trigger a Lupus-Like syndrome with rash or inflammation of joints (reversible when treatment is 
stopped). Therefore, if minocycline is used in treatment, then the ANA should be tested every 6 months or 
once a year if the patient is stable without side effects.

Another drug is trofinetide, a terminal analog of the tripeptide of the insulin-like growth factor that can 
decrease abnormal ERK and AKT activity, normalizing the phenotype in the KO mouse. An exploratory, 
phase 2, multicenter, double-blind, placebo-controlled, parallel-group study of the safety and tolerability of 
orally administered trofinetide to adolescent and adult males with FXS was performed. Trofinetide was well 
tolerated and showed a consistent signal of efficacy at the higher dose observed by caregiver and clinician 
assessments despite the relatively short duration of treatment[81].

Lovastatin, a statin, is another drug under study, which, in in vitro studies, has corrected excessive protein 
synthesis at the level of the hippocampus of the Fmr1-KO mouse and, when administered orally or injected, 
was able to inhibit the expression of audiogenic-induced seizures. Being a drug already FDA-approved and 
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widely used in adults and children for the management of hypercholesterolemia, it was exciting to continue 
testing it as a specific therapeutic alternative for FXS. Unfortunately, a controlled trial of lovastatin 
combined with an open-label treatment of a PILI in youth with FXS did not show greater benefit than the 
use of PILI alone[82].

Metformin
Another specific targeted treatment for FXS is metformin, a first-line medication in the treatment of type 2 
diabetes that acts by decreasing the hepatic production of glucose, decreasing absorption of glucose at the 
intestinal level and increasing insulin sensitivity, which leads to lower plasma glucose levels. Metformin in 
the fmr1-KO mouse has been shown to reduce ERK signaling and decrease levels of phosphorylated EIF4E 
and MMP9[31]. Metformin can also alleviate features of FXS in the Drosophila model of FXS by lowering the 
up-regulation of the mTOR pathway that is seen in FXS[83]. Metformin is also known to reduce obesity, 
especially in children or adults with ASD who have gained weight because of antipsychotic use[84]. Initially, 
metformin was tried in patients with FXS and the Prader-Willi-like phenotype with obesity and it helped to 
reduce the obesity[85]. In addition, it was tried in FXS without obesity and the families saw an improvement 
in language and conversational abilities. In young children 3 to 7 years, an open-label trial of metformin 
improved both behavior and cognitive abilities on the Mullen Scales of Early Learning compared to the 
early development of FXS documented in the literature[86]. Subsequent cases of FXS have demonstrated 
improvement in IQ in two adult males treated clinically with metformin[87] and another case where 
macroorchidism did not develop when metformin was started before puberty[88]. Currently, a controlled trial 
of metformin treatment over 4 months for individuals with FXS from ages 8 to 45 is taking place at three 
centers, including the MIND Institute at UC Davis and at the University of Edmonton in Canada and St 
Justine Hospital in Montreal. Results should be available in early 2024. Because of clinical reports 
demonstrating its benefits, metformin is often used clinically and we all await the results of the controlled 
trial.

Cannabidiol
CBD has an antioxidant, anti-inflammatory, and neuroprotective effect, so it could be useful in patients 
with neurodevelopmental disorders where neuro-inflammation and immune dysregulation would play a 
role in pathogenesis, such as in ASD[89]. Moreover, its anxiolytic effect, via GABA enhancement and 
activation of the cannabinoid type 1 receptor, has been shown to improve anxious symptoms in patients 
with autism[90]. Its positive medicinal effects include the control of seizures in children with Lennox Gastaut 
syndrome and Dravet syndrome[91]. Moreover, parents of children with refractory epilepsy reported 
improvement in attention and behavior when treated with CBD[92].

Zynerba has manufactured CBD that is free of THC and has carried out a twelve-week controlled trial of 
this topical ointment in children with FXS at a dose of 250 mg to 500 mg (weight dependent) rubbed on the 
shoulder skin twice a day. This topical preparation of CBD demonstrated significant benefit for the primary 
outcome measure of Social Avoidance, a subtest of the Aberrant Behavioral Checklist for Fragile X (ABC 
FX) in those children who had > 90% methylation[93]. However, because it did not demonstrate efficacy for 
those with FXS who were mosaic, the FDA asked Zynerba to carry out a second treatment study where the 
molecular subgroups were further studied and this trial, called RECONNECT, is currently ongoing at 
multiple international sites. CBD not only improved social avoidance but also benefited anxiety and 
outburst behavior so that the Quality of Life was improved for the families, and they found that they could 
go on outings with their children without severe behavioral manifestations. However, this medication is not 
available from marijuana stores presently, and the closest alternative is hemp-derived CBD, which has a 
very low level of THC (< 1%) and is typically available in tinctures or gummies[94]. CBD may also be helpful 
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for premutation carriers who often have symptoms of insomnia, anxiety, and chronic pain associated with 
FXAND[36].

Phosphodiesterase 4D inhibitor: BPN14770
Perhaps the most exciting treatment study in FXS was the use of BPN14770, which inhibits the breakdown 
of cAMP because cAMP is deficient in FXS. The use of this inhibitor raised cAMP levels and improved 
cognition substantially in a controlled trial. Thirty adults with FXS were treated for 14 weeks with either a 
placebo or BPN14770 at a dose of 25 mg twice a day[95]. The cognitive outcome measure was the NIH 
toolbox, which had been modified by Dr. David Hessl and his team to be useful in individuals with ID[96]. 
They found that multiple measures on the NIH toolbox improved in those treated with BPN14770 
compared to placebo including Oral Reading Recognition, Picture Vocabulary, and the Cognition 
Crystallized Composite Score in addition to the parents’ documentation of improvements in language and 
daily functioning on the Visual Analogue Scale. Such significant improvements in cognition in adults with 
FXS have never been seen before, so this medication has brought hope to the fragile X field that cognitive 
deficits can be improved even in adulthood. Currently, phase III controlled trials of BPN14770 are being 
carried out in adolescents and adults with FXS at multiple centers, and by the end of 2023, such trials will 
likely take place in children with FXS.

Gene therapy
Advances in DNA technology have been used to correct CGG expansions with pluripotent cells. Eventually, 
in the future, these cells can enter into the CNS of patients affected with FXS to correct the expansion. 
Recently, an approach to correct the genetic defect in FXS was described via recruitment of endogenous 
repair mechanisms that then drive excision of the long CGG repeat. FMRP restoration through de novo 
transcription, can be induced by demethylation and resolution of the aberrant R-loops in the FMR1 gene in 
cellular models, identifying a potential method of treating FXS in the future[97]. Another study that sought to 
deliver ASOs into the brain of FXTAS affected mouse models showed reduced inclusion formation, 
improved motor response, and correction of gene expression profiling[98]. These studies raised hope for the 
development of future curative treatments, and it is exciting to witness the development of therapeutic 
alternatives that until recently were unthinkable.

CONCLUSION
Animal models and advances in understanding the molecular dysregulation present in FXS have led to 
several targeted treatments described here that have improved the lives of many patients with FXS. Support 
and intervention for patients should extend to their family and environment. The quality of life of each of 
these individuals will be affected differently depending on the level of ID, behavioral challenges, the 
presence of aggressiveness or disruptive behaviors, and the comorbidity present in both the patient and 
their caregivers. Parents can be affected emotionally, having to assume the responsibility of ensuring the 
health of the child, and battling chronic stress or major depression, especially those caregivers who have the 
premutation with FXAND and/or FXPOI. Family support is a fundamental pillar in therapeutic approaches. 
PILI is an alternative that strengthens communication channels between parents and children. It is 
recommended to have counseling, parent group support, educational alternatives, and psychological and/or 
psychiatric- intervention when necessary.
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