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Abstract
Metabolic reprogramming within the tumor microenvironment (TME) plays a critical role in driving drug resistance 
in gastrointestinal cancers (GI), particularly through the pathways of fatty acid oxidation and glycolysis. Cancer 
cells often rewire their metabolism to sustain growth and reshape the TME, creating conditions such as nutrient 
depletion, hypoxia, and acidity that impair antitumor immune responses. Immune cells within the TME also 
undergo metabolic alterations, frequently adopting immunosuppressive phenotypes that promote tumor 
progression and reduce the efficacy of therapies. The competition for essential nutrients, particularly glucose, 
between cancer and immune cells compromises the antitumor functions of effector immune cells, such as T cells. 
Additionally, metabolic by-products like lactate and kynurenine further suppress immune activity and promote 
immunosuppressive populations, including regulatory T cells and M2 macrophages. Targeting metabolic pathways 
such as fatty acid oxidation and glycolysis presents new opportunities to overcome drug resistance and improve 
therapeutic outcomes in GI cancers. Modulating these key pathways has the potential to reinvigorate exhausted 
immune cells, shift immunosuppressive cells toward antitumor phenotypes, and enhance the effectiveness of 
immunotherapies and other treatments. Future strategies will require continued research into TME metabolism, 
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the development of novel metabolic inhibitors, and clinical trials evaluating combination therapies. Identifying and 
validating metabolic biomarkers will also be crucial for patient stratification and treatment monitoring. Insights into 
metabolic reprogramming in GI cancers may have broader implications across multiple cancer types, offering new 
avenues for improving cancer treatment.
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INTRODUCTION
Gastrointestinal cancers (GI) encompass a diverse group of malignancies affecting the digestive tract, 
including cancers of the esophagus, stomach, liver, pancreas, colon, and rectum. These cancers collectively 
represent a significant global health burden[1,2]. According to the latest data from the Global Cancer 
Observatory (GLOBOCAN) 2023, GI cancers account for approximately 26% of all new cancer cases and 
35% of all cancer-related deaths worldwide[3]. Colorectal cancer ranks as the third most commonly 
diagnosed cancer and the second leading cause of cancer death globally, with nearly 2 million new cases and 
over 900,000 deaths reported annually[4]. Gastric and liver cancers also remain among the top causes of 
cancer mortality, particularly in regions like East Asia and sub-Saharan Africa, where risk factors such as 
Helicobacter pylori infection and hepatitis B virus (HBV) are prevalent[5]. Despite advancements in early 
detection, surgical techniques, and therapeutic approaches, the prognosis for many GI cancers remains 
poor, especially in advanced stages. Standard treatment modalities, including surgery, chemotherapy, 
radiation therapy, and targeted therapies, have improved outcomes for some patients. However, the 
development of drug resistance, where cancer cells adapt and survive despite treatment, continues to pose a 
significant challenge[6,7]. This resistance not only limits the effectiveness of existing therapies but also 
contributes to disease recurrence and progression, underscoring the urgent need for novel treatment 
strategies[8]. The historical timeline of GI Cancer research and immune drug resistance is highlighted in 
Table 1.

The TME plays a crucial role in the initiation, progression, and therapeutic response of GI cancers[20]. The 
TME is a complex and dynamic milieu composed of various cell types, including cancer cells, stromal cells, 
endothelial cells, and, importantly, immune cells. These immune cells - such as tumor-associated 
macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and others are 
the key components of the TME[21]. They interact closely with cancer cells and contribute to an 
immunosuppressive environment that facilitates tumor growth and protects the tumor from immune-
mediated destruction. The crosstalk between cancer cells and immune cells within the TME is mediated by 
a variety of signaling molecules, cytokines, and metabolic exchanges. These interactions can lead to immune 
evasion, where cancer cells escape detection and elimination by the immune system, and can promote 
resistance to therapies, including chemotherapy, targeted therapies, and immunotherapies[22,23]. Therapies 
targeting the dynamic metabolism have also proven to be more effective in this scenario[23]. Metabolic 
reprogramming is a hallmark of cancer, characterized by the alteration of metabolic pathways to support the 
high energy and biosynthetic demands of rapidly proliferating tumor cells[24]. However, this phenomenon is 
not limited to cancer cells alone. Immune cells within the TME also undergo significant metabolic changes 
that influence their function and behavior[25]. These metabolic adaptations in immune cells are critical for 
their survival and activity in the nutrient-deprived and hypoxic conditions of the TME[26]. In GI cancers, 
metabolic reprogramming of immune cells can contribute to tumor growth and the development of drug 
resistance[27]. TAMs may shift toward oxidative phosphorylation (OXPHOS) and fatty acid oxidation 
(FAO), promoting an anti-inflammatory and pro-tumorigenic phenotype[28]. Similarly, MDSCs and Tregs 
can enhance glycolysis and lipid metabolism, leading to immune suppression and decreased efficacy of anti-
cancer therapies[29]. These metabolic alterations not only support the survival and function of immune cells 
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Table 1. Historical timeline for gastrointestinal cancer research and immune drug

1900s[9] · Early research in oncology begins to identify certain cancers, including GI, that have genetic and environmental causes 
· Early surgical interventions and basic chemotherapeutic agents are developed

1950s[10] · The concept of immunotherapy begins to take shape with early studies suggesting the immune system’s role in cancer 
· At the same time, the development of chemotherapeutic agents like 5-FU starts, which later becomes a mainstay in treating GI 
cancers

1960-
1970s[11]

· Development of more refined surgical techniques for GI cancers, such as improved methods for gastric and colorectal cancer 
resection 
· Introduction of radiation therapy as a standard treatment modality for GI cancers, improving local control of the disease

1980s[12] · Research into monoclonal antibodies begins, leading to the first targeted therapies. Early studies on immune system modulation 
and its potential role in cancer treatment start to emerge

1990s[13,14] · Identification of key molecular targets in cancer, such as HER2/neu in breast cancer, leads to targeted therapies like trastuzumab, 
which sets the stage for similar approaches in GI cancers 
· Introduction of interferon-alpha and interleukin-2 as immune-modulating agents, early use of immunotherapy in treating cancers 
including melanoma and renal cell carcinoma

2000s[15-17] · 2010: FDA approval of bevacizumab (Avastin) for metastatic colorectal cancer, a targeted therapy that inhibits angiogenesis 
· 2011: Introduction of immune checkpoint inhibitors, such as pembrolizumab (Keytruda) and nivolumab (Opdivo), for various 
cancers including GI cancers, demonstrating significant clinical efficacy 
· 2015: Emergence of the concept of TMB and MSI as biomarkers for predicting response to immunotherapy

2020s[18,19] · 2020: The FDA approves several new immune checkpoint inhibitors and combination therapies for GI cancers, including 
regorafenib and cabozantinib 
· 2021: Advances in understanding the role of the TME and its metabolic effects on immune response lead to new strategies for 
overcoming resistance to immunotherapy 
· 2022: The development of novel agents targeting metabolic pathways in immune cells and their role in cancer drug resistance is 
an active area of research 
· 2023: Research focuses on integrating multi-omics approaches (genomics, proteomics, metabolomics) to personalize treatment 
and enhance the efficacy of immunotherapies in GI cancers

GI: Gastrointestinal cancers; 5-FU: 5-fluorouracil; FDA: Food and Drug Administration; TMB: tumor mutational burden; MSI: microsatellite 
instability; TME: tumor microenvironment.

within the TME but also play a pivotal role in the development of resistance to cancer therapies. 
Consequently, targeting the metabolic pathways of immune cells offers a promising strategy to overcome 
drug resistance and improve therapeutic outcomes in patients with GI cancers. This review will explore the 
intricate relationship between immune cell metabolism and drug resistance in GI cancers, discussing the 
underlying mechanisms and potential therapeutic implications.

METABOLIC REPROGRAMMING IN THE TUMOR MICROENVIRONMENT
Metabolic reprogramming in the tumor microenvironment (TME) has emerged as a critical factor 
influencing cancer progression and therapeutic responses[30]. Recent studies have shed light on the complex 
interplay between cancer cells, immune cells, and stromal components within the tumor ecosystem[31]. A 
2023 review by Jin et al. highlighted how lipid metabolic reprogramming affects not only tumor cells but 
also stromal and immune cells, shaping the immunosuppressive landscape of the TME[30]. The dynamic 
nature of metabolic alterations in tumors was emphasized in a 2022 study by Navarro et al., which described 
how cancer cells adapt to nutrient-poor and hypoxic conditions through various metabolic pathways[32]. De 
Martino et al. further elaborated on how these metabolic changes in cancer cells influence the recruitment 
and function of immune cells, potentially offering new therapeutic targets[33,34]. The impact of metabolic 
reprogramming on immune suppression was extensively discussed by Arner and Rathmell, who explored 
how altered metabolism in the TME affects T cell function and antitumor immunity[34]. A 2024 study 
provided insights into how metabolic alterations in colorectal cancer specifically influence the immune 
microenvironment, highlighting the potential for metabolism-targeted therapies[35]. Collectively, these recent 
works underscore the critical role of metabolic reprogramming in shaping the TME and its potential as a 
therapeutic target in cancer treatment.
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Targeting the metabolism of cancer has a lot of potential, but it is difficult since cancer cells can quickly 
rewire their metabolic pathways in response to therapeutic treatment. Because of this metabolic flexibility, 
cancer cells can alternate between FAO, glycolysis, and other metabolic processes to meet their energy needs 
and continue to exist while undergoing treatment. Therefore, monotherapies that target specific metabolic 
enzymes or pathways frequently result in limited efficacy and the development of resistance. Potential 
approaches to lessen this adaptive resistance include combining metabolic inhibitors with conventional 
treatments like chemotherapy or immunotherapy, or utilizing combination medicines that target several 
metabolic pathways.

IMMUNE CELL METABOLISM IN GI CANCERS
The TME in GI cancers represents a complex ecosystem comprising cancer cells, stromal cells, and diverse 
immune cell populations. Within this intricate milieu, the metabolic reprogramming of immune cells 
emerges as a critical factor influencing tumor progression and therapeutic responses[36]. As cancer cells 
proliferate rapidly and alter their surrounding environment, immune cells are forced to adapt to challenging 
conditions, including nutrient deprivation, hypoxia, and acidosis[37]. Rapid tumor growth outpaces blood 
vessel formation, leading to areas of low oxygen availability. This hypoxic condition prompts cancer cells 
and stromal cells, particularly cancer-associated fibroblasts, to adapt metabolically by enhancing glycolytic 
pathways and producing angiogenic factors to promote vascularization[11]. As tumors grow, they consume 
available nutrients such as glucose and amino acids at an accelerated rate. This depletion affects not only the 
tumor cells but also the surrounding immune cells such as macrophages, which may struggle to access 
essential nutrients for their activation and function[34]. The accumulation of metabolic by-products like 
lactate leads to a decrease in pH within the TME, creating an acidic environment that can inhibit immune 
cell function and promote tumor progression[38]. These adaptations profoundly impact the function and 
behavior of various immune cell populations, ultimately shaping the course of the disease and the efficacy of 
cancer treatments[39]. One of the major adaptations of immune cells is effector T cells switching from 
OXPHOS to glycolysis, which is less efficient but allows for rapid ATP production under nutrient-limited 
conditions[40]. The altered metabolism within the TME can also lead to an immunosuppressive environment. 
Tregs and MDSCs are often favored under these conditions, further inhibiting antitumor immune 
responses[41]. Moreover, cytotoxic lymphocytes may lose their ability to effectively kill tumor cells, while 
macrophages may adopt a pro-tumorigenic M2 phenotype instead of a tumor-killing M1 phenotype.

One of the primary challenges faced by immune cells in the TME is nutrient deprivation[42]. Cancer cells, 
particularly those exhibiting the Warburg effect, consume vast amounts of glucose, creating a competitive 
environment where immune cells struggle to meet their metabolic needs[43]. This glucose deprivation forces 
T cells and other immune cells to alter their metabolic profiles, often resulting in impaired effector 
functions. CD8+ T cells, which normally rely heavily on glycolysis for their cytotoxic activities, shift toward 
FAO to survive in the glucose-depleted environment[44]. While this metabolic flexibility enables survival, it 
often comes at the cost of reduced antitumor efficacy. The competition for nutrients extends beyond 
glucose, with cancer cells also depleting essential amino acids and lipids, further compromising immune cell 
function[45].

Hypoxia represents another significant challenge in the TME of GI cancers. Poorly vascularized regions of 
tumors create oxygen-deprived areas, triggering metabolic adaptations in immune cells mediated largely by 
hypoxia-inducible factor 1α (HIF-1α)[46]. This transcription factor promotes glycolysis and suppresses 
OXPHOS, fundamentally altering cellular energy production[47]. The impact of hypoxia is particularly 
evident in TAMs, which often shift toward an M2-like phenotype in oxygen-poor regions, promoting 
immunosuppression[48]. This metabolic reprogramming in TAMs is associated with increased expression of 
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arginase-1 and indoleamine 2,3-dioxygenase (IDO), enzymes that deplete essential amino acids required for 
T cell function[49]. The hypoxic environment also affects other immune cell populations, including dendritic 
cells and T cells, often impairing their antitumor functions and promoting a more immunosuppressive 
TME[50]. The accumulation of metabolic by-products, particularly lactic acid from cancer cell glycolysis, 
creates an acidic TME that further modulates immune cell function[51]. This acidic environment can impair 
the activity of effector T cells while promoting the differentiation and function of immunosuppressive cell 
types like Tregs[52]. The high lactate levels in the TME not only contribute to acidity but also serve as an 
alternative fuel source for some immune cells, particularly Tregs, further enhancing their 
immunosuppressive functions[53]. Moreover, the acidic environment affects the metabolism of dendritic 
cells, impairing their ability to present antigens and activate T cells effectively, thus compromising the 
initiation of antitumor immune responses[54].

The impact of these metabolic challenges on specific immune cell populations in GI cancers is profound 
and varied. CD8+ T cells, crucial for antitumor immunity, often exhibit metabolic exhaustion due to 
chronic antigen stimulation and nutrient competition[55]. This exhaustion is characterized by reduced 
glycolytic capacity, mitochondrial dysfunction, and increased expression of inhibitory receptors like PD-1, 
collectively impairing their ability to combat tumor cells[56]. Natural killer (NK) cells, another vital 
component of antitumor immunity, show altered metabolism in the TME, with reduced glycolysis and 
OXPHOS contributing to their dysfunction and diminished cytotoxicity against cancer cells[57]. These 
metabolic alterations in NK cells compromise their ability to recognize and eliminate cancer cells, further 
contributing to tumor immune evasion in GI cancers.

The MDSCs and Tregs, both key players in tumor-induced immunosuppression, undergo significant 
metabolic reprogramming that enhances their immunosuppressive functions[58]. MDSCs increase their 
glycolytic activity and production of lactate, contributing to the acidic TME, while also enhancing arginine 
metabolism and FAO to support their survival and suppressive activities. Tregs, on the other hand, exhibit 
increased reliance on OXPHOS and FAO, allowing them to thrive in the glucose-depleted TME[59,60]. Their 
enhanced ability to utilize lactate as an energy source gives them a competitive advantage in an acidic 
environment, further promoting their immunosuppressive functions[61]. The metabolic reprogramming in 
immune cells of the TME is summarized in Table 2.

MECHANISMS OF DRUG RESISTANCE
Metabolic reprogramming in immune cells within the TME has emerged as a critical factor contributing to 
drug resistance in GICs. This complex interplay between altered cellular metabolism and immune function 
facilitates cancer cell survival and therapeutic evasion through several interconnected mechanisms[68,69]. In 
GI cancers, including colorectal, gastric, pancreatic, and esophageal malignancies, the tumor TME is 
characterized by nutrient deprivation, hypoxia, and acidosis. These conditions compel both cancer and 
immune cells to adapt their metabolic profiles, often with profound consequences for tumor growth and 
treatment efficacy[70,71]. One of the primary mechanisms by which metabolically reprogrammed immune 
cells contribute to drug resistance is through immune evasion[72]. TAMs, Tregs, and MDSCs adopt 
immunosuppressive phenotypes that inhibit antitumor immune responses[73]. These cells secrete factors 
such as interleukin-10 (IL-10), TGF-β, and prostaglandin E2, which suppress the activity of cytotoxic T 
lymphocytes and NK cells[74]. Moreover, increased FAO in Tregs enhances their immunosuppressive 
capacity, allowing cancer cells to evade immune surveillance and resist immunotherapies. This metabolic 
adaptation in immune cells creates a protective environment for cancer cells, shielding them from both 
endogenous immune responses and exogenous therapeutic interventions[75]. The resulting 
immunosuppressive TME not only promotes tumor growth but also diminishes the efficacy of various 
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Table 2. Metabolic reprogramming in immune cells of the tumor microenvironment

Cell type Dominant metabolic pathway Functional impact Therapeutic target References

TAMs FAO Immunosuppression, tumor 
promotion

FAO inhibitors [62]

CAFs Glycolysis, glutaminolysis Tumor growth support, 
immunosuppression

Glycolysis inhibitors, glutaminase 
inhibitors

[63]

Exhausted CD8+ 
T cells

Impaired glucose uptake, reduced 
mitochondrial function

Decreased antitumor activity Metabolic reprogramming agents [64]

MDSCs Glycolysis, amino acid metabolism T cell suppression, tumor 
progression

Glycolysis inhibitors, amino acid 
metabolism modulators

[65,66]

Tregs FAO, glycolysis Immunosuppression, inhibition of 
effector T cells

FAO inhibitors, glycolysis inhibitors [30,67]

TAMs: Tumor-associated macrophages; FAO: fatty acid oxidation; CAFs: cancer-associated fibroblasts; MDSCs: myeloid-derived suppressor 
cells; Tregs: regulatory T cells.

cancer treatments, including immunotherapies and some chemotherapeutic agents that rely on an intact 
immune response for optimal efficacy[76].

Another significant mechanism of drug resistance involves the alteration of drug metabolism by immune 
cells within the TME[77]. Metabolically reprogrammed immune cells can express enzymes that metabolize 
and inactivate chemotherapeutic agents, reducing their efficacy[78]. Tumor-associated neutrophils have been 
shown to express high levels of aldehyde dehydrogenase, which can detoxify certain chemotherapy drugs 
like cyclophosphamide[79]. Similarly, increased expression of cytochrome P450 enzymes in tumor-infiltrating 
immune cells can lead to enhanced metabolism of various targeted therapies, limiting their effectiveness[80]. 
This metabolic alteration in immune cells contributes to the development of chemoresistance in various 
cancer types, highlighting the importance of considering the TME as a whole when designing treatment 
strategies[81,82]. Furthermore, the competition for essential nutrients between cancer cells and immune cells 
in the TME can significantly impact drug efficacy[83]. Cancer cells often outcompete T cells for glucose, 
leading to T cell dysfunction and impaired antitumor immunity. This nutrient deprivation can also limit the 
availability of metabolites required for optimal drug action, thereby contributing to therapeutic 
resistance[84]. The altered metabolic landscape within the TME can affect drug distribution, uptake, and 
activity, further complicating treatment efficacy[85].

Metabolic pathways such as pyrimidine metabolism, lipid metabolism, glucose metabolism, and FAO have 
been implicated in the development of resistance to commonly used chemotherapeutic agents. For instance, 
5-fluorouracil (5-FU) targets pyrimidine metabolism by inhibiting thymidylate synthase, yet cancer cells can 
upregulate this enzyme to mitigate drug effects[86]. Similarly, oxaliplatin, a platinum-based drug, encounters 
resistance through alterations in lipid metabolism that enhance cell survival during treatment[87]. Irinotecan, 
a topoisomerase I inhibitor, exemplifies how enhanced DNA repair mechanisms can enable cancer cells to 
recover from drug-induced damage. The competition for glucose between cancer cells and immune cells 
further complicates treatment efficacy, as nutrient deprivation can impair antitumor immune responses[88,89].

The production of specific metabolites by reprogrammed immune cells can directly influence cancer cell 
behavior and drug response[90]. Lactate produced by glycolytic MDSCs can activate signaling pathways in 
cancer cells that promote survival and drug resistance. Additionally, metabolic alterations in immune cells 
can lead to changes in epigenetic regulation, affecting gene expression patterns that influence drug 
sensitivity[91]. Accumulation of the oncometabolite 2-hydroxyglutarate in IDH-mutant tumors has been 
shown to alter DNA methylation patterns, potentially contributing to therapeutic resistance[92]. These 
metabolite-mediated effects underscore the complex interplay between cellular metabolism and signaling 
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pathways in the TME, which can collectively contribute to drug resistance mechanisms[56]. Moreover, 
changes in cellular redox balance resulting from metabolic reprogramming in immune cells can affect the 
efficacy of therapies that rely on oxidative stress induction. Enhanced glutathione metabolism in TAMs can 
protect cancer cells from oxidative damage induced by certain chemotherapies[93].

Despite advances in treatment modalities, drug resistance remains a significant challenge, limiting 
therapeutic efficacy and impacting patient outcomes. 5-FU, a pyrimidine analog, has been a cornerstone of 
GI cancer treatment for decades, acting as an antimetabolite that inhibits thymidylate synthase and disrupts 
DNA synthesis[94]. Three major mechanisms contributing to 5-FU resistance include metabolic 
reprogramming, enhanced DNA repair mechanisms, and autophagy activation. Cancer cells upregulate 
thymidylate synthase expression, counteracting 5-FU’s inhibitory effects, and alterations in pyrimidine 
metabolism pathways further contribute to resistance[95]. Oxaliplatin, another commonly used drug in 
colorectal cancer combination therapies, is a platinum-based compound that forms DNA adducts, leading 
to cell cycle arrest and apoptosis[96]. Recent studies indicate that changes in lipid metabolism, particularly 
increased Fatty acid synthesis (FAS), contribute to oxaliplatin resistance in colorectal cancer cells[97].

Irinotecan, the third most common drug for treating GI cancers, is a topoisomerase I inhibitor widely used 
for metastatic colorectal cancer. It induces DNA damage by preventing the relegation of single-strand 
breaks[98]. Irinotecan resistance often arises from topoisomerase I alterations, increased drug efflux, 
enhanced DNA repair, or disrupted apoptosis. Oxaliplatin resistance is linked to improved DNA adduct 
repair, glutathione detoxification, and altered drug accumulation[99]. Other drugs used for GI cancer 
treatment include gemcitabine and bevacizumab[100]. Resistance to bevacizumab, an anti-angiogenic agent, 
can arise through alternative angiogenic pathways where cancer cells activate other pro-angiogenic factors, 
such as fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF), bypassing VEGF 
inhibition[70]. For gemcitabine, overexpression of ribonucleotide reductase subunits (RRM1 and RRM2) can 
counteract its inhibitory effects on DNA synthesis[101]. A 2022 study by N’Guessan et al. demonstrated that 
Combination therapy with saposin C-dioleoylphosphatidylserine (SapC-DOPS) and gemcitabine or 
Abraxane/GEM significantly inhibits tumor growth and improves survival in subcutaneous and orthotopic 
PDAC models compared to individual treatments[102], leading to increased apoptosis, reduced tumor growth, 
and improved survival in preclinical models[103].

Although less extensively studied than lactate dehydrogenase (LDH) inhibitors, GLUT-1 (glucose 
transporter-1) inhibitors also show promise in overcoming chemotherapy resistance in GI cancers. BAY-
876, a GLUT-1 inhibitor, demonstrated synergistic effects with 5-FU in colorectal cancer models, potentially 
by disrupting the metabolic adaptations that support drug resistance[104]. Additionally, fasentin, a glucose 
uptake inhibitor, has shown the ability to sensitize resistant cancer cells to various chemotherapeutic agents, 
including gemcitabine, by limiting their metabolic flexibility[105]. However, as with targeted therapies, cancer 
cells may develop resistance to LDH and GLUT-1 inhibitors over time. The potential drug-resistance agents 
targeting GI cancers are listed in Table 3.

THERAPEUTIC IMPLICATIONS
The therapeutic implications of targeting immune cell metabolism in GI cancers represent a promising 
frontier in overcoming drug resistance and enhancing treatment efficacy[121]. It becomes increasingly clear 
that modulating metabolic pathways in TAMs, MDSCs, and Tregs could significantly impact the TME and 
augment antitumor immune responses[122]. This approach offers a novel strategy to complement and 
potentially synergize with existing therapies, including chemotherapy, targeted therapies, and 
immunotherapies[122]. By altering the metabolic landscape within the tumor, we may be able to reprogram 



Page 8 of suri et al. Cancer Drug Resist. 2025;8:7 https://dx.doi.org/10.20517/cdr.2024.16427

Table 3. Drugs targeting metabolic pathways in gastrointestinal cancers

Drug Mechanism of action Metabolic pathway targeted Cancer type Status

Gemcitabine Nucleoside analog, DNA synthesis 
inhibitor

Pyrimidine metabolism Pancreatic, biliary tract FDA 
approved[106]

5-FU Pyrimidine analog, thymidylate 
synthase inhibitor

Pyrimidine metabolism Colorectal, gastric, 
pancreatic

FDA 
approved[107]

Oxaliplatin DNA crosslinking agent DNA repair, cellular stress response Colorectal FDA 
approved[108]

Irinotecan Topoisomerase I inhibitor DNA replication, cellular stress 
response

Colorectal FDA 
approved[109]

Bevacizumab VEGF inhibitor Angiogenesis, glucose and oxygen 
metabolism

Colorectal FDA 
approved[110]

Metformin AMPK activator, mTOR inhibitor Glucose metabolism, mitochondrial 
complex I inhibition

Colorectal, pancreatic Clinical 
trials[111]

2-deoxyglucose Glycolysis inhibitor Glucose metabolism Colorectal, gastric Preclinical[112]

Dichloroacetate PDK inhibitor Glucose metabolism, mitochondrial 
function

Colorectal Clinical 
trials[113]

Etomoxir CPT1 inhibitor Fatty acid oxidation Colorectal Preclinical[114]

CB-839 Glutaminase inhibitor Glutamine metabolism Colorectal, pancreatic Clinical 
trials[115]

IACS-010759 Complex I inhibitor OXPHOS Pancreatic Clinical 
trials[116]

Enasidenib IDH2 inhibitor TCA cycle Cholangiocarcinoma FDA 
approved[117]

Ivosidenib IDH1 inhibitor TCA cycle Cholangiocarcinoma FDA 
approved[118]

Statins (e.g., 
Atorvastatin)

HMG-CoA reductase inhibitor Cholesterol metabolism Colorectal Clinical 
trials[119]

Orlistat FASN inhibitor Lipid metabolism Colorectal Preclinical[120]

FDA: Food and Drug Administration; 5-FU: 5-fluorouracil; VEGF: vascular endothelial growth factor; TCA cycle: tricarboxylic acid cycle: PDK: 
pyruvate dehydrogenase kinases; IACS: international association of classification societies; IDH1: isocitrate dehydrogenase 1; IDH2: isocitrate 
dehydrogenase-2; HMG-CoA: hydroxymethylglutaryl-Coenzyme; OXPHOS: oxidative phosphorylation; FASN: fatty acid synthase.

immunosuppressive cells toward more antitumor phenotypes, reinvigorate exhausted T cells, and create a 
more favorable environment for effective immune surveillance[123]. Furthermore, targeting specific metabolic 
vulnerabilities of these immune cell populations could selectively modulate their function without broadly 
suppressing the immune system, potentially reducing off-target effects and improving the overall 
therapeutic index[124]. Additionally, it is crucial to consider the heterogeneity of GI cancers and the dynamic 
nature of the TME, necessitating a personalized approach to metabolic modulation that takes into account 
the unique metabolic profile of each patient’s tumor and immune landscape. The potential therapeutic 
agents targeting immune cell metabolism in GI Cancers are shown in Table 4.

TARGETING FATTY ACID METABOLISM
Fatty acid metabolism plays a crucial role in shaping the function and survival of immunosuppressive cells 
within the TME of GICs[30]. Targeting this metabolic pathway offers promising strategies to overcome drug 
resistance and enhance the efficacy of existing therapies. Inhibitors of FAO have emerged as potential agents 
to modulate the immunosuppressive functions of TAMs and Tregs[137]. These cell populations rely heavily 
on FAO to support their survival and differentiation, distinguishing them from effector T cells that 
primarily depend on glycolysis[138]. By inhibiting FAO, it may be possible to selectively impair the function 
of TAMs and Tregs without broadly suppressing the immune system. Studies have shown that Tregs 
preferentially activate OXPHOS and reduce tumor glucose uptake, making them more resilient in the 
glucose-depleted TME[139]. The FAO metabolic pathway contributing to drug resistance in GI cancers is 
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Table 4. Potential therapeutic agents targeting immune cell metabolism in GI cancers

Therapeutic agent Targeted metabolic 
pathway Preclinical/Clinical status Combination potential References

Etomoxir FAO Preclinical With immunotherapy (e.g., 
PD-1 inhibitors)

[125]

Metformin Glycolysis, AMPK activation Clinical trials ongoing With chemotherapy, 
immunotherapy

[126,127]

CB-839 Glutaminase inhibition Phase I/II trials With chemotherapy, targeted 
therapies

[128]

IACS-010759 OXPHOS inhibition Phase I trials With immunotherapy [129,130]

Enasidenib IDH2 inhibition FDA-approved for AML, preclinical 
for GI cancers

With chemotherapy [131]

Dichloroacetate Pyruvate dehydrogenase 
kinase inhibition

Preclinical With glycolysis inhibitors [132]

DON Glutamine metabolism Preclinical With immunotherapy [133]

BPTES Glutaminase inhibition Preclinical With chemotherapy [134]

2-deoxyglucose Glycolysis Preclinical With OXPHOS inhibitors [135]

Arginine depletion (e.g., 
ADI-PEG20)

Arginine metabolism Phase II/III trials With chemotherapy, 
immunotherapy

[136]

ADI-PEG20: Pegylated arginine deiminase; OXPHOS: oxidative phosphorylation; BPTES: selective allosteric glutaminase (GLS1) inhibitor, DON: 
deoxynivalenol, CB-839: telaglenastat, active glutaminase 1 (GLS1) inhibitor, FAO: fatty acid oxidation; GI: gastrointestinal cancers; FDA: Food and 
Drug Administration; DON: 6-Diazo-5-oxo-L-norleucine.

described in Figure 1.

Disrupting this metabolic adaptation through FAO inhibition could potentially reduce the suppressive 
capacity of Tregs and enhance antitumor immunity. Several FAO inhibitors are currently being investigated 
for their potential to synergize with existing cancer therapies[140]. Etomoxir, a carnitine palmitoyltransferase I 
(CPT1) inhibitor, has shown promise in preclinical studies by reducing the immunosuppressive function of 
Tregs and enhancing the efficacy of immune checkpoint inhibitors[133]. Similarly, targeting the CD36 fatty 
acid transporter with monoclonal antibodies has been demonstrated to effectively block fatty acid uptake 
and lipid metabolism in tumor-infiltrating Tregs, hindering their accumulation and function in melanoma 
models without causing systemic loss of Tregs[141].

FAS inhibitors represent another promising avenue for targeting immunosuppressive cells, particularly 
MDSCs[142]. MDSCs are known to accumulate in the TME and contribute significantly to immune evasion 
and drug resistance in GI cancers[143]. These cells produce immunosuppressive cytokines such as IL-10 and 
transforming growth factor-beta, which inhibit the activation and proliferation of T cells and NK cells, 
thereby creating an environment conducive to tumor growth[144]. Additionally, these cells deplete critical 
nutrients like arginine and cysteine from the TME through the expression of enzymes such as arginase-1 
and IDO, further impairing T cell function[145]. They also directly inhibit immune responses by producing 
reactive oxygen species (ROS) and nitric oxide (NO), which can induce apoptosis in activated T cells. They 
also contribute to drug resistance by protecting tumor cells from the cytotoxic effects of chemotherapy and 
diminishing the effectiveness of immunotherapies, such as immune checkpoint inhibitors, by suppressing T 
cell activation. Furthermore, MDSCs interact with cancer stem cells, contributing to their maintenance and 
expansion, which is a key factor in both recurrence and resistance to therapy in GI cancers. This 
environment not only facilitates initial tumor growth but also promotes tumor recurrence following 
treatment by allowing residual cancer cells to survive unchecked[146].
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Figure 1. Fatty acid oxidation metabolic pathways in immune cells contributing to drug resistance in GI cancers. GI: Gastrointestinal 
cancers; ACC: Acetyl-CoA carboxylase; FASN: fatty acid synthase.

By targeting FAS, it may be possible to impair MDSC survival and function, thereby restoring the immune 
system’s ability to combat cancer cells[147]. For example, 5-tetradecyloxy-2-furoic acid (TOFA) - an inhibitor 
of Acetyl-CoA carboxylase (ACC) - has been shown to disrupt FAS in tumor-infiltrating immune cells, 
leading to regression of murine hepatocellular carcinoma[148]. However, in some studies the observed 
therapeutic effects may result from direct drug toxicity rather than specific interference with 
immunometabolism, highlighting the need for careful evaluation of these approaches. The potential of 
targeting fatty acid metabolism extends beyond its direct effects on immunosuppressive cells[149]. Modulating 
this pathway may also influence the overall metabolic landscape of the TME, potentially creating a more 
favorable environment for antitumor immune responses[149]. Inhibiting FAS in cancer cells could reduce the 
availability of lipid mediators that promote the recruitment and differentiation of immunosuppressive cell 
populations[150]. While inhibiting FAO may impair Treg function, it could also affect the formation of long-
term memory T cells, which rely on FAO for their development and persistence[151]. Therefore, strategies 
that combine metabolic modulation with other immunotherapeutic approaches, such as checkpoint 
inhibitors or adoptive cell therapies, may offer the most promising path forward. Targeting fatty acid 
metabolism in immunosuppressive cells within the TME has emerged as a promising strategy to enhance 
antitumor immunity and overcome drug resistance in GICs[152]. This approach focuses on two key aspects: 
inhibiting FAO in TAMs and Tregs, and targeting FAS in MDSCs[83,153]. Inhibitors of FAO have shown 
potential in reducing the immunosuppressive functions of TAMs and Tregs, thereby enhancing the 
antitumor activity of existing therapies[154]. In human and mouse hepatocellular carcinoma tissues, the 
inhibition of receptor-interacting protein kinase 3 (RIPK3) in TAM using inhibitors like Decitabine, a DNA 
methyltransferase inhibitor, inhibits caspase-1-mediated cleavage of PPAR that promotes FAO and causes a 
reversal of the pro-tumor phenotype of TAMs that is M2 phenotypes[155].
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In one study, etomoxir treatment of tumor-bearing mice resulted in a T-cell-dependent inhibition of tumor 
growth and enhanced the antitumor effect of low-dose chemotherapy and adoptive cellular therapy[156]. 
Targeting the CD36 fatty acid transporter with monoclonal antibodies has been shown to effectively block 
fatty acid uptake and lipid metabolism in tumor-infiltrating Tregs[157]. CD36 is a transmembrane 
glycoprotein that plays a significant role in the TME by mediating lipid uptake and influencing immune 
responses[158]. In GI, several specific cell types express CD36, contributing to tumor progression and 
immune evasion. Notably, TAMs exhibit high levels of CD36 expression, which facilitates their uptake of 
lipid-rich extracellular vesicles released by tumor cells[159]. This lipid uptake enhances the metabolic 
reprogramming of TAMs, promoting their tumor-promoting activities and contributing to an 
immunosuppressive environment[160]. Additionally, cancer-associated fibroblasts can express CD36, 
although its expression tends to decrease as these cells transform from normal fibroblasts[161]. In some 
contexts, CAFs with low CD36 expression may produce more extracellular matrix components, which can 
support tumor growth and metastasis. Furthermore, tumor cells themselves can also express CD36, which is 
associated with increased metastatic potential and the induction of EMT, a process that enhances cell 
migration and invasion[162]. This approach hindered the accumulation and function of Tregs in melanoma 
models without causing systemic loss of Tregs. Notably, studies have demonstrated the efficacy of TOFA in 
impairing FAS in tumor-infiltrating immune cells and thus inducing regression of murine hepatocellular 
carcinoma[163]. As mentioned, however, these therapeutic benefits may arise from direct drug toxicity rather 
than targeted immunometabolic effects. Targeting FAS in MDSCs represents another promising avenue for 
modulating the immunosuppressive TME[164]. Fatty acid synthase (FASN) inhibitors have been shown to 
impair MDSC function and survival in various cancer models[120]. The FASN inhibitor C75 has been 
demonstrated to reduce MDSC accumulation and enhance antitumor immunity in breast cancer 
models[165]. ACC inhibitors, which target a key enzyme in the FAS pathway, have shown potential in 
modulating MDSC function[166]. While not specifically studied in MDSCs, ACC inhibitors have 
demonstrated antitumor effects in various cancer types and may have implications for MDSC metabolism. 
The potential of targeting fatty acid metabolism extends beyond its direct effects on immunosuppressive 
cells[167]. Modulating these pathways may also influence the overall metabolic landscape of the TME, 
potentially creating a more favorable environment for antitumor immune responses. Inhibiting FAS in 
cancer cells could reduce the availability of lipid mediators that promote the recruitment and differentiation 
of immunosuppressive cell populations[168].

MODULATING GLYCOLYSIS
Modulating glycolysis in MDSCs and other immunosuppressive cells has emerged as a promising strategy to 
reduce their ability to support tumor growth and drug resistance in GICs[169]. Figure 2 depicts the glycolysis 
metabolic pathway (lower panel) in immune cells, highlighting its role in contributing to drug resistance in 
GI cancers. Glycolysis inhibitors can decrease the energy supply of these cells, potentially impairing their 
immunosuppressive functions and enhancing antitumor immunity[170]. Several studies have demonstrated 
the importance of glycolysis in MDSC function and survival. MDSCs have been shown to rely heavily on 
glycolysis for their energy needs, particularly in the TME. In vitro-generated MDSCs display increased 
glycolysis, glutaminolysis, and TCA cycle activity[171]. This metabolic profile supports their rapid 
proliferation and immunosuppressive functions. Inhibition of glycolysis using compounds like 2-deoxy-D-
glucose (2DG) has been shown to suppress the differentiation of MDSCs from precursor cells[172]. In one 
study, 2DG treatment decreased the survival of MDSCs stimulated with C. tropicalis and markedly impaired 
the expression of immunosuppressive factors like iNOS, COX2, and NOX2[173].

Interestingly, MDSCs display metabolic plasticity depending on their tissue origin and microenvironment. 
While peripheral MDSCs rely more on glycolysis, tumor-infiltrating MDSCs have been observed to have 
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Figure 2. Glycolysis pathways in immune cells and their role in mediating drug resistance in GI cancers. This figure illustrates the critical 
metabolic pathways in MDSCs, TAMs, and Tregs that contribute to drug resistance in gastrointestinal cancers. These immune cells 
undergo metabolic reprogramming, promoting an immunosuppressive TME that supports cancer progression and reduces the efficacy of 
therapies. MDSCs: Myeloid-derived suppressor cells; TAMs: tumor-associated macrophages; Tregs: regulatory T cells; TME: tumor 
microenvironment.

increased mitochondrial mass and preferentially use FAO over glycolysis as a primary energy source[156]. 
This highlights the importance of considering the specific metabolic profile of MDSCs in different contexts 
when designing therapeutic strategies. Recent research has identified methylglyoxal, a glycolytic by-product, 
as a more specific marker for MDSCs[169]. This compound may play a key role in the suppression of T 
effector function. Neutralization of methylglyoxal’s dicarbonyl activity has shown promise in improving the 
efficacy of cancer immunotherapy[83]. Targeting glycolysis in MDSCs may be particularly effective when 
combined with other therapeutic approaches. Inhibition of glycolysis could potentially enhance the efficacy 
of immune checkpoint inhibitors by reducing the immunosuppressive capacity of MDSCs in the TME[174]. 
However, it is important to note that modulating glycolysis can have complex effects on the TME. While 
reducing glycolysis in MDSCs may be beneficial, it is crucial to consider that effector T cells also rely heavily 
on glycolysis for their proliferation and function[65]. Therefore, systemic inhibition of glycolysis could 
potentially impair antitumor immune responses. The use of glycolysis inhibitors may alter the metabolic 
competition between tumor cells, MDSCs, and effector immune cells in the TME. This could potentially 
create more favorable conditions for antitumor immunity if carefully modulated[175]. As MDSCs 
demonstrate metabolic plasticity, inhibiting glycolysis alone may lead to compensatory upregulation of 
alternative metabolic pathways, such as FAO. Therefore, combination strategies targeting multiple 
metabolic pathways may be necessary for optimal therapeutic efficacy[176].

COMBINATION THERAPIES
Combination therapies involving metabolic inhibitors and standard cancer treatments have emerged as a 
promising strategy to overcome drug resistance and improve patient outcomes in GICs[177]. This approach 
aims to exploit the metabolic vulnerabilities of cancer cells while simultaneously enhancing the efficacy of 



Page 13 of suri et al. Cancer Drug Resist. 2025;8:7 https://dx.doi.org/10.20517/cdr.2024.164 27

existing therapies. Several preclinical studies and early clinical trials have demonstrated the potential of such 
combinations. They have shown synergistic effects when combining glycolysis inhibitors with traditional 
chemotherapeutic agents[178]. The combination of 2DG with cisplatin or doxorubicin has demonstrated 
enhanced antitumor activity in various cancer models, including gastric cancer[179]. The rationale behind this 
combination is that metabolic inhibition can sensitize cancer cells to DNA-damaging agents by depleting 
their energy resources and impairing DNA repair mechanisms. In a mouse model of colorectal cancer, the 
FAO inhibitor etomoxir showed synergistic effects when combined with low-dose cyclophosphamide[180]. 
This combination resulted in enhanced T-cell-dependent inhibition of tumor growth, suggesting that 
modulating immune cell metabolism can potentiate the effects of chemotherapy. Further, Decitabine and 
ionizing radiation in combination improved the immunogenicity and susceptibility of tumor cells to 
immune cells by upregulating the expression of major histocompatibility complex (MHC) class I, natural-
killer group 2, member D (NKG2D) ligands, and co-stimulatory molecules[181].

Combining metabolic inhibitors with targeted therapies has shown promise in overcoming resistance 
mechanisms[182]. In HER2-positive breast cancer models, inhibition of glutaminase (GLS) using the 
compound CB-839 (telaglenastat) enhanced the efficacy of trastuzumab. While this study focused on breast 
cancer, it provides a rationale for exploring similar combinations in HER2-positive gastric cancers[183]. The 
glycolysis pathway can be targeted to reduce the drug resistance. For instance, it has been reported that the 
resistance to gemcitabine, a synthetic pyrimidine-nucleoside prodrug (chemotherapy drug), reduced on 
treatment along with LDH-A inhibitors (N-hydroxyindole-2-carboxylates; NHI-1,NH-2) and GLUT-1 
inhibitors (PGL13, PGL14, salicylketoxime derivatives) in malignant mesothelioma (MM) that reverse the 
cell’s metabolism from glycolysis to OXOPHOS pathways[184]. The resistance to OXPHOS inhibitors can be 
improved with a combination of therapies such as Mitochondria-targeted atovaquone (Mito-ATO) in 
MDSCs and Tregs with PD-1 blockade and other immune checkpoint inhibitors[185].

One of the most exciting areas of combination therapy involves pairing metabolic inhibitors with immune 
checkpoint inhibitors. Preclinical trials have demonstrated that the combination of MCT1 inhibitor 
AZD3965 and anti-PD-1 therapy can reduce lactate secretion into the TME, decrease the infiltration of 
exhausted PD-1+ Tim-3+ T cells in solid tumors, and improve antitumor immunity[186]. In a mouse model of 
hepatocellular carcinoma, inhibition of MCT4 led to reduced CD8+ T cell exhaustion and enhanced 
antitumor immune responses to immune checkpoint inhibitors[187]. This suggests that modulating the 
metabolic landscape of the TME can create more favorable conditions for immunotherapy to be effective. 
Given the metabolic plasticity of cancer cells, simultaneously targeting multiple metabolic pathways may be 
necessary for optimal therapeutic efficacy[188]. Combining inhibitors of glycolysis (such as 2DG) with 
inhibitors of glutaminolysis (CB-839) has shown synergistic effects in preclinical models of various 
cancers[129]. This approach aims to prevent compensatory upregulation of alternative metabolic pathways 
when a single pathway is inhibited. While many of these combination strategies have shown promise in 
preclinical studies, their efficacy in human patients remains to be fully established. Several clinical trials are 
currently underway to evaluate the safety and efficacy of metabolic inhibitors in combination with standard 
therapies. A phase I/II trial (NCT01791595) is evaluating the MCT1 inhibitor AZD3965 in combination 
with various cancer therapies, including immune checkpoint inhibitors[189]. The GLS inhibitor telaglenastat 
(CB-839) is being tested in combination with standard chemotherapies and targeted therapies in various 
solid tumors, including colorectal cancer (NCT02861300)[190]. Trials combining IDO1 inhibitors with 
immune checkpoint inhibitors are ongoing, despite initial setbacks in melanoma studies. These trials aim to 
determine if IDO1 inhibition can enhance the efficacy of immunotherapy in GICs[191].
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FUTURE DIRECTIONS
The importance of exploring future directions in the field of metabolic modulation of immune cells in GI 
cancers is underscored by several critical factors. Persistent drug resistance remains a significant challenge, 
limiting the efficacy of existing therapies and hindering patient outcomes[192]. Metabolic modulation 
represents a promising approach to overcome this resistance by targeting the underlying metabolic 
mechanisms that support tumor survival and immune evasion. Additionally, the complexity of the TME 
presents a dynamic ecosystem where interactions between cancer cells, immune cells, and stromal 
components occur through various metabolic pathways[193]. Our current understanding of these intricate 
interactions is still limited, necessitating further research to fully exploit the therapeutic potential of 
metabolic interventions. Furthermore, the heterogeneity of immune responses highlights the variability in 
metabolic states among patients and within different tumor regions, emphasizing the need for personalized 
approaches and sophisticated methods to characterize specific metabolic profiles. The integration of 
metabolic modulation with existing therapies, such as immunotherapies and targeted treatments, also 
warrants exploration to optimize combination strategies and identify synergistic effects. Moreover, the 
identification of reliable metabolites is essential for patient stratification, treatment selection, and 
monitoring therapeutic responses, which could significantly enhance treatment precision, and thus reduce 
off-target effects. Technological advancements in metabolomics, single-cell analysis, and in vivo imaging are 
opening new avenues for studying cancer metabolism at unprecedented resolution; harnessing these 
technologies will be vital for deepening our understanding of the metabolic landscape in GI cancers[194,195]. 
Finally, addressing the long-term effects of metabolic interventions on tumor progression and overall 
patient health is critical, as extended follow-up studies are necessary to assess response durability and 
identify any potential long-term implications. Research in the metabolic modulation of immune cells is 
rapidly evolving, with a promising impact on overcoming drug resistance in GI cancers. As our 
understanding of the complex interplay between tumor metabolism, immune cell function, and the TME 
deepens, several key areas emerge as critical focuses for future research and clinical development.

BIOMARKER DEVELOPMENT
The identification and validation of reliable biomarkers that can predict response to metabolic therapies 
stand as a cornerstone for progress in cancer immunometabolism[196]. Future studies must prioritize the 
development of comprehensive metabolic profiling techniques to identify unique signatures associated with 
response to specific metabolic inhibitors. This endeavor will likely involve a multifaceted approach, 
combining advanced metabolomics techniques with cutting-edge imaging modalities and molecular 
profiling[197]. Researchers should focus on characterizing the metabolic states of both tumor cells and various 
immune cell populations within the TME, potentially revealing novel predictive markers for 
immunotherapy response[198]. Single-cell metabolomics and flow cytometry techniques need to be employed 
to assess the metabolic activity of specific immune cell subsets, providing invaluable insights into the 
heterogeneity of cellular metabolism within the tumor ecosystem[199]. The exploration of circulating 
biomarkers through liquid biopsies presents a particularly attractive avenue, offering the potential for non-
invasive, real-time monitoring of treatment efficacy. This approach could revolutionize patient care by 
allowing for dynamic adjustment of treatment strategies based on evolving metabolic profiles.

Additionally, the advancement of metabolic imaging techniques, such as hyperpolarized MRI and PET 
scans with innovative tracers, may provide valuable insights into the dynamic metabolic landscape of 
tumors and immune cells in vivo[200]. These imaging biomarkers could offer a non-invasive means of 
visualizing and quantifying metabolic activity, potentially guiding treatment decisions and monitoring 
response to therapy[201]. The use of microRNA as a biomarker for GIC drug resistance is also on the rise[202]. 
As these biomarker discovery efforts progress, it will be crucial to conduct large-scale, multi-center 
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validation studies to ensure the robustness and generalizability of findings across diverse patient 
populations and cancer types. The integration of artificial intelligence and machine learning algorithms to 
analyze complex metabolomic, genomic, and clinical data may further enhance our ability to identify and 
interpret relevant biomarkers, ultimately leading to more accurate prediction of treatment outcomes and 
personalized therapeutic strategies[203].

CLINICAL TRIALS
The current state of research and development in the field of metabolic reprogramming highlights its 
potential as a transformative approach in cancer therapy. Ongoing clinical trials, promising preclinical 
findings, and innovative technologies are paving the way for new therapeutic strategies aimed at 
overcoming drug resistance and enhancing treatment efficacy across various cancer types. Future clinical 
research should prioritize investigating synergistic effects between metabolic modulators and established 
treatment modalities, including immune checkpoint inhibitors, chemotherapy, and targeted therapies. For 
instance, targeting metabolic pathways that promote T cell exhaustion could enhance the effectiveness of 
CAR-T cell therapies, as suggested by findings that manipulating T cell metabolism can reinvigorate their 
antitumor activity[13]. Recent preclinical studies have shown that activating the pentose phosphate pathway 
(PPP) in T cells can improve their effectiveness against tumors when combined with immune checkpoint 
inhibitors[204]. Researchers at Weill Cornell Medicine are exploring this approach further, with plans to 
develop agents that induce T cell reprogramming for future clinical trials, aiming to enhance patient 
responses to therapies such as PD-1 blockers by maintaining T cells in a more effective precursor state. 
Clinical trials are underway to evaluate the efficacy of GLS inhibitors, such as CB-839, which target 
glutamine metabolism in various cancers, including breast and renal cancers[205]. These inhibitors aim to 
disrupt the metabolic flexibility that cancer cells rely on for survival and resistance to conventional 
therapies. These studies must carefully consider optimal dosing schedules and sequences to maximize 
therapeutic benefits while minimizing potential toxicities[206]. The incorporation of biomarker-based patient 
selection criteria will be essential in enriching trial populations with those most likely to benefit from 
metabolic interventions, potentially leading to more efficient and informative clinical outcomes. This 
approach could significantly reduce the time and resources required to bring effective therapies to market, 
while also sparing patients from unnecessary exposure to potentially ineffective treatments. Moreover, the 
development and validation of novel clinical trial endpoints that reflect the unique mechanisms of action of 
metabolic therapies will be crucial[207]. These may include measures of immune cell function, metabolic 
activity, or changes in TME composition, providing a more comprehensive assessment of treatment efficacy 
beyond traditional measures of tumor size or progression-free survival[208].

Furthermore, research has identified phosphoenolpyruvate carboxykinase 1 (PCK1) as a critical regulator of 
tumor metabolism and proliferation. Studies have demonstrated that targeting PCK1 can significantly 
impair cancer cell growth and metastasis[209]. The therapeutic potential of PCK1 inhibitors is currently being 
explored in various malignancies, including colorectal and renal cancers.

Long-term follow-up studies will also be necessary to assess the durability of responses to metabolic 
therapies and identify any potential long-term effects on immune function or overall health. As these 
clinical trials progress, researchers must remain vigilant in monitoring for potential combination toxicities 
and developing strategies to mitigate such risks. This may involve the development of innovative trial 
designs, such as adaptive protocols that allow for real-time adjustment of treatment regimens based on 
observed efficacy and toxicity profiles. Additionally, the inclusion of quality-of-life measures and patient-
reported outcomes in clinical trials will be essential to fully understand the impact of metabolic therapies on 
patient well-being and to guide decision making in clinical practice[210].
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PERSONALIZED MEDICINE
The ultimate goal of research in cancer immunometabolism is the development of personalized therapeutic 
approaches tailored to the unique metabolic profile of each patient’s tumor and immune landscape[211]. 
Achieving this ambitious objective will require significant advancements in several interconnected areas. 
First, the establishment of standardized methods for comprehensive metabolic profiling of tumor biopsies, 
including assessment of nutrient availability, metabolite concentrations, and enzyme activities within the 
TME, will be essential[212]. This profiling should be complemented by the integration of artificial intelligence 
and machine learning algorithms capable of analyzing complex metabolomic, genomic, and clinical data to 
predict optimal treatment strategies for individual patients. The development of sophisticated ex vivo 
models, such as patient-derived organoids or “tumor-on-a-chip” systems that accurately recapitulate the 
metabolic landscape of individual tumors, could enable rapid testing of various metabolic interventions 
before administration to patients[213]. These models may serve as powerful tools for predicting treatment 
response and identifying potential resistance mechanisms, allowing for more informed and personalized 
treatment decisions. Furthermore, the exploration of adaptive treatment strategies that adjust metabolic 
interventions based on real-time monitoring of tumor and immune cell metabolism represents an exciting 
frontier in personalized cancer therapy.

Advanced metabolomic techniques could be used to create comprehensive metabolic profiles of individual 
tumors. Mass spectrometry-based metabolomics might reveal specific alterations in glucose, glutamine, or 
fatty acid metabolism unique to a patient’s GI cancer[214]. This information could then guide the selection of 
metabolic inhibitors or activators most likely to be effective for that particular tumor[215]. Single-cell 
metabolomics technologies may allow for detailed characterization of immune cell metabolic states within 
the TME[216]. This could help identify patients whose tumors have particularly immunosuppressive 
metabolic profiles, making them candidates for combination therapies that couple immune checkpoint 
inhibitors with metabolic modulators to reinvigorate exhausted T cells. The development of blood-based 
tests to detect metabolic biomarkers could enable real-time monitoring of treatment response and early 
detection of resistance. Circulating metabolites or exosomes containing metabolic enzymes might serve as 
indicators of tumor metabolism, allowing for dynamic adjustment of treatment strategies[217].

Genetic variations affecting drug metabolism or target proteins could influence the efficacy and toxicity of 
metabolic therapies[218]. Screening for these variations could help optimize dosing and predict potential side 
effects individually[219]. Polymorphisms in genes encoding metabolic enzymes like IDH1/2 might affect 
response to IDH inhibitors in certain GI cancers[220]. The development of patient-derived organoid models 
that recapitulate the metabolic landscape of individual tumors could serve as powerful tools for personalized 
drug screening[221]. These “mini-tumors” grown in the lab could be used to test various metabolic 
interventions before administering them to the patient, potentially improving treatment outcomes and 
reducing unnecessary toxicity. Additionally, adaptive treatment protocols that adjust metabolic 
interventions based on real-time monitoring of tumor metabolism are emerging as a valuable approach[222]. 
This could involve periodic reassessment of tumor metabolic profiles and therapy adjustment to counteract 
emerging resistance mechanisms[223]. Combining metabolomic data with genomic, transcriptomic, and 
proteomic information could provide a more comprehensive view of tumor biology. Machine learning 
algorithms could then analyze this complex data and predict the most effective personalized treatment 
strategies[224]. Given the growing recognition of the gut microbiome’s influence on metabolism and immune 
function, personalized approaches might incorporate microbiome analysis to guide dietary interventions or 
the use of specific probiotics to optimize the metabolic environment for antitumor immunity[225].
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As we advance toward truly personalized metabolic therapies, it will be crucial to consider the broader 
context of each patient’s overall health, lifestyle, and environmental factors that may influence tumor 
metabolism and immune function. This holistic approach may involve integrating data from wearable 
devices, dietary assessments, and microbiome analyses to create a comprehensive metabolic profile for each 
patient. Additionally, the development of targeted drug delivery systems that can selectively modulate 
metabolism in specific cell populations within the TME may further enhance the precision and efficacy of 
personalized treatments.

DISCUSSION
The intricate interplay between metabolic reprogramming and immune cell function within the TME has 
emerged as a critical factor in the development of drug resistance in GI cancers[226]. Increasing evidence 
suggests that metabolic adaptations in neutrophils, T helper cells, and innate lymphoid cells (ILCs) 
significantly influence immunotherapy outcomes and other treatment modalities[227]. This emerging 
understanding highlights the importance of not only targeting cancer cell metabolism but also considering 
the metabolic alterations occurring within immune cells. Neutrophils, T helper cells, and ILCs undergo 
significant metabolic shifts in response to the TME, which can influence their functionality and 
effectiveness in antitumor responses[228]. The metabolic adaptations observed in both cancer cells and 
immune cells within the TME create a unique landscape that often favors tumor growth and immune 
evasion. Cancer cells, through their altered metabolism, not only sustain their own proliferation but also 
reshape the TME, creating nutrient-depleted, hypoxic, and acidic conditions that impair the function of 
antitumor immune cells[229]. Simultaneously, immune cells undergo their own metabolic reprogramming, 
often adopting phenotypes that are less effective in combating the tumor or even actively suppress 
antitumor immunity. Our exploration of this metabolic crossroads has revealed several key insights. First, 
the competition for nutrients between cancer cells and immune cells significantly influences the efficacy of 
antitumor responses. Tumor cells often outcompete T cells and other effector immune cells for glucose and 
other essential metabolites, leading to impaired immune function[230]. Second, the accumulation of metabolic 
by-products in the TME, such as lactate and kynurenine, can directly suppress immune cell activity and 
promote immunosuppressive cell types like Tregs and M2 macrophages[231]. Furthermore, we have 
uncovered how specific metabolic pathways, such as FAO, glycolysis, OXOPHOS, and amino acid 
metabolism, play crucial roles in determining immune cell fate and function within the TME.

As we look to the future, the development of strategies to modulate these metabolic pathways presents a 
promising avenue for enhancing the efficacy of existing cancer therapies, particularly immunotherapies. 
Targeting cancer metabolism as a therapeutic strategy presents significant challenges due to the rapid 
adaptability of cancer cells. One major limitation is the phenomenon of metabolic reprogramming, where 
cancer cells can swiftly alter their metabolic pathways in response to therapeutic interventions[232]. This 
adaptability often allows them to evade targeted therapies that aim to exploit specific metabolic 
dependencies. For instance, while some therapies may initially show effectiveness by targeting unique 
metabolic traits of cancer cells, these cells can quickly shift their metabolism to utilize alternative pathways, 
rendering the treatment ineffective over time. Moreover, the intricate interplay between cancer cells and 
their surrounding TME complicates therapeutic targeting. The metabolic activities of stromal cells, immune 
cells, and cancer-associated fibroblasts contribute to a dynamic metabolic network that supports tumor 
growth and survival. As a result, therapies that target cancer cell metabolism must also consider the 
metabolic contributions of these non-cancerous cells, which can further complicate treatment outcomes 
and lead to resistance[233]. Additionally, the heterogeneity observed among different tumor types poses 
another challenge. Variability in metabolic profiles not only exists between distinct cancers but also within 
different regions of the same tumor. This heterogeneity can lead to differential responses to metabolic 
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therapies, making it difficult to develop universally effective treatments. Consequently, while targeting 
metabolism holds promise as a cancer therapy strategy, these limitations highlight the need for more refined 
approaches that account for the rapid adaptability and complex interactions within the tumor ecosystem[234].

By reprogramming the metabolism of immune cells or altering the metabolic landscape of the TME, we may 
be able to reinvigorate exhausted T cells, redirect immunosuppressive cell types toward antitumor 
phenotypes, and ultimately overcome drug resistance[235]. However, translating these insights into effective 
therapies will require a multifaceted approach. Continued basic research is essential to further elucidate the 
complex metabolic networks at play within the TME[236]. Concurrently, the development of novel metabolic 
inhibitors and activators, as well as innovative drug delivery systems to target specific cell populations, will 
be crucial. Clinical trials investigating combination therapies that pair metabolic modulators with existing 
treatments, such as immune checkpoint inhibitors or targeted therapies, will be vital in determining the 
most effective strategies for different GI cancer types and patient subgroups[237]. Additionally, the 
identification and validation of metabolic biomarkers will be essential for patient stratification and 
monitoring treatment response. The principles uncovered in GI cancers may have far-reaching applications 
across various cancer types, potentially revolutionizing our approach to cancer treatment. Metabolic 
reprogramming is not unique to GI cancers; it is a widespread phenomenon observed in many cancers, 
including breast, lung, and prostate cancers[238]. Studies have shown that breast cancer cells often exhibit 
increased glycolysis and altered lipid metabolism, similar to findings in GICs[239]. Since the TME plays a 
crucial role in influencing cancer cell metabolism and therapeutic responses, many solid tumors, including 
pancreatic and renal cancers, experience hypoxic conditions that drive metabolic reprogramming. Hypoxia-
inducible factors (HIFs) regulate glucose metabolism under low oxygen conditions, promoting glycolysis 
and lactate production. Inhibitors targeting HIF pathways are being investigated as potential therapeutic 
strategies to counteract hypoxia-induced resistance[240].

The interplay between epigenetic modifications and metabolic reprogramming is increasingly recognized as 
a critical factor in cancer progression[241]. Using the commonalities between GI cancers and other cancer 
types, DNA methylation alterations can be linked to changes in glucose and lipid metabolism in breast and 
prostate cancers[242]. The principles of metabolic reprogramming can inform the development of 
combination therapies that target both cancer cell metabolism and the TME. Glutaminolysis is a common 
metabolic pathway exploited by many tumors, including glioblastoma and breast cancer. GLS inhibitors like 
CB839 are being evaluated in clinical trials for their ability to disrupt glutamine metabolism and enhance 
the efficacy of standard chemotherapeutics[243]. Along with this, the mTOR signaling pathway, which 
regulates cellular metabolism and growth, is frequently hyperactivated in various cancers. mTOR inhibitors 
have shown promise in preclinical studies for treating breast cancer and renal cell carcinoma by targeting 
metabolic pathways that promote resistance[244].
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