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Abstract
Ferroelectric (FE) materials, which typically adopt the perovskite structure with non-centrosymmetry and exhibit 
spontaneous polarization, are promising for applications in memory, electromechanical and energy storage devices. 
However, these advanced applications suffer from the intrinsic limitations of perovskite FEs, including poor 
complementary metal oxide semiconductor (CMOS) compatibility and environmental issues associated with lead. 
Hafnium oxide (HfO2), with stable bulk centrosymmetric phases, possesses robust ferroelectricity in nanoscale thin 
films due to the formation of non-centrosymmetric phases. Owing to its high CMOS compatibility and high 
scalability, HfO2 has attracted significant attention. In the last decade, significant efforts have been made to explore 
the origin of the ferroelectricity and factors that influence the FE properties in HfO2 films, particularly regarding the 
role of microstructure, which is vital in clarifying these issues. Although several comprehensive reviews of HfO2 
films have been published, there is currently no review focused on the relationship between microstructure and FE 
properties. This review focuses on the microstructure-property relationships in FE polycrystalline and epitaxial 
HfO2 films. The crystallographic structures and characterization methods for HfO2 polymorphs are first discussed. 
For polycrystalline HfO2 films, the microstructure-FE properties relationships, driving force and kinetic pathway of 
phase transformations under growth parameters or external stimuli are reviewed. For epitaxial films, the lattice 
matching relations between HfO2 films and substrates and the corresponding impact on the FE properties are 
discussed. The FE properties between polycrystalline and epitaxial HfO2 films are compared based on their 
different microstructural characteristics. Finally, a future perspective is given for further investigating FE HfO2 films.

https://creativecommons.org/licenses/by/4.0/
https://microstructj.com/
https://dx.doi.org/10.20517/microstructures.2021.11
a
图章



Page 2 of 32                          Zhao et al. Microstructures 2022;2:2022007 https://dx.doi.org/10.20517/microstructures.2021.11

Keywords: HfO2 films, ferroelectricity, phase transformations, oxygen vacancies, transmission electron microscopy

INTRODUCTION
Ferroelectric (FE) materials have non-centrosymmetric structures and present spontaneous electrical 
polarity that can be reversed by an applied electric field, which makes them promising for 
electromechanical, memory and energy storage devices[1]. Conventional perovskite FE devices can be 
fabricated from lead-based Pb(Zr,Ti)O3

[2-4], lead-free BaTiO3
[5,6] and relaxor-based (PbMg1/3Nb2/3O3)1-x-

(PbTiO3)x
[7-9] materials. However, these FE devices suffer from various problems during the device 

manufacturing process and usage, including a requirement for large thicknesses (~100 nm)[10], integration 
difficulties with modern complementary metal oxide semiconductor (CMOS) technology[11], small bandgaps 
(3-4 eV)[12,13] and environmental issues due to toxic elements like Pb and Ba[14]. Therefore, the development 
of lead-free FE materials that overcome these barriers is emerging.

HfO2 films are CMOS compatible and have been extensively used for high K metal-gate technology[15]. After 
ferroelectricity in HfO2 thin films was reported in 2011[16], HfO2 films have attracted significant interest as 
next-generation FEs due to their excellent properties[17-35]. First, HfO2 films are CMOS compatible due to 
their small thickness (~10 nm) and high resistance to hydrogen and the etching process, which makes HfO2 
films promising for one transistor and one transistor-one capacitor FE memories, as well as nanoscale FE 
devices[36]. Second, the simple chemistry of HfO2 also makes it less prone to the perturbing effects that occur 
in multicomponent materials during deposition processes and simplifies theoretical studies, including ab-
initio simulations[37-41]. In addition, they have a large bandgap (> 5 eV) and strong bonds between O and Hf, 
which can mitigate the leakage current and reliability problems commonly observed in perovskite FEs[42]. 
Thus, these listed advantages, together with environmental-friendly components, make them promising for 
commercial FE memory devices.

After almost a decade of development, materials synthesis methods and property/structural characterization 
techniques have been well developed for polycrystalline HfO2 films[18,21,22,25,43,44]. Excellent FE performance 
(e.g., remanent polarization[45-47] up to 40 μC·cm-2, coercive field[19] of ~1-2 MV cm-1, endurance of ~1011 
cycles[48] and switching time[49] of ~360 ps) has been reported in HfO2 films with thicknesses of less than 
20 nm, indicating that they are promising candidates for nanoscale FE field-effect transistors and three-
dimensional capacitors for FE memories[45]. The ferroelectricity in polycrystalline HfO2 films is attributed to 
the formation of a metastable orthorhombic phase (O-phase, space group Pca21). This phase is non-
centrosymmetric and does not exist in bulk HfO2. However, it can be stabilized in nanoscale films by 
coupling the factors of size effects[50,51], elemental doping[18,20,45,52,53] and thermal expansion strain[27,54-56].

Although there have been significant developments in the fundamental understanding and device 
performance of polycrystalline FE HfO2 films, several limitations remain. First, compared to their perovskite 
counterparts, HfO2 films possess robust ferroelectricity when the sample thickness is smaller than 100 nm, 
which is quite unusual. The microscopic mechanism that stabilizes the FE phase by the factors mentioned 
above is still not well understood, despite many macroscopic experiments having been carried 
out[32,33,37,38,57,58]. While transmission electron microscopy (TEM) is a powerful tool for explorations of the 
microscopic mechanisms in FEs[59-61], the characterization of polycrystalline HfO2 films with nanometer 
grain sizes is not an easy task because of the frequent grain overlapping along the electron beam direction 
and the random crystalline orientations. Second, the ferroelectricity of HfO2 films suffers from their 
polycrystalline characteristics, particularly the existence of non-FE phases and grain boundaries[62]. The 
coexistence of FE and non-FE phases contributes to statistical non-uniformity in FE properties and device 
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instability, where the remnant polarization (Pr) increases with electric cycling (the “wake-up” process). 
These two issues are significant for devices[33]. Furthermore, the accumulation of oxygen vacancies at grain 
boundaries leads to subsequent permanent conduction paths, resulting in device fatigue[25]. Therefore, both 
fundamental investigations and practical applications have illustrated the need for systematic studies of 
high-quality epitaxial HfO2 thin films in terms of microstructural characterization and microstructure-FE 
property relations to accurately regulate the FE properties in HfO2 films.

In 2015, Shimizu et al.[63] reported epitaxial orthorhombic YO1.5-substituted HfO2 (Y:HfO2) thin films grown 
by pulsed laser deposition (PLD). Ferroelectricity was observed in epitaxial 7%-Y:HfO2 films deposited on 
(110) yttrium oxide-stabilized zirconium oxide (YSZ) single crystalline substrates using Sn-doped In2O3 
(ITO) as the bottom electrode[63,64]. Since then, other groups have also reported epitaxial FE HfO2-based 
films on other substrates, including Si and SrTiO3

[29,65,66]. Lattice matching strain is the dominant factor in 
stabilizing the FE phases in epitaxial HfO2 films[67,68]. A single FE phase exists in epitaxial HfO2 thin films 
instead of the coexistence of FE and non-FE phases in their polycrystalline counterparts. A high polarization 
of up to 45 μC·cm-2 and skipping of the wake-up process have been reported in epitaxial films[29,64,69,70]. In 
addition, single crystalline HfO2 epitaxial films are promising for TEM characterization and thus are 
desirable for fundamental research into this new fluorite HfO2 ferroelectrics. Therefore, recent progress in 
epitaxial HfO2 films has been encouraging for understanding the fundamental issues of ferroelectricity and 
regulating the FE performance.

The macroscopic performance of FE materials is dominated by their microstructures[71-73], which can be 
altered by dopants[20,74,75], film thickness[50,76-78], thermal expansion and epitaxial strain[67,68,79,80]. In addition, 
mechanical, electrical, electromechanical and thermoelectric properties are crucial factors for the device 
applications of FE HfO2 materials. These properties are sensitive to changes in the embedded 
microstructures. Therefore, the observation of the corresponding microstructural evolution under various 
growth parameters and external stimuli is necessary for understanding their structure-property 
relations[22,23].

There have been several review articles of FE HfO2 films that have focused on film deposition, macroscopic 
FE properties, device fabrication and defect chemistry[36,51,62,75,81-89]. However, none of them deal with the 
relationship between microstructure and macroscopic FE properties, despite the fact that there has been a 
large number of publications that consider the microstructures of HfO2 FEs since the first demonstration of 
ferroelectricity in HfO2 films[16,18]. Therefore, a review focusing on the microstructure-FE behavior in HfO2 
films is urgently required. Since the existing phases in polycrystalline and epitaxial films are quite different, 
we place particular emphasis on these films. For example, considering the coexistence of FE and non-FE 
polymorphs in polycrystalline HfO2 films, the FE phase fraction adjusted by growth parameters and 
microstructural evolutions under external stimuli are emphasized. Single-crystal HfO2 films can be obtained 
by size effect and epitaxial strain between the films and electrodes/substrates, thus the different matching 
relations between HfO2 films and substrates are focused on, in which the microstructure of the interfacial 
region between HfO2 films and electrodes/substrates is given particular attention.

In this review, we first introduce the polymorphs of HfO2, the characterization techniques for 
microstructures and the identification methods of FE phases. For polycrystalline HfO2 films, we review their 
growth methods, the impacts of growth parameters on the FE phase fraction and properties, and the phase 
transformations under external stimuli, e.g., temperature and electric loading. The thermodynamic driving 
force and kinetic pathway for phase transformation, which are vital for adjusting the FE phase fraction for 
the FE properties, are also discussed in this context. In epitaxial HfO2 films, microstructures and FE 
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properties are controlled by lattice mismatch and interfacial chemistry between HfO2 films and 
electrodes/substrates, which are also reviewed here. The microstructures and FE behaviors (polarization, 
wake-up stage and device fatigue) in polycrystalline and epitaxial HfO2 films are then compared. Finally, the 
major conclusions are given and outstanding issues for future investigation in the field are presented.

IDENTIFICATION OF FE PHASES IN HFO 2 FILMS
It once seemed impossible to observe ferroelectricity in nanoscale HfO2 films for two reasons: (1) a non-
centrosymmetric crystal structure is necessary for FEs, but previously reported polymorphs of HfO2 are
centrosymmetric, and (2) according to our knowledge of conventional perovskite FEs, it is unlikely to have
nanoscale FEs. Therefore, it is important to identify FE phases in HfO2.

Polymorphs of bulk HfO2

Bulk HfO2 crystals present different polymorphs depending on the temperature and pressure. The left
branch of Figure 1 lists the stable crystal structures reported in bulk HfO2 in the sequence based on
symmetry reduction from the highest-symmetry cubic phase (C-phase, space group        ) that exists
above 2773 K[38]. During the cooling process, the C-phase transforms to a tetragonal phase (T-phase, space
group P42/nmc) at 2773 K by symmetry reduction and then to a monoclinic phase (M-phase, space group
P21/c) at 1973 K[90]. The M-phase is the most stable phase at room temperature and atmospheric pressure. At
high pressure, bulk HfO2 has two orthorhombic polymorphs, denoted as orthoI (space group Pcba) and
orthoII (space group Pmna)[91]. OrthoI is transformed from the T-phase by symmetry reduction under
pressures between 4 and 14.5 GPa. OrthoI changes to orthoII with a pressure above 14.5 GPa and the
transition pressure is almost independent of temperature[92]. All of these polymorphs have a center of
symmetry, which is marked by the green point in each structure in the left branch of Figure 1. The
centrosymmetric feature of these structures cannot induce ferroelectricity.

Identification of FE HfO2 phases
Although the stable bulk HfO2 phases are centrosymmetric, HfO2 films with a nanoscale thickness, as well as
properly doped HfO2 bulk crystals, can show another landscape. Compared with undoped bulk HfO2

crystals, atomic layer deposition (ALD) processed undoped HfO2 films with a thickness of 6 nm have robust
ferroelectricity due to the formation of the FE O-phase under a nanoscale grain size effect[93]. These FE
properties can be further enhanced by lowering the oxidant dose[94] and modulating the water pulse time[95]

during the ALD process. In addition, ferroelectricity can also be stabilized in bulk HfO2 single crystals after
12% yttrium doping and a fast quenching process[34]. However, the most common and robust ferroelectricity
is observed in nano HfO2 films doped with various elements.

The first report confirming robust ferroelectricity in HfO2-based materials was for Si-doped HfO2 (Si:HfO2)
films with a thickness of 10 nm, in which the formation of a non-centrosymmetric O-phase (space group
Pbc21) analogous to Mg:ZrO2 was also observed by grazing incidence X-ray diffraction measurements[16]. To
identify the accurate atomic occupation of this FE structure in HfO2, density functional theory (DFT)
calculations were firstly used to predict polar O-phases. First-principles calculations suggested that the two
most viable FE phases are Pca21 and Pmn21 and that these two non-centrosymmetric equilibrium phases
have similar free energies[38]. As shown in the right branch of Figure 1, the non-centrosymmetric structures
with space groups of Pca21 and Pmn21 can be obtained by distorting the P42/nmc structure along the [110]
and [100] directions, respectively. The lattice parameters of these phases are summarized in
Table 1[29,32,38,53,74,96-98]. The polarization of the Pca21 and Pmn21 phases can be 180° switched with small energy
barriers, serving as two topologically equivalent variants with opposite polarization referred to as the “up”
and “down” states. The energy barrier between the “up” and “down” states of the Pca21 and Pmn21 phases at
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Table 1. Lattice parameters of HfO2 polymorphs

Polymorphs a (Å) b (Å) c (Å) β (°) Notes Source

M (P21/c) 5.120 5.180 5.300 99°11' XRD, 1970[96]

5.140 5.250 1920 °C XRD, 1954[90]T (P42/nmc)

5.1750 5.325

90°

2000 °C XRD, 1975[97]

NP-O (Pbcm) 5.054 5.270 5.115 2.6 GPa XRD[98]

NP-O (Pbca) 5.230 10.020 5.060 XRD

P-O (Pmn21) 3.415 5.182 3.834

5.290 5.010 5.080 DFT

DFT, 2014[38]

5.230 5.000 5.050 Gd:HfO2 XRD, 2015[53]

5.240 5.060 5.070 Gd:HfO2 STEM, 2015[32]

P-O (Pca21)

5.240 5.010 5.050 Hf1/2Zr1/2O2 XRD, 2012[74]

P-R (R3) 7.106 7.106 9.016 Bulk HfO2

7.134 7.134 8.741 Bulk HfO2P-R (R3m)

6.683 6.683 10.041

γ = 120°

compressed 

First-principles calculation, 2018[29]

M: Monoclinic phase; T: tetragonal phase; NP: non-polar; O: orthorhombic phase; P: polar; R: rhombohedral phase; compressed: HfO2 with in-
plane compression; DFT: density functional theory; Gd:HfO2: Gd-doped HfO2.

Figure 1. Symmetry-reduction flowchart of low energy phases of HfO2, starting from the C-phase. The left branch shows stable non-
polar phases and the right branch presents polar phases obtained from first-principles calculations. Dark yellow and red spheres 
represent hafnium and oxygen atoms, respectively, while green spheres indicate the center of symmetry of the centrosymmetric 
phases[38].

0 Pa were estimated to be 40 and 8 meV/atom, respectively.
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Sang et al.[32] confirmed the Pca21 phase in Gd-doped HfO2 (Gd:HfO2) FE thin films by combining scanning 
transmission electron microscopy (STEM) and position averaged convergent beam electron diffraction 
(PACBED)[32,63]. The crystal structures of the centrosymmetric M-phase (P21/c) and O-phases (Pbcm and 
Pbca), non-centrosymmetric O-phases (Pca21 and Pmn21) and their corresponding atomic projections along 
the four major zone axes are presented in Figure 2A. The Pca21, Pbcm and Pbca phases have the same 
projected columns of Hf atoms but different projected columns of O atoms along the four main zone axes. 
Figure 2B shows STEM-high angle annular dark-field (STEM-HAADF) images of FE HfO2 films along the 
four main zone axes, which are consistent with the projections of the Hf columns in the Pca21, Pbcm and 
Pbca phases. Because O atoms are much lighter than Hf atoms, it is only possible to image Hf atoms under 
STEM-HAADF imaging mode, resulting in difficulties in distinguishing these phases. PACBED was then 
applied to find the difference between the Pca21, Pbca and Pbcm phases by the projected symmetry 
information. Thus, the presence of the Pca21 phase in Gd:HfO2 thin films is indirectly confirmed, which 
shows a non-centrosymmetry feature and is responsible for ferroelectricity in HfO2 films[37,38].

Recently, Luo et al.[99] provided evidence to distinguish these O-phases in Hf0.5Zr0.5O2 (HZO) thin films by 
directly mapping oxygen atoms using atomic-scale STEM-HAADF and STEM annular bright-field (STEM-
ABF) techniques. Figure 3A-C show the sublattice of the Hf/Zr and O atoms projections along the [010] 
axis of HZO phases with different space groups. The O atom projections in the blank rectangle are different 
between the Pca21, Pbca and Pbcm phases. Figure 3D and E present atomic-resolution STEM-HADDF and 
STEM-ABF images of FE HZO films, respectively, in which the Hf/Zr and O atomic columns along the 
[010] axis match very well with the simulated results of the Pca21 phase.

With the exception of the Pca21 structure, a rhombohedral phase (R-phase) with the R3m space group is 
also non-centrosymmetric. The R3m structure is obtained in epitaxial (111)HZO/(001) La0.7Sr0.3MnO3 

(LSMO)/SrTiO3 (STO) substrates, as shown in Figure 4A and B. Devices based on this phase exhibit a large 
remanent polarization (Pr) of 34 μC·cm-2 and are free of a wake-up process. The R3m phase is only observed 
in epitaxial thin films, while the commonly reported Pca21 phase can be found in both polycrystalline and 
epitaxial films. According to DFT calculations, the Pca21 phase has lower free energy than the R3m phase 
and is thus more stable and common in FE HfO2 films. However, epitaxial strain and size effects favor the 
R3m phase[29].

FE HFO 2 POLYCRYSTALLINE FILMS
In this section, various deposition methods for polycrystalline HfO2 films are reviewed, followed by the 
impact of the growth parameters on the FE phase and properties of HfO2 films, including dopants, film 
thickness and strain conditions. Finally, the phase transformation and FE properties under external stimuli, 
e.g., temperature and electric cycling, are also discussed.

Film deposition methods
The ALD method, which has been intensively studied for the semiconductor industry, has been widely used 
for the preparation of FE HfO2 films[16]. The precursors are commercially available materials for Hf, Si and 
Zr, e.g., tetrakis(ethylmethylamino)hafnium and HfCl4, tetrakis(dimethylamino)silane and SiCl4, and 
tetrakis(ethylmethylamino)zirconium. Ozone and water are used as oxygen sources while argon is used as a 
purge and carrier gas[19,20,52]. The initial HfO2 films deposited on TiN or TaN bottom electrodes are 
amorphous. A subsequent rapid thermal annealing for crystallization is applied after capping a top electrode 
layer to introduce ferroelectricity. A Pr of up to 35 μC·cm-2 and a coercive field (Ec) of up to 3.5 MV·cm-1 
were experimentally achieved in ALD-based HfO2 films with various dopants, including Si, Zr, Y, La, Gd, Sr, 
Sc and N[23,53,75,100]. In addition, these ALD-based HfO2 films present a significant reduction of Pr with 
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Figure 2. (A) HfO2 crystal structures for M-phase (P21/c), two non-centrosymmetric O-phases (Pmn21 and Pca21) and two 
centrosymmetric O-phases (Pbcm and Pbca) and their atom projections along four major zone axes. (B) STEM-HAADF images of 
Gd:HfO2 films acquired along four major zone axes, which are the same for the Pca2 1, Pbca and Pbcm phases. Scale bar is 0.5 nm[32]. 
STEM-HAADF: Scanning transmission electron microscopy-high angle annular dark-field.

Figure 3. Projections of crystal structures of HfO2 with three O-phases along the [010] axis. The arrangements of O atoms in the black 
rectangles are different among (A) Pbcm, (B) Pbca and (C) Pca2 1. (D) STEM-HAADF image of HZO phase projected along [010] zone 
axis. Scale bar of 1 nm. (E) STEM-ABF image of (D) with the inset being a simulated ABF image. Scale bar is 1 nm[99]. STEM-HAADF: 
Scanning transmission electron microscopy-high angle annular dark-field; HZO: Hf0.5Zr0.5O2; ABF: annular bright-field.
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Figure 4. Polar R-phase (R3m) viewed from (A) the [001] axis and (B) the [100] axis of bulk HfO2 obtained by first-principles 
calculations. Hf and O atoms are represented by green and blue spheres, respectively[29].

increasing film thickness and almost lose their ferroelectricity when the film thickness is over 20 nm[101]. 
There are some concerns regarding the practical application of the ALD method. First is the chemical 
reactions between a metal precursor, an oxygen source, a substrate or a previously deposited film, which 
makes it difficult to control the film processing parameters and leads to a narrow processing window[102]. In 
addition, sophisticated and high-cost facilities and the low deposition rate of ALD makes it less viable for 
practical manufacturing[21]. In order to solve these problems, other deposition methods, including physical 
vapor deposition (PVD), chemical solution deposition (CSD) and PLD have been explored[21,43]. A 
comparison of these methods is shown in Table 2[63,103-106].

For PVD methods, the sputtering, sputter power, atmosphere and deposition temperature can be precisely 
controlled to adjust HfO2 films with multiple phases with different phase fractions and the corresponding 
macroscopic FE performance. This not only benefits the exploration of the structure-property relationship 
of FE HfO2 films, but is also attractive for revealing how the growth parameters control the phases in 
obtained HfO2 films, especially the FE Pca21 phase[107]. Mittmann et al.[108] prepared undoped HfO2 films 
using the sputtering method, in which the film thickness, annealing temperature and oxygen content were 
controllable. After annealing with temperatures higher than 600 °C, the films with thicknesses of 8-30 nm 
show a stable remanent polarization (Pr). For films with a thickness in the range of 8-20 nm, their Pr values 
increase with annealing temperature up to 1000 °C. For thicker films, 800 °C is the optimal anneal 
temperature. In addition, the concentration of oxygen (oxygen deficiency) within the HfO2 films is 
responsible for the stabilization of the O-phase by adjusting the nucleation of the nanocrystallite phase in 
the as-deposited films. The sputtering method is also promising for depositing HfO2 films at room 
temperature, because it can significantly change the kinetic energy of the sputtered films to control the 
phase types at room temperature without subsequent high-temperature processing[109]. The reduction of 
deposition temperature is always desirable for decreasing production costs and matching substrates that 
cannot sustain high temperatures, such as organic flexible substrates[110].

The CSD method is an inexpensive and flexible deposition technique with good adjustability of 
concentration and stoichiometry. Therefore, it is widely used for the deposition of FE and piezoelectric 
ceramic thin films[111,112]. Using the CSD method, Starschich et al.[43] successfully prepared Y:HfO2 films with 
a thickness of ~70 nm, which still possess Pr over 13 μC·cm-2. The PLD method has been widely used to 
prepare highly oriented HfO2 films. Recently, 930-nm-thick 7%-Y:HfO2 films were deposited on 
(111)Pt/TiOx/SiO2/(001)Si substrates using this method. Interestingly, the resulting FE structures and 
properties were insensitive to the film thickness, which also makes HfO2 films attractive for structural 
characterization and piezoelectric applications[29,35,63].
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Table 2. Comparisons between ALD, PVD and CSD growth methods[63,103-106]

Method Benefits Drawbacks Film structures

ALD • Ease of subnanometer thickness control, good 
step coverage and large area uniformity 
• High conformality, e.g., 3D structures[103] 
• Widely used in CMOS technology in recent 
decades

• Slow deposition rates (100-
300 nm/h) 
• Higher carbon contamination 
from metalorganic precursors 
• Narrow deposition 
temperature window 
• Moderate deposition 
temperature (~200 °C) and 
annealing (600-1000 °C)

• Polycrystalline films 
• Thermodynamic unpredicted phase 
transformation pathway: tetragonal-
orthorhombic-monoclinic phase transition 
• Limited film thickness stabilizing the FE 
phase

PVD-PLD • Nanometer thickness control 
• Enabling 3D integration 
• Controllable film morphology and stoichiometry 
by multiple process parameters, e.g., laser fluence, 
background pressure and substrate temperature 
• High deposition rate (~100 Å/min) 
• Cleanliness of the process due to the use of the 
laser (a filament is not required) 
• Numerous target materials, allowing the growth 
of complex oxides

• Complex mechanism 
• Ack-sputtering 
• Limited maximum area 
deposition by angular energy 
distribution

• Epitaxial films and polycrystalline films 
• Thermodynamically favored phase 
transformation pathway: monoclinic-
orthorhombic phase transformation

PVD-
sputtering

• Deposition at room temperature possible 
• Very high deposition rates and the associated low 
cost 
• Lower carbon contamination due to use of 
ceramic targets 
• Low annealing temperature of ~500-600 °C

• Dual targets are required for 
accurately controlling doping

• Polycrystalline films 
• Thick films up to 1 μm possessing 
ferroelectricity

CSD • Cost-effectiveness, ease of use and high yield 
• Wide tunability with various dopant systems 
• Thicker FE films

• CSD precursors may be 
difficult to obtain 
• Resolution of layer thickness 
is poor 
• Nonuniform morphology

ALD: Atomic layer deposition; PVD: physical vapor deposition; CSD: chemical solution deposition; CMOS: complementary metal oxide 
semiconductor; FE: ferroelectric; PLD: pulsed laser deposition.

Phase stability
The ferroelectricity in doped HfO2 films is attributed to the stabilization of the metastable non-
centrosymmetric Pca21 phase[32,38,99]. The FE phase Pca21 can be stabilized by various growth parameters 
during the film fabrication process with the above mentioned methods, i.e., ALD, PVD, CSD and PLD. The 
common growth parameters that can be controlled are doping (bulk free energy)[45,75,113,114], film thickness 
(grain size effect)[57,78,93] and capping layer (thermal strain)[16,115-117]. We will discuss how the polar Pca21 phase 
is stabilized by these growth parameters. In addition, the ferroelectricity in HfO2 films has a strong electric 
field[118-121] and temperature dependence[18,122,123], which has a strong correlation with the phase 
transformation under external stimuli[25,122]. While previous reviews[51,82] focused mainly on the FE properties, 
we will summarize the microstructure-property relations.

Effects of dopants (bulk free energy)
The ferroelectricity in HfO2 films can be adjusted by dopant species. Various cations, including Si[16], Zr[74], 
Al[20], Y[19] and La[100,124], and an anion, N[114], have been incorporated into HfO2 films. All these dopants can 
induce ferroelectricity but have different doping sensitivity depending on the dopant size. For films with 
smaller sized dopants, such as Si and Al, macroscopic paraelectric (PE)-FE-antiferroelectric (AFE) 
transitions occur with increasing dopant concentration[16,18,20]. HfO2 films doped with Si were firstly reported 
to induce ferroelectricity and exhibited significant potential for industrial applications due to Si already 
being a standard element with mature technical parameters and contamination control methods[16]. In HfO2 
films, Pr increases with a Si concentration of 2.6 to 3.1 mol.%. The AFE property gradually appears when the 
Si concentration is over 4.3 mol.%[16]. Similar results were observed in Al-doped HfO2 films. A robust FE 
behavior is achieved at an Al content of 4.8 mol.% and obvious AFE behavior occurs at an 8.5 mol.% Al 
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content[20]. Zr is another promising dopant to maintain the FE properties in a wide Zr-content range 
because the Zr can substitute Hf in the whole composition range[125]. Figure 5A shows a polarization-electric 
field (P-E) hysteresis loop for the HZO films. The FE behavior in the HZO system is stabilized when the Zr 
concentration is 30-50 mol.%[62,74]. Figure 5B demonstrates how the ZrO2 content affects the Pr, dielectric 
constant (εr) and M-phase fraction in HfO2-ZrO2 solid solutions. The highest Pr is achieved at a 50 mol.% 
ZrO2 concentration, while the fraction of the M-phase (P21/c) decreases to 0% at this point. This result 
indicates that the centrosymmetric M-phase is suppressed with increasing doping concentration. The 
reduced M-phase promises the possibility of forming the non-centrosymmetric phase Pca21.

The doping sensitivity of various dopants is shown in Figure 5C[45]. Unlike small-sized dopants, large-sized 
dopants (e.g., Y, Gd and La) exhibit different PE-FE-PE transitions with increasing concentrations[19,21,124,126]. 
Müller et al.[19] prepared HfO2 films with Y concentrations varying from 2.3 to 12.3 mol.%. The highest Pr of 
24 μC·cm-2 was achieved at a Y concentration of 5.2 mol.%. Unlike the AFE behavior in Si- or Al-doped 
HfO2 films, the HfO2 films with PMA (anneal for crystallization after top electrode deposition) and PDA 
(anneal for crystallization after top electrode deposition) change to paraelectric again when the 
concentration of Y increases to 12.3 mol.%, as shown in Figure 6.

To systematically investigate the dopant effects on phase types and ferroelectricity in HfO2 films, 
experiments and theoretical calculations were carried out with different dopant species (ionic size and 
valence) and concentrations. Schroeder et al.[45] compared the ferroelectricity of HfO2 films with various 
dopants of radii from 54 pm (Si) to 132 pm (Sr). AFE behavior (when T-phase occurs) occurred in HfO2 
films with small-sized dopants, such as Si and Al, and this was attributed to the specific phase 
transformation path related to small dopants. For small dopants, like Si and Al, M-O-T-C phases 
transformations occur with increasing doping concentration[45]. On the contrary, M-O-C phase 
transformation takes place in HfO2 films with large dopants, such as Y, Gd, La and Sr, not favoring the 
formation of the T-phase that leads to AFE-like behavior. The T-phase contains four relatively short and 
four relatively long Hf-O bonds, which is more favorable with Si or Al doping because the short Si-O or 
Al-O bonds could form after Si or Al doping, while long X-O bonds are formed by large dopants in the T-
phase[127,128].

Later, more atoms (Al, Ga, Co, Ni, Mg, In, La, Y, Nd, Sm, Er, Sr and Ba) with different ionic radii (from 54 
to 135 pm), valences and concentrations were incorporated in CSD-based HfO2 films[75]. The Pr in HfO2 
films with large dopants (from La to Sm, Pr ≈ 14 μC·cm-2) is almost four times higher than that of small 
dopants (from Al to In, Pr ≈ 3.5 μC·cm-2). This is due to the promotion of the C-phase to O-phase 
transformation by the large dopants, with the assistance of oxygen vacancy movement under an applied 
electric field[75]. Similar results were also obtained in sputtered HfO2 films doped with Sc, Y, Nb, Al, Si, Ge 
and Zr[114]. Figures 7A and B show the switchable polarization (PSW) and the phase fractions of the O-, T- 
and C-phases as a function of doping species and concentration. Although these dopants show different 
doping sensitivities, the switchable polarization peaks remain at ~22 μC·cm-2. Meanwhile, the corresponding 
fractions of the O-, T- and C-phases increase to ~100% at high doping levels, indicating a phase 
transformation from the M-phase to the O-, T- and C-phases. Figures 7C and D show the relationships of 
PSW-fraction and 2θ-fraction of the M-phase, respectively. These results present a possible universal route for 
the formation of the FE HfO2 phase with increasing dopant concentration: the low symmetric M-phase 
tends to transform to the higher symmetric T-/C-phases at higher doping concentrations, with O-phase 
being the intermediate one between them[114].
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Figure 5. (A) P-E hysteresis at 1 kHz of 9-nm-thick HZO-based metal-insulator-metal capacitors. (B) Evolution of P r, εr and M-phase 
fraction in the HfO2-ZrO2 solid solution with increasing ZrO2 content (mol.%) [74]. (C) Contour plot of Pr as a function of dopant radius 
and concentration[45]. HZO: Hf0.5Zr0.5O2; Pr: remanent polarization.

Figure 6. P-V hysteresis loops of 10 nm HfO2 films doped with Y from 2.3 to 12.3 mol.% treated with PMA and PDA processes[19].
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Figure 7. (A) Switchable polarization PSW of HfO2 films as a function of doping concentration for different dopants: Sc, Y, Si, Ge, Zr and 
N. (B) O-, T- and C-phase fraction of HfO2 films as a function of doping concentrations for various dopants. (C) PSW as a function of the 
M-phase fraction for HfO2 films with various dopants. (D) O-, T- and C-phase (111) peak positions as a function of the fraction of the M-
phase for various dopants. The red and green arrows represent theoretical values for FE O-phase and non-FE T-phase, respectively[114]. 
PSW: switchable polarization; FE: ferroelectric.

In order to further understand the dopant effect on the stabilization of the Pca21 phase, first-principles 
calculations were carried out with 40 dopants by Batra et al.[113]. The results indicated a significant decrease 
in bulk free energy after doping with Ca, Sr, Ba, La, Y and Gd, although the Pca21 phase could not be solely 
stabilized by any dopant. In addition, the Pca21 phase is more favored by dopants with large radii and low 
electronegativity due to the specific bonds between the dopant cation and the second nearest oxygen 
neighbor. Compared with divalent dopants, such as Ba and Sr, trivalent dopants, including La, Gd and Y, 
are considered to stabilize the polar Pca21 phase at a lower lattice strain condition. These conclusions are 
consistent with the experimental results discussed above, illustrating that some dopants from rare earth 
metals (La, Gd and Y) to alkaline earth metals (Sr) show significant potential in enhancing the 
ferroelectricity in HfO2 films.

The understanding of the phase transformation with dopant concentration is interesting for both the 
fundamental understanding of HfO2 films and their applications. It is helpful to understand the origin of 
ferroelectricity in HfO2 films. In addition, the FE properties in HfO2 FEs can be manipulated by different 
dopants to optimize the device performance. For example, Park et al.[31] reported that the energy storage 
density was the highest in the Hf1-xZrxO2 system with x = 0.7. Doping is the most flexible method to tailor 
HfO2 FE thin films with the desired properties.
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Effects of film thickness (surface energy)
According to the bulk free energy theory, the M-phase is more energetically favored compared to the FE 
Pca21 phase that can be obtained in films with thicknesses of < 40 nm[16,19,52]. Park et al.[76] investigated the FE 
properties and the fraction of FE O-phase in Hf0.5Zr0.5O2 films with thicknesses from 10 to 25 nm. A 
consistent reduction of the Pr and O-phase fraction was found with increasing film thickness. Similar results 
were reported in undoped HfO2 films with thicknesses from 4 to 20 nm[93] [Figure 8A]. A reduction of Pr 
and permittivity in the HfO2 films was observed when the film thickness increased from 6 to 20 nm. Grains 
in HfO2 films with thicknesses from 6 to 20 nm were characterized by TEM, as shown in Figure 8B. The 
individual grain grew across from bottom to top electrodes, in which the horizontal and vertical dimensions 
were of the same order of magnitude of film thickness. According to this result, a relation of grain size vs. 
film thickness was proposed, where the individual grain size in the HfO2 film depends on its vertical 
dimension, or in other words, the film thickness. Thus, a larger film thickness results in an enlarged grain 
size. As indicated by ab initio results, the FE O-phase with the Pca21 structure has a lower surface energy 
than the M-phase[57]. In the nanoscale HfO2 films, the existence of a large quantity of nanocrystal grains 
leads to a high surface-to-volume ratio. Therefore, the surface energy dominates the total Helmholtz free 
energy, leading to stabilization of the metastable Pca21 phase that unfavored solely by the bulk free energy. 
In this case, the surface energy loses its dominant contribution to the total energy in thicker films and the 
obtained phase is mainly favored by the bulk free energy, resulting in stabilization of the M-phase.

Benefitting from their unusual size effect, HfO2 films can maintain spontaneous and switchable polarization, 
even for thicknesses down to 1 nm[129], unlike the scaling issues in perovskite FEs. This size effect in HfO2 FE 
films not only shifts the search for the fundamental limits from traditional perovskite FEs to next-
generation fluorite structured oxides, but is also helpful for developing polarization-driven memories and 
ultrathin FE-based transistors.

In addition, contradictory reports are available in the literature on the effect of film thickness on Ec, even in 
epitaxial HfO2 films. Lyu et al.[130] reported that Ec decreases remarkably with film thickness in epitaxial HZO 
films, and the slope of the linear fit to log(Ec) vs. thickness is -0.61, which is consistent with the scaling value 
of -2/3 that is common in high quality perovskite FEs. A similar thickness-dependent Ec was observed for 
epitaxial HZO films on Si(001)[69] and La-doped HZO films on STO(001) and Si(001)[131]. In contrast, the Ec 
was reported to remain almost constant with increasing film thickness in epitaxial Y-doped HfO2 films[132]. 
The microstructural origin for the different thickness-Ec relation is rarely reported. It was believed that 
microstructures would significantly affect the thickness and Ec relationship, which requires more work to 
reveal the role of microstructure.

Effects of capping electrodes and annealing (strain and quenching)
As-deposited HfO2 films from ALD normally consist of an amorphous structure. Crystallization by 
annealing should be carried out. In the annealing process, a capping layer is a significant promotion to 
induce ferroelectricity due to the strain effect (the strain is introduced by the different thermal expansion 
coefficients between the capping layer and the HfO2 film). Böscke et al.[16] reported that ferroelectricity only 
occurs in 10-nm-thick Si:HfO2 after annealing with a TiN top electrode capping. A more systematic 
investigation of Al:HfO2 films was conducted by Mueller et al.[20] on the FE properties in PMA samples with 
a TiN top capping layer [Pt/TiN(top)/Al:HfO2/TiN(bottom)/Si], and PDA samples without a TiN top 
capping layer. As shown in Figure 9, the PMA and PDA samples show similar PE-FE-AFE transitions with 
increasing doping concentration, but the Pr of the PMA samples is always higher than that of the PDA 
samples.
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Figure 8. (A) Evolution of polarization-electric field and permittivity-electric field hysteresis with increasing thickness of undoped HfO2 
thin films. (B) TEM micrograph of typical grains in 6 and 20 nm-thick HfO2 films[93]. TEM: Transmission electron microscopy.

Figure 9. Polarization hysteresis for (A) PMA and (B) PDA samples[20].

Bottom electrodes also play a significant role in the ferroelectricity of HfO2 films, which can control the 
resulting grain orientations and produce in-plane lattice strain. Park et al.[115] clarified that grains in 
HZO/TiN (polycrystalline films/electrode) possess random orientations, while HfO2 films on (111)-oriented 
Pt bottom electrodes are (111)-textured. A high in-plane tensile strain larger than 1.5% is found in both 
types of films. For tetragonal grains with proper orientation [(110)-oriented], the transformation to the 
Pca21 phase is possible because the a axis of the O-phase (aO) could be obtained by elongating the c axis of 
the T-phase (cT) under the in-plane tensile strain. However, for (111)-textured films on (111)-oriented Pt 
bottom electrodes, the transformation from the T-phase to the O-phase requires a larger strain for the cT to 
aO transformation, which is not favored by similar in-plane tensile strain. Shiraishi et al.[117] investigated the 
role of in-plane strain on the ferroelectricity of HZO films. Pt bottom electrodes with the (111)-orientation 
were coated on SiO2, Si and CaF2 substrates with thermal expansion coefficients of 0.47 × 10-6, 4.49 × 10-6 and 
22 × 10-6/°C, respectively, leading to different strain conditions for HfO2 film deposition [Figure 10A]. As a 
result, HZO films on SiO2 substrates have a smaller in-plane tensile strain than that on Si substrates, while 
HfO2 films on CaF2 substrates have in-plane compressive strain, as shown in Figure 10B. Correspondingly, 
HZO films on SiO2 have the highest remanent polarization, followed by those on Si substrates and on CaF2 
substrates, which is consistent with the reduction of the in-plane tensile strain, as shown in Figure 10B. The 
fraction of the O- and T-phases is also estimated, which increases with in-plane tensile strain.
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Figure 10. (A) P-E hysteresis of HZO thin films deposited on SiO 2, Si and CaF2 substrates. (B) Relationship between remanent 
polarization and deviation of the lattice spacing[117]. HZO: Hf0.5Zr0.5O2.

Furthermore, other metal electrodes, such as W, Ru and Ir, have also been used for HfO2 FE fabrication to 
improve the endurance of the device or device integration ability[133-138]. Some field-induced behaviors, such 
as the wake-up effect and fatigue, are also related to the electrode properties[25,33].

FERROELECTRICITY AND MICROSTRUCTURAL EVOLUTION UNDER EXTERNAL STIMULI
Since FE HfO2 films are promising for memory devices and energy storage applications operating under 
repeated electric or thermal loading, the materials properties and corresponding device performance under 
external stimuli, such as temperature and electric field, must be considered. In this section, the phase 
transformations and FE device performance evolution under external stimuli in HfO2 films are reviewed.

Temperature
Temperature-dependent ferroelectricity is an interesting topic in FE HfO2 films. The FE-AFE transition 
with a temperature increase from 0 to 180 °C was first reported in 3.8 mol.% Si-doped HfO2 films by 
Böscke et al.[18]. A lower transition temperature occurs at higher Si concentrations. Similar temperature-
induced FE phase transformations were also reported in HZO solid systems and Al-doped HfO2 films[20,74]. 
This phenomenon is very useful for energy-related applications in nanoscale devices, such as electrocaloric 
cooling devices[31,51,139,140]. Hoffmann et al.[23] reported that giant pyroelectric coefficients up to 
1300 μC/(m2 K) were achieved due to the temperature-induced structural transition. The ultra-high 
pyroelectric coefficient comes not only from usual pyroelectric behavior but also from a phase 
transformation associated with a large change of polarization with temperature. Encouraged by the 
significant potential of energy storage and transfer applications, further fundamental knowledge behind this 
temperature-induced FE property evolution was explored, especially with its structural mechanism. 
Park et al.[122] investigated remanent polarization-microstructure relation from 80 to 400 K. Figure 11A gives 
an intensity contour map of grazing incidence X-ray diffraction (GIXRD) patterns of Si-doped HfO2 films 
from 110 to 410 K. With decreasing temperature, the normalized intensities of the O-phase (110)o and (120)
o diffraction peaks increase from almost 0 to 0.25 and 1, respectively. This provides direct evidence of the T- 
to O-phase transformation [Figure 11B-G] and as the origin of the changes of the P-E curves [Figure 11H-
M].

Electric field
Although HfO2 FEs show significant potential for resolving critical difficulties that deter the 
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Figure 11. (A) An intensity contour map of GIXRD patterns of Si-doped HfO2 films from 110 to 410 K. GIXRD patterns of Si-doped HfO2 
films measured at (B) 410, (C) 350, (D) 275, (E) 200, (F) 125 and (G) 110 K. P-E curves of Si-doped HfO2 films measured at (H) 400, 
(I) 350, (J) 275, (K) 200, (L) 125 and (M) 80 K[122]. GIXRD: Grazing incidence X-ray diffraction

commercialization of FE memories, they also suffer from remarkable instability issues induced by electric 
fields, namely, wake-up and fatigue[25,33,118,141]. A significant enhancement in ferroelectricity by electric field 
loading was first reported in Gd-doped HfO2 films by Mueller et al.[126]. Later, Zhou et al.[118] provided 
detailed experimental results in polarization change and identified it as the wake-up behavior in Si-doped 
HfO2 films. At the wake-up stage, Pr increases with electric cyclings and the two previously existing 
asymmetric coercive voltages tend to be symmetric. After the wake-up stage, the Pr of HfO2 films show a 
degradation when the electric cycling continuously increases, leading to device failure (fatigue). Non-
volatile FE memory devices are subjected to frequent read-out and write-in operation require robust 
stability. The electric field induced switching behaviors and phase transformation have side effects on device 
stability, thus their behaviors and the mechanism behind them should be understood for further device 
optimization.

The wake-up behavior is attributed to a transition of built-in bias. Pešić et al.[25] investigated some electrical 
parameters, including polarization, built-in bias and leakage current, which induce wake-up and fatigue, 
and concluded some trends during cyclic loadings. In the initial wake-up stage, the polarization increases 
while the built-in bias diminishes with a constant leakage current [Figure 12]. The constant leakage current 
indicates that no new defects form at this stage. Therefore, a possible origin for built-in bias is the evolution 
of the local defect (e.g., oxygen vacancies) distribution and/or phase transformation within a device. These 
oxygen vacancies are expected to occur at the interface between the TiN electrode and HfO2 films in the 
pristine HfO2 films, which induce the asymmetric distribution of the internal field that results in two peaks 
in the switching current curve [Figure 12B]. During the electric cycling process, these charged oxygen 
vacancies can move into the internal film under the electric field. The redistribution of oxygen vacancies 
improves the asymmetric internal field, which makes the two peaks (pristine state) in the switching current 
merge into one (wake-up state).
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Figure 12. (A) Pr of Sr:HfO2 FE capacitors as a function of electric cyclings. (B) Current-voltage curves for the pristine, wake-up and 
fatigue stages. (C) Leakage current-electric field curves measured after different cycling numbers[25]. Pr: Remanent polarization; FE: 
ferroelectric.

In addition, a phase transformation is expected with increasing cyclic loadings. The bulk region undergoes 
an M-phase to O-phase transformation, while the interfacial region undergoes a T-phase to O-phase 
transformation, as confirmed by TEM characterization[25]. The field-induced phase changes at the wake-up 
stage were also observed by TEM in 10-nm-thick Si- and Gd-doped HfO2 films[33,119,142]. The O-, C- and T-
phase to M-phase ratio is 0.2 for pristine films and increases to 1 after 1000 cycles, representing a phase 
transformation from the M-phase to the O-, C- and T-phases upon the electric cycle loadings, as shown in 
Figure 13A[33]. Similar phase transformations during the wake-up process were also observed by X-ray 
diffraction. Fields et al.[121] observed a decrease in the full width at half-maximum of the T- and O-phase 
superimposed peak, from 0.425 before the wake-up process to 0.406 after wake-up, which indicated the 
phase change from the T-phase to the O-phase during the wake-up process. A similar result was also 
reported in undoped and Y-doped HfO2 films by Nittayakasetwat and Kita[143].

It is noteworthy that the redistribution of oxygen vacancies and the phase transformation during the wake-
up process should not be considered separately. Previous experimental investigations indicate that the 
formation of the stable M-phase could be suppressed by an oxygen deficient atmosphere[62,102], while 
computational simulations suggest that the O-phase has a lower free energy with increasing oxygen 
vacancies[53]. Mittmann et al.[55] claimed that oxygen vacancies may act as nucleation sites for the polar 
phase, which promise a large number of nuclei that leads to a small average grain size during the 
crystallization process and therefore stabilizes the O-phase. During the wake-up process, oxygen vacancies 
can diffuse into the film interior easily at such a high electric field (in the order of MV cm-1), which may 
result in the phase transformation to the O-phase.

After the wake-up process, if the FE HfO2-based devices are applied with continuous electric cyclic loadings, 
these devices will reach the fatigue stage. At present, the reported field cycling endurance for devices based 
on polycrystalline La-doped HfO2 films[48] is no more than 1011. This value is much smaller than that of their 
perovskite counterparts (1015 for the MSP430 FR573x microcontroller, Texas Instruments[84]), making it a 
critical problem for HfO2-based devices. During the fatigue process, the leakage current increases, along 
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Figure 13. (A) STEM-HAADF images of HfO2 films at pristine, wake-up and fatigue stages, showing phase transformation and 
corresponding phase fractions at different stages[33]. (B) Proposed physical mechanism behind the field-induced FE behavior by 
coupling with phase transformation, defect generation and diffusion, and charge injection[25]. STEM-HAADF: Scanning transmission 
electron microscopy-high angle annular dark-field; FE: ferroelectric.

with the reduction of polarization, which is attributed to the formation of new defects, e.g., Hf and O 
vacancies and their accumulation near grain boundaries. Pešić et al.[25] investigated the fatigue stage using 
dielectric-based simulation software and a commercial TCAD Sentaurus device simulator tool. The 
complete device stack is defined as TiN (top)/TiOxNy/TM-HfOx/FE-HfO2/TM-HfOx/TiOx/TiN (bottom), 
where TM-HfOx is the interfacial region consisting of a nonswitchable transitional material. In the fatigue 
stage, oxygen vacancies are generated at the electrode near the TiOx interface. The non-switchable regions, 
TM-HfOx, reduce the switching electric field for the FE layer and thus the number of switchable domains 
and polarization decrease.

Park et al.[84] discussed the limited endurance of FE HfO2 films and the possible affected factors on this 
phenomenon. They reported that both grain size and doping concentration influence the endurance 
property. In the case of polycrystalline FE HfO2 films, the FE O-phase is stabilized by the nanoscaled grain 
sizes in HfO2 films that result in significant grain boundaries for the accumulation of oxygen vacancies. 
Therefore, HfO2 films with larger grain sizes are expected to possess higher endurance, while the M-phase 
fraction also increases, resulting in a reduction in remanent polarization. In addition, the largest 2Pr of 
40 μC·cm-2 is observed when the Zr doping concentration reaches 50%, while the worst endurance of ~107 is 
also recorded in this doping concentration[84]. They also noticed a “Pr-endurance dilemma”, a high Pr value 
usually leads to poor endurance in HfO2 films. This dilemma is consistent with the above mentioned grain 
size and doping concentration effects. It can be further explained from the structural aspect if we focus on 
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the oxygen vacancies and grain boundaries that induce the breakdown. In polycrystalline HfO2 films, the Pr 
value is almost determined by the FE O-phase fraction. As we mentioned before, the free energy of the O-
phase is lowered by increasing oxygen vacancies[53]. Therefore, if the HfO2 film has a higher fraction of the 
O-phase (almost equivalent to higher Pr), it may contain a larger concentration of oxygen vacancies, 
resulting in devices breakdown under repeated electric cycles. In addition, the O-phase has lower interfacial 
energy than the M-phase, thus a higher surface-to-volume ratio favors the stabilization of the O-phase. A 
high surface-to-volume ratio can be achieved by decreasing grain size, which leads to a large Pr but more 
grain boundaries for the accumulation of oxygen vacancies. Therefore, high endurance and Pr are rarely 
obtained simultaneously in polycrystalline films.

Retention is another significant parameter for FE devices. FE HfO2 films can achieve retention times of up 
to a decade, which is higher than the retention time in perovskite FE materials, e.g., PZT [Pb(Zr,Ti)O3][69,144]. 
The high retention in HfO2 films is related to the reduced depolarization field/coercive field and trapping 
effects. Gong and Ma[144], Ma et al.[145] suggested that if the depolarization field is comparable to or smaller 
than Ec, the polarization decay for retention is low. In HfO2 FEs, the large Ec of ~1-2 MV cm-1 results in 
minimal polarization loss. In addition, the electron injection is induced by the remanent polarization during 
the device working, which is followed by electron trapping and then diminished polarization in the FE layer. 
In HfO2 FE films, the internal defects concentrations, e.g., grain boundaries, domain walls and point defects, 
are key to the polarization loss. Compared with perovskite FEs that have large thicknesses of ~100 nm, HfO2 
films with thicknesses of ~10-40 nm possess robust ferroelectricity, in which the trap concentration is 
reduced by the thin film deposition.

As discussed above, the limited endurance and the long retention in HfO2 films are related to the very large 
Ec of ~1-2 MV cm-1, which is much higher than that of conventional perovskite FEs (~0.05 MV cm-1)[81]. 
Such a large Ec brings both advantages and disadvantages to HfO2-based FE films. For example, HfO2 FE 
devices require a high driving voltage (≥ 3.0 V for 10-nm-thick films) to reach the saturated remnant 
polarization (2Pr) value due to the large Ec, and thus, degrades the device reliability during the endurance 
test. However, it improves the scalability of HfO2 film-based FeFET devices. The memory window (MW) of 
a FeFET is estimated as MW = 2Ec × t, where Ec is the coercive field and t is the thickness of the FE layer. 
From this aspect, the higher Ec is helpful to reduce the device dimensions. In addition, higher Ec can 
improve the retention of the FeFET of HfO2 films. This makes the Ec value attractive at a certain level.

This electric field-induced FE behavior is normally related to the phase transformation. However, the 
mechanism behind it is unclear. Pešić et al.[25] revealed that the existing defects, e.g., oxygen vacancies, can 
redistribute under the electric field, resulting in a phase transformation, as shown in Figure 13B. However, it 
is difficult to observe the direct evidence of defect redistribution under the electric field due to the present 
limitations of film quality and experimental techniques. Recently, FE domain switching behavior was 
observed due to the epitaxial rhombohedral (R-phase) HfO2 films with high single crystalline quality. 
Nukala et al.[146] showed the drift of oxygen vacancies across the HZO films between two LSMO electrodes 
by in-situ TEM with the integrated differential phase contrast (iDPC) mode. The oxygen vacancies move to 
the bottom electrode from the HZO films when the positive bias increases from 0 to 2 V. At a bias of 4 V, a 
phase transformation from the R-phase to M- and O-phases occurs [Figure 14]. It is noteworthy that the 
oxygen-reactive top LSMO electrode is the main source and sink of oxygen. This observation clarifies the 
microstructural origin of phase transformation from the R-phase to the O- and M-phases. However, this 
phase transformation path is not the most common one between the M- and O-phases. Therefore, further 
investigations should be carried out for FE HfO2 films with the O-phase with the Pca21 space group.
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Figure 14. Oxygenation and deoxygenation of HZO and associated phase transformations. (A) STEM-iDPC images under increasing 
positive bias showing R-phase evolution of an HZO grain. (B) Out-of-plane displacement of VO with external bias in the marked 
supercell (red box) with respect to the positions in (A). Negative values indicate displacement toward bottom electrode. VO shows both 
in-plane and out-of-plane (toward bottom electrode) components (inset). (C) A new grain nucleates in the same region at +4 V, giving 
rise to a polycrystalline nature (FFT in inset). (D) Another region in HZO film back at 0 V showing the O- and M-phases. Note the 
change of orientation from [111] to [100]. (E) STEM-iDPC image of domains (mutually rotated by 180° about [111]) in R-phase, which is 
retained when poled at -3 V (imaged at 0 V). Scale bars: 1 nm in (A, C, E), 2 nm in (D). Interfaces between HZO and top and bottom 
LSMO are marked in orange[30]. HZO: Hf0.5Zr0.5O2; STEM-iDPC: scanning transmission electron microscopy-integrated differential 
phase contrast; LSMO: La0.7Sr0.3MnO3.

FE HFO 2 EPITAXIAL FILMS
As discussed previously, polycrystalline HfO2 films have advantages in certain areas, including easy 
fabrication and CMOS compatibility for practical applications. However, some disadvantages hinder the 
practical application of these films. For example, problems related to the electric field induce wake-up and 
fatigue processes in HfO2 films, which significantly influence the device stability. The wake-up effect is 
attributed to the M- to O-phase transformation[33] and the fatigue may be induced by the accumulation of 
oxygen vacancies at grain boundaries in polycrystalline HfO2 films[121]. Epitaxial HfO2 films, possessing 
single-crystalline and boundary-free characteristics, are of significant interest in optimizing FE 
performance. This includes the elimination of the wake-up effect due to the phase transformation and 
extension of the device lifetime due to oxygen vacancy accumulation at grain boundaries. In addition, 
epitaxial HfO2 films can serve as a model system for physical mechanism investigations of new fluorite FE 
materials due to their single crystalline characteristics. In this section, the lattice matching relations between 
substrates and epitaxial HfO2 films are reviewed, followed by comparisons between polycrystalline and 
epitaxial HfO2 films in terms of their polarization, wake-up effect and fatigue behavior. Finally, some recent 
in-situ TEM observations of high-quality epitaxial films are reviewed.

FE phase stabilization in epitaxial HfO2 films
Epitaxial HfO2 films present single-crystalline structures with certain crystallographic orientations, 
benefiting both promoting FE properties and easing the investigation of fundamental issues due to their 
simple phase composition. Since the phase types and FE properties of epitaxial films are dominated by 
substrate types, here, epitaxial HfO2 films are reviewed according to substrate types. In addition, dopant 
concentration[63,147-152], f i lm thickness[35,47,66,69,130,132,153-159] and process  parameters ,  such as  oxygen 
concentration[106,109,130,160] and annealing temperature[130,161], also have effects on FE phases in epitaxial HfO2 
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films. However, their effects are similar to those in polycrystalline films in terms of the microstructural 
mechanism, thus these parts are not discussed in this section.

Orthorhombic Y-doped HfO2 films on YSZ substrates
For epitaxial films, the initial film structure and final phase stability are determined by interfacial energy 
between substrates and HfO2 films. Normally, the interfacial energy of a coherent or a semi-coherent 
interface is relatively small, while the incoherent interface has much higher energy. Therefore, the FE O- 
and R-phases could also be stabilized with proper epitaxial relations.

YO1.5-doped HfO2 films were first epitaxially grown on (100) YSZ substrates using the PLD method by the 
group of Funakubo[63]. With increasing dopant concentration, the structure of the epitaxial HfO2 films 
changes from the non-FE M-phase to the FE O-phase, and finally to a high symmetric T-phase without 
ferroelectricity. Furthermore, the orientation of epitaxial orthorhombic YO1.5-HfO2 films could be adjusted 
by selecting appropriate substrates. In this case, the deposition temperature (700 °C) is higher than the 
Curie temperature (450 °C), resulting in the formation of a T-phase at this temperature[63]. During the 
cooling stage, high-temperature T-phase transforms to the O-phase. Since the c-axis (cT) is longer than the 
a-axis (aT) in the T-phase, while the O-phase has a longer a-axis (aO) and relatively shorter b-axis (bO) and 
c-axis (cO), it is likely that aO is transformed from cT while bO and cO are transformed from aT, as shown in 
Figure 15A. Therefore, the orientation of the O-phase is determined by the orientation of the initial T-
phase.

In Figure 15B, (001)-oriented (aT = 0.5115 nm) HfO2 films with the T-phase can be deposited on a (001)ITO 
(aITO = 0.5135 nm)//(001)YSZ substrate with a lattice mismatch of -0.39% and then transforms to the (100)-
oriented O-phase. In addition, the (100)/(010)-oriented tetragonal HfO2 (sqrt [(aT

2 + cT
2)/2] = 0.5185 nm) 

films can be deposited on (001) YSZ (aYSZ = 0.5184 nm) by diagonal matching with lattice mismatch of 
0.02% and then transforms to the (010)/(001) O-phase[162]. The thickness-dependent structure and FE 
performance of (111)-oriented epitaxial 0.07YO1.5-HfO2 (YHO7) films were investigated by Mimura et al.[132]. 
The dominant phase in obtained for 10-115-nm-thick Y-doped HfO2 films is the O-phase (Pca21), while a 
small fraction of the M-phase is found in films with a thickness over 68 nm. The average lateral grain sizes 
are similar regardless of film thickness, e.g., which are 114.5 and 117.7 nm in 10- and 110 nm-thick YHO7 
films, respectively, and lead to the significantly small FE domains even in thick YHO7 films. Thus, 
ferroelectricity could be maintained in these Y-doped HfO2 films with thickness of up to 115 nm and the 
thickness dependence of Pr and Ec is relatively small.

Orthorhombic HZO films on LSMO bottom electrode
LSMO has also been used as a bottom electrode and buffer layer for the epitaxial growth of HZO thin films 
because of the lattice matching and the consideration of interfacial chemistry[67]. LSMO layers were 
deposited on various oxide substrates with cubic or pseudocubic structures with lattice parameters in the 
range of 0.371 to 0.421 nm, resulting in different lattice mismatches for epitaxial (111)-oriented HZO films 
[d(111) = 0.298 nm > d(11-1)/(1-11)/(-111) = 0.294 nm] with different FE properties. The fraction of O-phase increases 
at larger substrate lattice parameters, indicating that this phase is more favored with tensile LSMO 
electrodes. A domain-matching mechanism is responsible for high-quality epitaxial HfO2 films in this 
(111)HZO//(001)LSMO system, although a structural dissimilarity and large lattice mismatch exist in this 
(111)HZO//(001)LSMO system, which is revealed by a STEM investigation, as shown in Figure 16[68]. 
Estandía et al.[80] also systematically investigated the effects of bottom electrodes in stabilizing the O-phase. 
They proposed that surface chemical composition and atomic structure, instead of epitaxial stress, are the 
dominant causes of the ferroelectricity in HZO films. The interfacial chemistry, especially an LSMO layer 
with a proper La content, has a significant impact on the stabilization of the polar phase in epitaxial HZO 
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Figure 15. (A) Possible phase transformation paths from the T-phase to the O-phase. (B) Crystal parameter matching between HfO2 
films and electrodes/substrates[162].

Figure 16. (A) Schematic top view of an HZO crystal on a LSMO(001) surface. (B) Cross-sectional STEM-HAADF image of
HZO/LSMO heterostructure showing HZO crystal variants of the         and         types. Reconstructed image from reflections in Fourier
space corresponding to          HZO and (110) LSMO planes. (inset) Fast Fourier transformation of both HZO and LSMO. Planes in the
HZO layer are shown in yellow, while planes in the LSMO are given in white[68]. HZO: Hf0.5Zr0.5O2; LSMO: La0.7Sr0.3MnO3; STEM-
HAADF: scanning transmission electron microscopy-high angle annular dark-field.

films. Compared with polycrystalline HfO2 films, epitaxial HfO2 films need to be further explored to 
understand the epitaxial mechanisms, which is critical for improving film quality.

Rhombohedral HZO films on LSMO bottom electrodes
A new epitaxial rhombohedral (R3m) HZO thin film grown on a (001) La0.7Sr0.3MnO3/SrTiO3 (LSMO/STO) 
substrate was recently reported by Wei et al.[29]. Figure 17A presents a plan-view selected-area electron 
diffraction (SAED) pattern of a 9-nm-thick HZO film, showing 220 superposition spots from at least two 
domains (as shown in Figure 17C), with yellow and blue circles. The cross-sectional STEM-HAADF image 
of a 9-nm-thick HZO film in Figure 17B displays the coexistence of majority and minority HZO domains 
with [111]HZO and [001]HZO out-of-plane, respectively. In addition, from the fast Fourier transformation in 
Figure 17B, the estimated d111-HZO is around 2.953.01 Å. An interfacial HZO phase with a thickness of 2-3 
monolayers is also found between the LSMO and HZO film, which is a (~8%) in-plane tensile strained T-
phase (a = 3.60 Å in the unstrained T-phase and here, strained to the STO substrate, a = 3.91 Å), as shown in 
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Figure 17. (A) Plan-view SAED pattern and (B) representative cross-sectional STEM-HAADF image of a 4-nm-thick film. (C) Cross-
sectional STEM-HAADF image from a 9-nm-thick HZO sample. (D) STEM-HAADF image observed along STO [100] (the STO 
substrate is not shown in the images), revealing an interfacial T-phase layer of HZO[29]. SAED: Selected-area electron diffraction; STEM-
HAADF: scanning transmission electron microscopy-high angle annular dark-field; HZO: Hf0.5Zr0.5O2; STO: SrTiO3.

Figure 17D. A much lower out-of-plane parameter of c/2 = 2.31-2.44 Å is induced by the strained T-phase, 
leading to the generation of the R-phase under compressive strain (d111-r-HZO = 2.95-3.01 Å and d001-t-HZO = 
2.31-2.44 Å). The obtained HZO film with the R-phase has a large FE polarization of up to 34 μC·cm-2 and 
no requirement for a wake-up stage.

A systematic investigation for the strain-induced stabilization of the R-phase was carried out by 
Nukala et al.[79]. This work indicates that compressive strain has a critical effect on stabilizing the (111)-
oriented R-phase, which could be achieved by growing HZO films on a hexagonal (0001)-oriented 
substrate, e.g., gallium nitride (GaN) buffered Si. To understand the origin of this R-phase, Zhang et al.[158] 
investigated the evolution of structure and ferroelectricity with film thickness and in-plane compressive 
strain using DFT calculations. According to the calculations, a large stain of ~5% is necessary to maintain 
the polarization, which is comparable with the experimental one. In addition, a short and long Hf-O 
bonding order is along the out-of-plane direction in (111)-oriented R-phase under an in-plane compressive 
strain, which is considered as the origin of the polarization. Thickness is another key factor in stabilizing 
this FE phase. Although the R-phase has higher bulk energy than other polar phases, it could be stabilized in 
nanoscale thin films, according to the DFT results. From the results mentioned earlier[29], the R-phase is a 
FE phase that is responsible for the high polarization in HZO films and can be stabilized with compressive 
strain and thickness effect.

It can be concluded that the phase formation (orthorhombic or rhombohedral) in epitaxial HZO films 
depends on various factors, including the epitaxial strain and interfacial chemistry. The underlying 
mechanisms and accurate control for epitaxial phase require further exploration in future works.
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Epitaxial HfO2 films on silicon
Lee et al.[163] reported that (001)-oriented Y-doped HfO2 films were epitaxially grown on (001)Si with YSZ as
the buffer layer. The O-phase Pca21 with the out-of-plane direction of [001]/[010] is illustrated by X-ray
θ-2θ scans and no other secondary phase is observed. A Pr of up to 20 μC·cm-2 is achieved in obtained films,
with the retention performance comparable with that of polycrystalline Pb(ZrxTi1-x)O3 (x = 0.24-0.68).
Lyu et al.[70] integrated a HZO/LSMO film on Si(001) substrate using STO as the buffer layer. The 10-nm-
thick HZO film has a high Pr of 34 μC·cm-2 and the HZO capacitors show a ten-year retention time and a
high endurance up to 109 electric cycles. Rhombohedral single-phase HfZrO4 could also be grown on a
GaN(0001)/Si(111) substrate using the PLD method. A single crystalline phase characteristic is evidenced by
reflection high-energy electron diffraction patterns, and the epitaxial relationship of HZO/GaN
films/substrate at the same azimuthal angles of       and       is also clarified. Oxygen columns are
imaged using the STEM-iDPC techniques, by which a R-phase is identified[164].

Comparison of FE properties between polycrystalline and epitaxial HfO2 films
In polycrystalline HfO2 films, the FE O-phase coexists with non-FE T-, M- and C-phases. Therefore, the
reduction of Pr is induced by the generation of non-polar phases from polar phases. Under an electric field,
the non-polar phases transform to a polar phase, resulting in a higher Pr value, known as the wake-up
effect[118]. In addition, oxygen vacancies accumulate along grain boundaries during the electric cycling
loading, leading to large remanent leakage current and retention loss, known as device fatigue[25]. Epitaxial
methods are used to obtain HfO2 films with a single O-phase, reducing the fraction of non-polar phases and
grain boundaries that are detrimental for device performance. Therefore, improvements in remanent
polarization, wake-up stage,  and fatigue are expected in epitaxial  f i lms, as shown in
Table 3[19,29,35,45,47,48,69,125,131,165-167].

For HfO2 epitaxial films, the highest polarization value is 34 μC·cm-2 in (111)-oriented rhombohedral
Hf0.5Zr0.5O2 films[29] on a (001)LSMO/(001)STO substrate with a Ec up to 5 MV·cm-1 or (111)-oriented
orthorhombic Hf0.5Zr0.5O2 films[133] on a (001)LSMO/(001)SrTiO3/(001)Si substrate with a Ec up to
3 MV·cm-1. In both films, the wake-up effect is negligible. In addition, as-fabricated capacitors using
epitaxial HZO films have a retention time longer than ten years and good endurance against fatigue up to
1011 cycles[133]. These properties are better than their polycrystalline counterparts. The performance of both
epitaxial and polycrystalline HfO2 films with similar preparation parameters are shown in Table 3. Although
a similar remanent polarization of 34.6 μC·cm-2 is reported for polycrystalline TiN/Hf0.42Zr0.58O2/Ge using an
atomic oxygen deposition method, its Ec is only 1.8 MV·cm-1 and its endurance cycle is only 105. As we
expected before, a well-oriented single crystalline phase (Pca21 or R3m) could be obtained in epitaxial films,
leading to a high remanent polarization and a longer endurance without a wake-up effect. However, fatigue
in epitaxial films is still severe compared with conventional perovskite FEs and related fundamental
research is currently absent. In polycrystalline films, the wake-up effect and the fatigue are attributed to the
coupling effect of phase evolution, defect redistribution and charge injection during electric cycling, which
is too complicated to understand the evolution mechanism. For epitaxial films, the absence of the wake-up
effect and grain boundaries could simplify the conditions for fatigue investigation.

Up to now, epitaxial HfO2 films are less investigated than their polycrystalline counterparts. It is much more
difficult to grow epitaxial films with a single phase and certain orientations than polycrystalline films
because of the requirements of lattice matching between a film and its substrate. The first epitaxial HfO2

film was reported in 2015, based on an ITO coated YSZ substrate and a PLD method. In addition,
polycrystalline HfO2 films are mainly based on the ALD technique that is a mature fabrication method,
while the epitaxial HfO2 is mainly prepared by PLD that is relatively less popular at present. However, the
excellent FE performance has been demonstrated within epitaxial HfO2 films. At present, epitaxial films
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Table 3. Comparison of FE properties between polycrystalline and epitaxial HfO2 films

Material Film type Deposition Top/bottom electrodes Substrates Temperature (°C) Thickness (nm) Phase type Pr (μC·cm-2) Ec (MV·cm-1) Endurance 
cycles Ref.

Epitaxial PLD Pt/ITO (001)YSZ RT + 1000 °C annealing ~15 (001)-O phase > 25 2-3 / 2018[165]7 mol.%-YO1.5-HfO2

Polycrystal PLD / (001)Si RT + 1000 °C annealing ~15 Poly-O phase ~17 1.45 / 2019[35]

5.2 mol.%-YO1.5-HfO2 Polycrystal ALD TiN Si RT + 600 °C annealing ~10 Poly-O phase 24 ~1.2 / 2011[19]

Hf0.5Zr0.5O2 Epitaxial PLD LSMO (001)STO 800 °C 5 (111)-R phase 34 ~5 / 2018[29]

Hf0.5Zr0.5O2 Epitaxial PLD Pt/LSMO YSZ/(001)Si 800 °C 4.6 (111)-O phase 33 ~4 1 × 1011 2020[69]

Hf0.5Zr0.5O2 Polycrystal ALD TiN Si 250 + 400 °C annealing 10 Poly-O phase 25.45 ~1 / 2018[50]

Hf0.5Zr0.5O2 Polycrystal ALD TiN (100)Si 175 + 500 °C annealing 5.1 Poly-O phase 4.1 / 1 × 1010 2018[166]

Hf0.42Zr0.58O2 Polycrystal PA-AOD TiN/Ge (100)Ge 225 + 750 °C annealing 13 Poly-O phase 34.4 1.8 1 × 105 2019[125]

Hf0.5Zr0.49La0.01O2 Epitaxial PLD Pt/LSMO (001)STO 800 °C 4.8 (111)-O phase ~20 ~3.7 5 × 1010 2020[131]

Hf0.5Zr0.49La0.01O2 Epitaxial PLD Pt/LSMO (001)STO 800 °C 6.3 (111)-O phase ~30 ~3.5 1 × 109 2020[131]

0.7 mol.%-La:(Hf, Zr)O2 Polycrystal ALD TiN Si 235 + 500 °C annealing 10 Poly-O phase 14.5 / 1011 2019[48]

1 mol.%-La:(Hf, Zr)O2 Polycrystal PAALD TiN Si 235 + 400 °C annealing 10 Poly-O phase ~15 0.8 4 × 1010 2018[167]

3-4 mol.%-La:HfO2 Polycrystal ALD TiN Si 225 + 650 °C annealing 9 Poly-O phase 40 1.2 / 2014[45]

PLD: Pulsed laser deposition; ITO: Sn-doped In2O3; YSZ: yttria-stabilized zirconia; RT: room temperature; O-phase: single crystalline orthorhombic phase with Pca21 space group; Poly-O phase: polycrystalline 
orthorhombic phase with Pca21 group, the obtained film may also contain monoclinic phase that cannot observed by XRD pattern; ALD: atomic layer deposition; LSMO: La0.7Sr0.3MnO3; STO: perovskite SrTiO3; R-
phase: rhombohedral phase with R3m space group; PA-AOD: plasma assisted atomic oxygen deposition; PAALD: plasma-assisted atomic ALD method.

have been to the research core, more investigations will be carried for optimizing FE performance and proposing fundamental mechanisms related to phase 
stability and fatigue behavior.

CONCLUSIONS, CHALLENGES AND PERSPECTIVES
In conclusion, the discovery of ferroelectricity in fluorite-structure HfO2 films has both commercial potentials and fundamental research meanings as next-
generation FE devices. Since HfO2 films have promising CMOS compatibility and high scalability, they will attract increasing interest for future memory 
devices. The inspiring development will encourage more explorations of new FE materials, such as nano-scale amorphous Al2O3 that is promising for non-
volatile field-effect transistors[168]. In addition, the discovered ferroelectricity in this new-type fluorite material and nanoscale films triggered significant interest 
in fundamental investigations. Some results have been obtained. For example, the unexpected ferroelectricity in HfO2 films is attributed to the non-
centrosymmetric O-phase Pca21 or R-phase R3m. These phases are metastable but can be stabilized by various growth parameters, e.g., dopants, film thickness 
and interfacial strain. In addition, FE HfO2 films exhibit PE-FE-AFE/PE evolution under external stimuli (temperature and bias). In particular, the Pr of HfO2 
ferroelectrics increases with electric cycles during the wake-up stage, followed by a decrease to a low value until device failure at the fatigue stage, leading to 
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significant stability concerns for practical electronic devices. These two stages are related to the complicated 
interplay between phases transformation, defects redistribution and generation, and charge injection, 
significantly affecting the device stability and lifetime.

As discussed in this review, the FE properties and microstructural evolution under external stimuli are 
determined by film microstructures. Thus, a clear understanding of the microstructural transformation is a 
vital step for optimizing the FE properties of HfO2 devices. Electron microscopy is a powerful tool to give 
atomic-level structural information. It has made a great contribution to these fundamental issues in HfO2 
films, e.g., characterization of FE phase, nanoscale grain morphology and interfacial regions between HfO2 

films and electrodes. However, there are still some important issues rely on the thorough investigation of 
microstructures.

First is the impact of dopants on the microstructure transformation. In the present research, it is clear that 
the FE phases and FE properties can be adjusted by the dopants. But how does it happen? The general 
mechanism of the dopant effect is not clear yet. Understanding this issue can give a guideline for 
ferroelectrics design with suitable FE or AFE properties. However, there is a complicated coupling interplay 
among phase transformation, defects, and dopants. Generally, defects in HfO2 films are adjusted by dopants, 
and then both of them influence the phase transformation, the determined relations among them should be 
clarified. It is quite difficult to directly observe the defect migration without reliable characterization tools. 
Fortunately, the state-of-the-art STEM and spectroscopy techniques, including annular bright field imaging, 
high-angle annular dark-field imaging, (integrated) differential phase-contrast imaging, and electron energy 
loss spectroscopy techniques provide unique opportunities to directly precisely map the structural and 
elemental information of both the dopant elements and matrix elements in atomic scale[59,169-173]. Heavy and 
light elements can be detected and displayed simultaneously, providing a full spectrum of visualizing the 
microstructures-properties relationship. In the future, these techniques will be powerful tools for further 
investigation of the relationship between microstructures and FE properties.

Another important issue regarding HfO2 films is their FE property evolution with external stimuli, e.g., 
wake-up and fatigue. For electronic devices, repeatable device operation with bias voltage is required. The 
instability problems, such as wake-up and fatigue, should be suppressed. Therefore, the mechanism, 
especially the microstructural origin, behind these phenomena should be clarified. In-situ electron 
microscopy, including heating[174], biasing[30,175], straining[176,177] and their combinations, in a STEM/TEM have 
been very powerful in understanding the dynamic and kinetic behavior of FE materials. Phase 
transformation, oxygen octahedral tilting, defect migration, domain evolution under separate/combined 
biasing, straining and heating environments could be captured and analyzed in real-time. The recorded high 
spatial, temporal, and energy resolution of the recording information from state-of-the-art in-situ electron 
microscopy opens a new door to address these critical questions in FE HfO2 material systems.
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