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Abstract
Crystal structure prediction (CSP) plays a crucial role in condensed matter physics and materials science, with its
importance evident not only in theoretical research but also in the discovery of new materials and the advancement
of novel technologies. However, due to the diversity and complexity of crystal structures, trial-and-error experimen-
tal synthesis is time-consuming, labor-intensive, and insufficient to meet the increasing demand for new materials.
In recent years, machine learning (ML) methods have significantly boosted CSP. In this review, we present a com-
prehensive review of the ML models applied in CSP. We first introduce the general steps for CSP and highlight the
bottlenecks in conventional CSP methods. We further discuss the representation of crystal structures and illustrate
howML-assisted CSP works. In particular, we review the applications of graph neural networks (GNNs) andML force
fields in CSP, which have been demonstrated to significantly speed up structure search and optimization. In addition,
we provide an overview of advanced generative models in CSP, including variational autoencoders (VAEs), generative
adversarial networks (GANs), and diffusion models. Finally, we discuss the remaining challenges in ML-assisted CSP.

Keywords: Crystal structure prediction, machine learning, structure representation, graph neural network, machine
learning force field, generative model
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INTRODUCTION
With the rapid development of artificial intelligence, we are now in the so-called Big Data Era, a time when
vast amounts of data are generated and collected from various sources at an unprecedented pace [1,2]. In this
context, the data-driven research paradigm has become mainstream in modern materials science [3–7]. This
paradigm leverages big data and machine learning (ML) technologies to accelerate the discovery and design of
newmaterials, marking a shift from traditional research methods that rely on experiments and theory to more
efficient and automated methodologies. The data-driven research paradigm focuses on extracting features and
patterns from a large database to guide the design and property prediction of new materials [8,9]. The typical
workflow of data-driven materials science research includes: (i) collecting data; (ii) building ML models; and
(iii) using ML models for rapid computation and data analysis [10]. Obviously, data collection constitutes the
basis of this workflow [11,12], with materials science data originating from two primary sources: experimental
results and theoretical predictions.

Crystal structure prediction (CSP) serves as a vital data source for modern data-driven materials science re-
search, providing structural information crucial for understanding the electronic, optical, and magnetic prop-
erties of materials [13,14]. The goal of CSP is to determine the most stable arrangement of atoms solely based on
chemical composition [15,16]. CSP also explores metastable states that might possess unique properties [12,17]

and examines all possible compositions to discover new compounds [18,19]. When the temperature drops to 0
K, the free energy transforms into enthalpy, consistent with the total energies calculated by most first-principle
calculation software [e.g., the Vienna Ab-initio Simulation Package (VASP) [20–22]]. Therefore, in most cases,
we are looking for the global minimum on the potential energy surface.

As illustrated in Figure 1, ML-based CSP can continuously supply structural data for databases or practical
applications. This ML-driven materials design process is highly efficient and facilitates the discovery of new
materials through high-throughput CSP. Additionally, CSP involves exploring potential material structures
under extreme conditions and environments, and identifying materials that may emerge from experiments
but are costly to synthesize or require numerous attempts [23–26]. In short, compared to data collection that
solely relies on trial-and-error experimental synthesis - which is time-consuming and labor-intensive - CSP
is more economical, environmentally friendly, and safer [27–29]. CSP can be transformed into a combinatorial
problem, with general steps including [30]: (i) space gridding; (ii) atom arrangement; and (iii) energy evaluation.
By extensively repeating the last two steps, we can find the low-energy arrangements of atoms. However, this
exhaustive structure search method is suitable when the number of structures is small, but faces significant
challenges when the number of structures explodes.

The main difficulty in CSP is that the number of possible structures increases explosively as the number of
atoms in a unit cell increases [14,31]. If we use the general steps mentioned above, the number of possible
structures can be estimated using [14]:

𝐶 =
1

(𝑉/𝛿3)
(𝑉/𝛿3)!

[(𝑉/𝛿3) − 𝑁]!𝑁!
, (1)

where 𝛿 is the grid resolution (e.g., 𝛿 = 1 Å), 𝑉 is the volume of the unit cell, and 𝑁 is the number of atoms
in the unit cell. The number of possible crystal structures grows exponentially with increasing the degrees of
freedom (𝑑 = 3𝑁 +3): 𝐶 ≈ exp(𝑎 ·𝑑), where 𝑎 is a constant. Clearly, it is impractical to exhaustively enumerate
all possible atomic arrangements, making it necessary to design algorithms or methods for the problem of CSP.
Here, we summarize the challenges faced in CSP as follows:

• High-dimensional potential energy surfaces [32,33]: A large number of atoms in the unit cell leads to very
high-dimensional potential energy surfaces. The number of possible structures on the potential energy

http://dx.doi.org/10.20517/jmi.2024.18


Li et al. J Mater Inf 2024;4:15 I http://dx.doi.org/10.20517/jmi.2024.18 Page 3 of 27

1. Ba�eries
2. Catalysis
3. Solar Cell
4. Gas Storage
5. ……

Structure Predic�on

Quantum Mechanical
Calcula�ons for Many 

Applica�ons

Experimental Synthesis

Central Database
Known Materials & Proper�es

Propose

Store Select

Propose

High-throughout CSP

Figure 1. ML-drivenmaterials design. First, researchers useML-basedCSPmethods to explore low-energy structures of target compositions
in a short time. Then, the low-energy structures can be added to databases or used in quantum mechanical calculations. Finally, the
potential candidates can be synthesized in experiment. ML: Machine learning; CSP: crystal structure prediction.

surface increases exponentially with the number of atoms, making it extremely difficult to search for the
global minimum in high-dimensional spaces. Simple exhaustive methods are not suitable for CSP.

• Computational cost [13,34]: Determining the accurate energies of crystal structures typically requires first-
principles calculations based on density functional theory (DFT). However, the computational complexity
of DFT increases rapidly with the number of electrons, limiting the size of systems where DFT can be
applied.

• Limitations of empirical force fields [35,36]: Empirical force fields can be used for energy calculations and
structure optimization because they are faster. However, due to their reliance on empirical parameters,
they often fail to accurately describe the entire potential energy surface.

• Localminima [37,38]: Thepotential energy surface contains numerous localminima corresponding tometastable
structures. Without appropriate global search methods, structure searches can easily become trapped in lo-
cal minima.

To overcome these challenges, various algorithms have been adopted in conventional CSP methods, includ-
ing particle swarm optimization [39,40], genetic algorithm (GA) [41,42], Bayesian optimization [43,44], and simu-
lated annealing [45,46]. Nowadays, ML methods have been applied to CSP, greatly improving the efficiency of
structure searches. These include the graph neural network (GNN) [47,48], ML force field [49,50], and generative
model [51,52].

CONVENTIONAL CSP METHODS
Conventional CSP methods mainly refer to those that do not use ML techniques. In this section, we briefly
discuss these methods to convey their basic ideas, progress, and bottlenecks.

As shown in Figure 2, conventional CSP methods mainly include three parts: (i) structure generation; (ii)
structure optimization; and (iii) structure search. The initial structures are always generated randomly with
symmetry and distance constraints, and then DFT and global search algorithms are combined to explore low-
energy structures on the potential energy surface. The main difference between different CSP methods lies
in the global optimization algorithms. Therefore, we classify conventional CSP methods based on these algo-
rithms as follows.
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Figure 2. General steps in CSP. (A) Initial structures generated randomly with physical constraints; (B) Structure optimization by DFT
or classical force fields; (C) New structures generated by global optimization algorithms. CSP: Crystal structure prediction; DFT: density
functional theory.

Random search
The random search algorithm is the most basic method in CSP [53,54]. This method searches for the lowest-
energy structures through extensive random exploration. For instance, ab initio random structure searching
(AIRSS) [55] is a typical implementation of the random search algorithm. AIRSS first generates a large num-
ber of structures randomly and then uses first-principles calculations to relax these structures. Using random
search methods, novel structures have been discovered for defect clusters of various sizes [56], high-pressure
phases of solid hydrogen [57], nitrogen [58], and lithium [59]. Combining random search with a set of correlation
functions as the objective, the well-known special quasirandom structures (SQS) [60,61] approach has been de-
veloped formodeling the chemically disordered state within a fixed lattice for alloys with variable compositions.
By using SQS, it is also possible to investigate order-disorder phase transitions [60,61], such as phase transitions
in Fe-C alloys [62], BeZnO2 alloys [63], and Cs2AgBiBr6 perovskite [64]. Despite the accomplishments, random
search algorithms face challenges due to the giant configurational space. To improve search efficiency, several
strategies can be applied: using geometric constraints to reduce the search space [65,66], adopting ML mod-
els for rapid screening and energy calculations [67], and utilizing parallel computing to accelerate the search
process [68]. These strategies have made random search algorithms reasonably practical in the field of CSP,
especially in the generation of initial structures.

Particle swarm optimization
The particle swarm optimization [69,70] is based on swarm intelligence, inspired by the collective behavior of
birds or fishes in nature. In particle swarm optimization, particles move through the solution space, updat-
ing their positions and velocities based on their own experiences and the experiences of other particles in the
swarm. For instance, crystal structure analysis by particle swarm optimization (CALYPSO) [69] is a CSP pack-
age based on the particle swarm optimization. The general workflow of CALYPSO includes the following steps:
First, initial structures are randomly generated with physical constraints, including minimum interatomic dis-
tances and crystal symmetry. Then, structures are characterized using crystal fingerprints to eliminate du-
plicate or similar structures. After removing duplicate structures, local optimization is applied to candidate
structures to reach the local minima. Finally, the particle swarm optimization is used for structural evolution,
generating initial structures for the next iteration. These steps are repeated until the convergence conditions
are met. To date, a large number of functional materials have been discovered by CALYPSO, covering wide
applications in lithium batteries [71,72], superconductors [73], photovoltaics [74], and electronics [75]. The particle
swarm optimization is simple to implement, with relatively few parameters that are easy to adjust. However, it
may get trapped in local optima, especially in complex high-dimensional spaces or non-convex optimization
problems.
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GA
The GA [17,76,77] mimics the mechanism of natural selection, choosing individuals with the highest adaptabil-
ity for reproduction. In CSP, each individual represents a potential crystal structure, and the fitness of the
configuration is primarily determined by its energy, with lower energy indicating higher fitness. For instance,
Universal Structure Predictor: Evolutionary Xtallography (USPEX) [17] is a GA-based CSP software widely
used for discovering new materials, optimizing existing ones, and understanding the underlying principles
of crystal formation. The core steps include: First, selecting two or more parent crystal structures from the
existing population based on the fitness function. Then, a crossover operation is performed, where parts of the
parent chromosomes are exchanged to generate new offspring crystal structures. Subsequently, with a certain
probability, mutation is introduced in the offspring chromosomes, randomly altering some genes (e.g., unit
cell parameters) to introduce genetic diversity. The new generation population includes high-fitness individ-
uals inherited from the parents and high-fitness offspring. This process iterates until the convergence condi-
tions are met. USPEX has been widely utilized to identify various functional materials [78–81], such as novel
electride materials Sr5P3 [82], hard metallic phase TiN2

[83], high 𝑇𝑐 superconductor H3S [84], and transparent
high-pressure phase of sodium [85]. The GA demonstrates significant capability in handling complex, nonlin-
ear optimization problems, effectively avoiding entrapment in local optima. However, GA-based methods for
CSP sometimes require numerous evaluations of potential solutions to evolve optimal candidate structures.
When combined with computationally intensive calculations such as DFT, the overall computational cost can
become substantial, particularly in systems with large numbers of atoms where DFT calculations are especially
time-consuming [86]. Fortunately, recent advancements, such as the integration of ML models in USPEX, have
helped to alleviate some of these challenges [87].

Bayesian optimization
Making use of the Bayesian theory andGaussian process regression, Bayesian optimization [88] can significantly
reduce the computational time and accelerate the structure search process by constructing surrogate models.
It mainly consists of two parts: the surrogate model based on Gaussian process regression, and the acquisition
function, which guides the search process. Bayesian optimization has beenwidely applied to search for clusters,
such as Cu15 [89], CuNi [90], and C24

[91] clusters. Bayesian optimization exhibits great potential in CSP but still
faces several challenges [92–94]. First, updating the surrogate model and calculating the acquisition function can
be very time-consuming. In addition, the noise and uncertainty in actual calculations can affect the accuracy
of the model and the stability of the optimization process.

Simulated annealing
The simulated annealing [95–97] is a random search method inspired by the natural phenomenon of atomic
rearrangement in solid-state materials that achieve the lowest-energy state through slow cooling after heating.
The core principle is to temporarily allow the system to enter higher energy states during the search process,
which helps to avoid premature convergence to local optima. Simulated annealing has been successfully used
to predict the crystal structures of LiF [97], GeF2 [98] and BN [99] and to investigate the properties of IrO2 and
RuO2 surfaces [100]. Simulated annealing is favored in optimization problems mainly due to its simplicity and
effectiveness in avoiding trapping by local minima, thereby increasing the likelihood of finding the global
minimum. However, the performance of the algorithm heavily depends on parameter settings, such as initial
temperature, cooling rate, and termination temperature. Determining the optimal values for these parameters
often requires extensive experience and numerous tests.

Template-based method
Besides these ab initio methods, another widely used CSP approach is the template-based method. A well-
known example of this approach is ion substitution [101]. Traditionally, this method involves replacing an ion in
the crystal structure of a known compound with a chemically similar ion, guided by empirical rules such as the
Goldschmidt rules [102]. This process has been further enhanced by a probabilistic model, which quantitatively
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Figure 3. Application of machine-learning models in CSP. (A) Representation of atoms in machine-learning models. Reproduced with
permission [107]. Copyright 2018, American Physical Society; (B) Neighbor search using Voronoi tessellation and construction of a global
periodic graph. Reproduced from Ref. [108]. CC BY 4.0; (C) Representation of bonding between atoms in machine-learning models. Re-
produced from Ref. [109]. CC BY 4.0; (D) Architecture of crystal graph convolutional neural network. Reproduced with permission [107].
Copyright 2018, American Physical Society; (E) Architecture of the neural network used in machine-learning force fields. Reproduced from
Ref. [110]. CC BY-NC 4.0; (F) VAE for stable structure generation. Reproduced from Ref. [111]. CC BY-NC 4.0. CSP: Crystal structure predic-
tion; VAE: variational autoencoder.

predicts the likelihood of successful ionic substitution by analyzing a vast database of crystal structures [103].
This data-driven model not only improves the accuracy of predicting new compounds, but also accelerates the
materials discovery process by efficiently identifying novel structures with reduced computational resources.
For instance, using this method, a comprehensive stability map of inorganic ternary metal nitrides has been
constructed, leading to the synthesis of several new Zn- and Mg-based ternary nitrides [104].

Although conventional CSP methods have achieved remarkable accomplishments, most of them still suffer
from low computational efficiencies, in addition to the limitations of each global optimization algorithm men-
tioned above. The main time cost lies in the optimization of structures, as there is rarely a guarantee that
the structures are near the local minima on the potential energy surface, leading to tens of thousands of DFT
calculations or time-consuming optimizations. Fortunately, advanced ML techniques have shed new light on
tackling these challenges, opening up new possibilities in this direction.

APPLICATIONS OF ML IN CSP
In recent years, ML has achieved a better balance between speed and accuracy by embedding physical knowl-
edge into neural networks [105], such as energies, forces, stresses, and magnetic moments, and training on
large-scale data [106]. By leveraging the advantages of ML models, they can usually be combined with CSP in
the following four aspects.

• Crystal Structure Representation: ML-based structure representation methods can accurately capture the
geometric and topological features of crystals [Figure 3A-C] [107–111], converting complex structural infor-
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mation into high-dimensional crystal feature vectors [109,112]. These feature vectors not only contain suf-
ficient structural information, but also exhibit rotational invariance, translational invariance, and index
permutation invariance [107]. Most importantly, these feature vectors can reveal intrinsic connections and
differences between structures, greatly enhancing the effectiveness of structure clustering during the search
process.

• Property Prediction and Rapid Screening: MLmodels, especially the GNN shown in Figure 3D, can quickly
predict the physical properties of candidate materials [113–115], such as energy, band gap, and performance
for different applications. Moreover, by combiningMLmodels with global optimization algorithms such as
simulated annealing, GAs, and particle swarm optimization, low-energy crystal structures can be efficiently
identified [116].

• Machine-Learning Force Field: ML force fields [Figure 3E] can be used for structure optimization. Com-
pared to classical force fields, ML-based force fields maintain near first-principles calculation accuracy
while significantly reducing the computational cost, making the simulation of large-scale complex systems
feasible [117,118]. Also, they enable high-throughput material screening and the construction of material
databases [119,120].

• Generative Model: Generative models [Figure 3F] learn the distribution of data and sample new data
instances from this learned distribution [111], enabling the exploration of a more diverse range of crys-
tal structures. Some advanced generative models provide better compositional and structural diversity
than substitution-based enumeration in high-throughput calculations and better structural generation effi-
ciency [121,122] than conventional CSP techniques.

In this section, we review applications of crystal structure characterization, property prediction, and ML force
fields in structure generation, global structure search, and local structure optimization, respectively. Finally,
we will discuss the generative model, which differs from the typical CSP workflow.

Structure generation
In the ML-based CSP, once the initial structures are generated, suitable descriptors are needed to capture
the geometric and topological information of the crystal structure. By converting crystal structures into a
readable format using ML models, we can effectively represent structures and learn the relationship between
structure and properties. The descriptors used to construct ML models should meet the following three basic
criteria [107,123]:

1. Physical Consistency: The descriptors should maintain physical invariance, meaning that their values
should not change with the rotation and translation of the structure.

2. Index Invariance: The descriptors should be insensitive to the indexing order of the atoms. Even if the
order or numbering of the atoms changes, the descriptor values should remain unchanged, ensuring model
consistency and stability.

3. Discrimination: The descriptors should be able to distinguish different atomic environments. Similar local
chemical environments should yield similar descriptors, while different local chemical environments should
result in significantly different descriptors.

There are currently two main approaches to structure representation: continuous 3D voxel representation and
matrix representation. In the continuous 3D voxel representation [124], encoders and decoders are employed
to prepare 2D crystal graphs and to reconstruct 3D voxel images. In the matrix representation [125–127], crystal
structure features such as lattice parameters, atomic occupation coordinates, and elemental properties are sep-
arated into different matrix rows and columns. Since widely used GNN and ML force fields mainly adopt the
matrix representation, we will focus on the matrix representation, including the atom features and bonding
features.
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Table 1. Atom features used in CGCNN

Descriptor Unit Range Number of categories

Group number - 1,2,…,18 18
Period number - 1,2,…,9 9

Electronegativity [129,130] - 0.5-4.0 10
Covalent radius [131] pm 25-250 10
Valence electrons - 1,2,…,12 12

First ionization energy eV 1.3-3.3 10
Electron affinity [132] eV -3-3.7 10

Block - s,p,d,f 4
Atomic volume cm3/mol 1.5-4.3 10

These atom features are encoded using one-hot vectors. Reproduced
with permission [107]. Copyright 2018, American Physical Society.
CGCNN: Crystal graph convolutional neural network.

Atom features
Atom features are used to describe different atoms inMLmodels [107,126,128]. As illustrated in Table 1 [107,129–132],
the initial atomic feature vectors contain various elemental properties. These descriptors can uniquely deter-
mine each element and include their main physical properties. In advanced GNNs, such as message passing
neural network (MPNN) [128], crystal graph convolutional neural network (CGCNN) [107], materials graph net-
work (MEGNet) [126], and atomistic line graph neural network (ALIGNN) [133], the initial atomic features are
processed through fully connected layers to construct atomic representations that are more strongly correlated
with the target properties.

Bonding features
Bonding features are used to describe the local environment of each atom. In GNNs, the bonding features are
directly used as input to the ML model. In ML force fields, the input is the atom positions, and the bonding
features are obtained via symmetry functions. The Behler-Parrinello and smooth overlap of atomic positions
(SOAP) descriptors are two commonly used bonding features, and we introduce them as follows.

The Behler-Parrinello descriptor [32,134] uses a set of symmetry functions to characterize the local chemical
environment of each atom. It consists of two types of symmetry functions: radial and angular symmetry
functions, which capture distance and angle information between atoms, respectively.

SOAP is another descriptor used to characterize the local environment of atoms [135]. The SOAP descriptor
represents the environment of each atom as a continuous density field, capturing the geometric properties of
the atomic environment by calculating the overlap of density fields.

The calculation process of the SOAP descriptor for the local environment of atom 𝑖 can be expressed by

𝜌𝑖 (r) =
∑
𝑗≠𝑖

exp

(
−
|r − r𝑖 𝑗 |2

2𝜎2

)
, (2)

where r𝑖 𝑗 is the position vector of atom 𝑗 relative to atom 𝑖, and 𝜎 is the width of the Gaussian function.

To incorporate angular information, the atomic density 𝜌𝑖 (r) is expanded using spherical harmonics𝑌𝑙𝑚 (𝜃, 𝜙)
and radial basis functions 𝑔𝑛 (𝑟):

𝜌(r) =
∑
𝑛,𝑙,𝑚

𝑐𝑛𝑙𝑚𝑔𝑛 (𝑟)𝑌𝑙𝑚 (𝜃, 𝜙). (3)

The expansion coefficients are calculated by inner product:

𝑐𝑛𝑙𝑚 =
∫

𝜌𝑖 (r)𝑔𝑛 (𝑟)𝑌𝑙𝑚 (𝜃, 𝜙)𝑑r, (4)
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where 𝑟 = |r|, and 𝜃 and 𝜙 are the polar and azimuthal angles in the spherical coordinate system, respectively.

To ensure the rotational invariance of the descriptor, the SOAP descriptor calculates the power spectrum of
the expansion coefficients:

𝑝𝑛𝑛′𝑙 =

√
4𝜋

2𝑙 + 1

𝑙∑
𝑚=−𝑙

𝑐𝑛𝑙𝑚𝑐
∗
𝑛′𝑙𝑚 . (5)

The vector composed of the power spectrum 𝑝𝑛𝑛′𝑙 constitutes the SOAP descriptor. It not only captures the
local environmental characteristics of atom 𝑖, but also ensures invariance to translation and rotation. There-
fore, the SOAP descriptor can accurately characterize the distances and directions between an atom and its
neighbors.

When constructingMLmodels, atoms can be encoded by property-based one-hot vectors. TheBehler-Parrinello
or SOAP descriptors generate a high-dimensional bonding feature vector for each atom. These vectors serve
as input for the ML models, and the output is the total energy, enabling the ML model to map the local atomic
environment to energy.

Global structure search
With the increasing size of open material databases [18,120,136–138] and the development of ML models [139–141],
it has become a common practice to screen hundreds of thousands of materials to identify potential candi-
dates [19,142,143]. A typical workflow for applying an ML model to screen structures in CSP is shown in Fig-
ure 4A [107,126,128,133,144]. TheMLmodel is pretrained using databases [Figure 4B] and then takes the generated
structures as input, predicting their energies. In this way, the ML model can identify low-energy candidates
from a vast number of initial structures, allowing the low-energy areas on the potential energy surface to be
quickly located. In this section, we introduce the commonly used GNNs for property prediction in CSP and
GNN-based CSP methods.

The MPNN [128] provides a general framework for GNN [Figure 4C]. It includes three stages: message gen-
eration, message passing, and message readout. Messages generated at adjacent vertices are collected by the
central vertex to update its representation. By repeating this process, the GNN captures higher-order abstract
features. Last, through the message readout process, the global graph features are mapped to the target prop-
erties.

Specifically, MPNN updates the representation of each vertex in the graph through the following steps:

1. Message Passing: Each vertex 𝑣 collects messages from its neighbors 𝑤 ∈ 𝑁 (𝑣) and updates its state based
on these messages:

m𝑡+1
𝑣 =

∑
𝑤∈𝑁 (𝑣)

𝑀𝑡 (h𝑡
𝑣 ,h𝑡

𝑤 , e𝑣𝑤), (6)

h𝑡+1
𝑣 = 𝑈𝑡 (h𝑡

𝑣 ,m𝑡+1
𝑣 ), (7)

where h𝑡
𝑣 is the feature vector of vertex 𝑣 at the 𝑡-th iteration, 𝑀𝑡 is used to aggregate messages from neigh-

bors, and𝑈𝑡 is used to update the vertex features.
2. Message Readout: After𝑇 rounds ofmessage passing, the global representation of the graph can be obtained

by aggregating the feature vectors of all vertices:

𝑦̂ = 𝑅({h𝑇
𝑣 | 𝑣 ∈ V}), (8)

where 𝑅 is the readout function, which can be a simple summation or a more complex pooling operation.
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Most GNNs can be represented using the MPNN framework, including the Molecular Fingerprint Convolu-
tion Network [145], the Gated Graph Neural Network [146], Interaction Networks [147], Molecular Graph Convo-
lutional Networks [148], Deep Tensor Networks [127], and Graph Laplacian Matrix Networks [149]. Here, we con-
centrate on threeGNNs suitable for crystal property prediction: CGCNN [107], MEGNet [126], andALIGNN [133],
which can also be built using the MPNN framework.
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CGCNN is a well-known GNN model designed for predicting crystal properties [Figure 4D]. It effectively
transforms periodic crystal structures into undirected multigraph representations and introduces a crystal
graph convolution operator as a message aggregation function. Specifically, the graph convolution operator is
defined as

v(𝑡+1)
𝑖 = v(𝑡)

𝑖 +
∑
𝑗 ,𝑘

𝜎(z(𝑡)
(𝑖, 𝑗)𝑘W

(𝑡)
𝑓 + b(𝑡)

𝑓 ) ⊙ 𝑔(z(𝑡)
(𝑖, 𝑗)𝑘W

(𝑡)
𝑠 + b(𝑡)

𝑠 ), (9)

where 𝜎 is the Sigmoid function, W(𝑡)
𝑓 and W(𝑡)

𝑠 are the shared weights for the 𝑡-th aggregation, and b(𝑡)
𝑓 and

b(𝑡)
𝑠 are the shared biases for the 𝑡-th aggregation. The interaction feature is defined as z(𝑡)

(𝑖, 𝑗)𝑘 = v(𝑡)
𝑖 ⊕ v(𝑡)

𝑗 ⊕
u(𝑖, 𝑗)𝑘 .

Thus, the graph convolution operator effectively represents atomic interactions using 𝜎(·) for weights and 𝑔(·)
for bonding features. By repeatedly aggregating the atomic feature vectors v(𝑡)

𝑖 using the graph convolution
operator, we obtain the feature representation of atoms in the crystalv(𝑅)

𝑁 . The crystal feature vector is obtained

by a pooling layer v𝑐 = Pool
(
v(0)

0 ,v(0)
1 , ...,v(0)

𝑁 , ...,v(𝑅)
𝑁

)
. Finally, a fully connected network associates the

crystal feature vector with material properties to predict properties.

MEGNet is a universal property predictionmodel formolecules and crystals. Compared to CGCNN,MEGNet
encodes the macroscopic properties of the system (such as temperature, pressure, entropy, etc.) into feature
vectors, enhancing the ability to predict material properties. As shown in Figure 4E, the feature encoding and
aggregation process in MEGNet includes the atomic feature vector v𝑖 , the bond feature vector e𝑘 , and the
system feature vector u, which contains information about the macroscopic properties of the system.

ALIGNN is a GNN model designed for predicting crystal properties [Figure 4F]. Its key innovation is the
construction of a line graph that includes angular information, allowing messages to be passed between the
bond graph and its corresponding line graph. Compared to CGCNN, ALIGNN explicitly incorporates angular
information, enhancing the ability to distinguish between different structures.

Combining GNN and CSP, Cheng et al. have developed an accelerated CSP framework [67]. It mainly includes
three parts: (i) pre-training ofMLmodels; (ii) structure generationwith physical constraints; and (iii) structure
search and optimization based on ML. In the framework, GNNs such as CGCNN, MEGNet, ALIGNN, and
CHGNet can be potentially used as prediction models, while algorithms such as random search, simulated
annealing, GAs, or particle swarm optimization can be employed.

Recently, the symmetry-based combinatorial crystal optimization program (SCCOP) [150,151] has been
developed for 2D materials. The workflow of SCCOP is shown in Figure 5. SCCOP first converts the
structures generated from 17 plane space groups to crystal vectors using a direct asymmetry space-based GNN
and predicts their energies. Then, Bayesian optimization is performed to explore the structure located at the
minimum of the potential energy surface.

For the desired structures, SCCOP optimizes them with ML-accelerated simulated annealing, in conjunction
with a limited number of DFT calculations, to obtain the lowest-energy structure.

To evaluate the effectiveness of SCCOP, it was applied to a total of 35 representative 2D materials. Figure 6A
provides a comparison between the lowest-energy structure in the 2D material database and the structures
discovered by SCCOP. The results demonstrated that SCCOP successfully reaches the lowest energy level for
30 compounds within only a few minutes. Additionally, Figure 6B shows the three lowest-energy structures
for eight compounds. For example, in the case of AgI, the lowest-energy structure in the database corresponds
to a honeycomb structure (-2.308 eV/atom), while SCCOP identifies an energetically more favorable puckered

http://dx.doi.org/10.20517/jmi.2024.18


Page 12 of 27 Li et al. J Mater Inf 2024;4:15 I http://dx.doi.org/10.20517/jmi.2024.18

1. Random Sampling

Low symm. (PSG: 1)

Asymmetric unit

Primitive cell

Mid symm. (PSG: 4)

P1-B1C3

Generate structures

P1g1-B1C3 P6mm-B1C3

Element B

Element C

High symm. (PSG: 17)

2. Structural Search

Observation points

Bayesian optimization

Target function

Sampling probability

Point 0

Point 1

Point 0 area

Point 0, 1 area

Uncertainty

Crystal characterization

Crystal vectors

Connect relationships

Encode

Crystal graphs

Atom Bond

Nearest

...

B
ui

ld

3. Prediction Model Update

2D database 

JARVIS

1079

2DMATPedia

6152

C2DB

3520
H He

Li Be B C N O F Ne

Na Mg Al Si P S Cl Ar

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Total: 10751

New samples

D
F

T

Transfer learning

Conv Layers

(Frozen)

Dense Layers

(Update)

Extraction Readout

4. Structural Optimization

ML optimization steps flow

Start: structure 1

Modify structure

Metropolis criterion?

No

Yes

End: structure 2

Lattice distortionAtom displacement

Start

ML steps

DFT steps

High

Low

Figure 5. Workflow of SCCOP for the search of two-dimensional materials. Step 1: generating structures by symmetry. Step 2: charac-
terizing structures into crystal vectors and exploring the potential energy surface by Bayesian optimization. Step 3: updating the energy
prediction model. Step 4: optimizing structures to obtain the lowest-energy configuration by ML and DFT. The whole program runs in a
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structure with space group 𝑃21/𝑚 (-2.37 eV/atom). Furthermore, MgCl2 is recorded as having a four-fold co-
ordination (-3.509 eV/atom) in the database, but SCCOP discovers that a structure with six-fold coordination
exhibits lower energy (-3.591 eV/atom). SCCOP has been further applied to validate the stability of Cu- and
Ag-based ternary compounds in the chalcopyrite structure prototype [152]. It has also been successfully uti-
lized to investigate the mixed-coordination structures of IB-VA-VIA2 compounds, which have the lowest free
energy at low temperatures compared to the octahedrally coordinated structure in experiments [153]. These
applications highlight the wide-range applicability of SCCOP and demonstrate the feasibility of using GNNs
to accelerate CSP.

Local structure optimization
Although ML models can identify potential candidates in a short time, high-accuracy structure optimization
is still needed to fully relax structures to their local minima on the potential energy surface. In conventional
CSP methods, structures are optimized by DFT or classical force fields. While DFT has high accuracy, it is
time-consuming. Classical force fields are much faster than DFT, but often lack sufficient precision when
dealing with complex systems, such as metal-organic frameworks and biological macromolecules, especially
in scenarios involving intricate electronic effects and chemical reactions [154,155].

Currently, ML force fields exhibit the potential to speed up the structure optimization. ML force fields can
maintain the speed advantage of classical force fields while significantly improving prediction accuracy for
complex systems, particularly in cases where classical force fields perform poorly. Through collective efforts
of the field, many ML force fields have been developed, e.g., MEGNet [126], CHGNet [105], NequIP [156], and
MACE [157]. ML force fields are commonly applied in studying the properties of new materials [158], the mech-
anisms of drug molecules [159], and the protein folding process [160]. Thus, using ML force fields to replace
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time-consuming structural relaxation is a feasible way to speed up conventional CSP. In this section, we will
discuss ML force fields and their applications in CSP.

While constructing ML force fields [Figure 7], the total energy is usually expressed as follows [32]:

𝐸tot =
𝑁∑
𝑖

𝐸𝑖 (G𝑖), (10)

where 𝑁 is the number of atoms in the unit cell, and G𝑖 is the feature vector of the 𝑖-th atom, representing the
local chemical environment. 𝐸𝑖 is the energy contribution of the 𝑖-th atom.

To train the ML force field, the simplest loss function only fits the energy:

L =
𝑀∑
𝑖=1

(𝐸 ref
𝑖 − 𝐸

pred
𝑖 )2, (11)

where 𝑀 represents the number of samples in the training set. More generally, by calculating the gradient of
the energy with respect to the coordinates (i.e., atomic forces), we can derive a loss function commonly used
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for model training [161]:

L =
𝑀∑
𝑘=1

𝛼
(
𝐸 ref
𝑘

𝑁𝑘
−

𝐸
pred
𝑘

𝑁𝑘

)2

+ 𝛽

3𝑁𝑘

3∑
𝑙=1

𝑁 𝑗∑
𝑖=1

(Fref
𝑖𝑙 − Fpred

𝑖𝑙 )2
 , (12)

where 𝑁 𝑗 is the number of atoms in sample 𝑘 , 𝑙 denotes the 𝑥, 𝑦, or 𝑧 direction in the Cartesian coordinate
system, and 𝛼 and 𝛽 are the weighting coefficients for energy and force, respectively. SomeML force fields add
stress to the loss function during training [162,163], thereby improving the efficiency of data utilization.

As shown in Figure 8A,ML force fields have been tested on the TiO2 system [110], which contains three different
polymorphs: Anatase, Brookite, and Rutile. They have been demonstrated for other crystal systems such as
Al2O3, Cu, Ge, and Si, as well as on MoS2 slabs and small molecular systems. These results demonstrate that
the trained ML force fields can adapt to various types of systems, and the energy is fitted with high precision,
indicating its strong capability in force calculations.

In addition to energy prediction,ML force fields can be used formore complex tasks, including phonon spectra
and solid-liquid phase transitions. Figure 8B shows the phonon spectrum of fcc Al calculated using both
DFT and ML force fields. The ML results are consistent with the DFT ones, demonstrating that ML force
fields can accurately describe the vibrational behavior of materials [162]. In the case of water and ice, ML force
fields and DFT were used to simulate different thermodynamic conditions [164]. The average energy, density,
radial distribution functions [Figure 8C], and a representative angular distribution function (i.e., a three-body
correlation function) have been reproduced with high accuracy. These results indicated that ML force fields
can maintain the accuracy of DFT by model training. As shown in Figure 8D, the computational cost of ML
force fields scales linearly with the number of atoms. Since all the physical quantities in an ML force field are
sums of local contributions, this also means that after training on a relatively small system, the ML force field
can be directly applied to much larger systems.
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To alleviate the bottleneck in CSP, ML force fields have been employed to replace the time-consuming DFT
optimization. For example, a ML and graph theory assisted universal structure searcher (MAGUS) combines
ML force fields with global optimization algorithms for structure search [Figure 9A] [165]. Specifically, the ini-
tial population is first generated by seeding and random generation. In each generation, the structures in the
population are optimized using DFT or other force fields. Next, duplicate structures are removed from the
population to maintain diversity. The remaining structures are then selected for crossover and mutation to
create offspring. Generally, structures with higher fitness are more likely to be chosen as parents for crossover
and mutation. The selection process can also incorporate the confidence level of the fitness with Bayesian opti-
mizationmethods. As illustrated in Figure 9B,MAGUS trains an on-the-flyMLmodel during structure search,
and uses this model to select and relax candidate structures to accelerate global searches. Using MAGUS, a
stable superhard tungsten nitride (WN6) has been discovered, which can be quenched to ambient pressure
after high-pressure synthesis [166]. Two different stable stoichiometries for helium-water compounds have also
been predicted [167], both of which exhibit a superionic state at high pressures and temperatures.

Many conventional CSP methods have adopted ML force fields to accelerate the optimization process. To
integrate ML force fields with CSP, a sampling strategy using disordered structures to train ML models has
been developed [168]. By combining ML force fields and CALYPSO, the putative global minimum structure
for the B84 cluster has been uncovered, and the computational cost was substantially reduced by 1-2 orders of
magnitude compared to full DFT-based structure searches [169,170]. In the ML-based USPEX, the methodology
was first tested on the prediction of crystal structures of carbon, high-pressure phases of sodium, and boron
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allotropes. For the test cases, the main allotropes have been reproduced, and a previously unknown 54-atom
structure of boron has been predictedwith verymoderate computational effort [87]. Additionally, by integrating
ML force fields with GAs, the structure prediction of inorganic crystals using neural network potentials with
evolutionary and random searches (SPINNER) method has been presented, which identified experimentally
known or theoretically more stable phases with a success rate of 80% for 60 ternary compounds [171], and
high-throughput discovery of oxide materials using SPINNER has been conducted [172]. Furthermore, the
𝛽-rhombohedral boron structure has been studied [173] by ML-based AIRSS.

Despite these achievements, the implementation of ML force fields for structure optimization faces several
challenges, including data requirements, model complexity, transferability, and computational efficiency. So-
lutions to these challenges include using data augmentation and transfer learning to enlarge datasets [174,175],
applying explainable tools for bettermodel interpretability [176], developing domain-specific and hybridmodels
to improve generalization [32], and employing model compression and efficient algorithms to enhance compu-
tational efficiency [177,178]. These strategies assist researchers in effectively utilizing ML force fields for accurate
and efficient structure optimization.

Generative model
Combining ML models with the general CSP steps has achieved significant progress in CSP, but it still strug-
gles with the vast search space of feasible materials. Nowadays, thanks to breakthroughs in image genera-
tion [179,180], video generation [181,182], and realistic text generation [183], generative models in materials science
show an unprecedented ability to learn the mapping between the structure and property spaces [Figure 10A].
Thus, generative models such as variational autoencoders (VAEs), generative adversarial networks (GANs),
and diffusion models offer a powerful approach for predicting material properties and discovering new mate-
rials, significantly reducing the computational cost and enabling rapid screening of target systems.

Among the generative models, VAEs, composed of an encoder and a decoder, minimize the reconstruc-
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distinguishwhether a sample is real or generated. Reproduced fromRef. [111]. CC BY-NC4.0; (D) Inorganicmaterials designwithMatterGen.
It generates stable materials by reversing a corruption process by iteratively denoising an initially random structure. Reproduced from
Ref. [121]. CC BY-NC 4.0. VAE: Variational autoencoder; GAN: generative adversarial network.

tion error between the decoded and input data [Figure 10B]. Representative VAE structure predictors in-
clude image-basedmaterials generators (iMatGen) [184] and the Fourier-transformed crystal properties (FTCP)
framework [185]. Specifically, iMatGen uses an invertible image-based representation to encode solid-state ma-
terials, leading to the generation of synthesizable V-O compounds. FTCP adds a target-learning branch to
map latent points to target properties, resulting in the generation of 142 new crystals with desired ground- and
excited-state properties. VAEs are relatively easy to train and provide more diversified structures that better
cover the distribution compared to other generative models. These models generate diversified structures, but
may have a lower output validity rate.
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GANs use a minimax game theory approach, with a generator transforming a random latent variable into a
sample and a discriminator distinguishing real from generated samples [Figure 10C]. Many GAN-based CSP
methods have been developed, such as the composition-conditioned srystal GAN [186], crystalGAN [187], the
zeolite GAN (ZeoGAN) [188], and the constrained crystals deep convolutional generative adversarial network
(CCDCGAN) [189]. For instance, the composition-conditioned crystal GAN allows the extension of the latent
variable 𝑧 with desired conditions, such as user-defined composition, leading to the discovery of 23 novel Mg-
Mn-O potential photoanodematerials. CrystalGAN utilizes a cross-domain GAN to generate complex ternary
Pd–H–Ni structures from simpler binary Pd–H and Ni–H structures. CCDCGAN employs a VAE to learn a
reverse map from a latent 2D crystal representation back to crystal structures, which is then used to train a
GAN to generate new crystal structures. Fung et al. applied CCDCGAN to explore the binary Bi-Se system,
revealing distinct crystal structures that cover the entire composition range[189]. While GANs produce
realistic structures, they are more challenging to train, requiring a balance between the generator and
discriminator to prevent issues such as non-convergence and mode collapse.

The diffusion model generates samples by learning a score network to reverse a fixed destruction process [190].
In image generation, the diffusion process typically adds Gaussian noises. However, crystals have unique
periodic structures and symmetries that require a customized diffusion process. In MatterGen, Zeni et al.
introduced a novel diffusion process tailored for crystal structures [121]. As shown in Figure 10D, they de-
fined a destruction process for each component that fits its geometry and has a physically meaningful noise
distribution. Specifically, the coordinate diffusion adopts a wrapped normal distribution to obey periodic
boundaries, approaching a uniform distribution at the noise limit. The lattice diffusion uses a symmetric form,
approaching a cubic lattice distribution with an average value corresponding to the average atomic density in
the training data. Atom diffusion is defined in a categorical space, where individual atoms are damaged to a
masked state. Based on the destroyed structure, a score network is learned, which outputs equivariant scores
for atom types, coordinates, and lattice, respectively, eliminating the need to learn symmetry from the data.
Compared to prior generative models, e.g., crystal diffusion variational autoencoders (CDVAE), structures
produced by MatterGen were more than twice as likely to be novel and stable, and more than 15 times closer
to the local energy minimum.

From the introduction of advanced generative models applied in CSP, we can see that the biggest difference
between generative models and the applications of ML in general CSP steps is that generative models, such as
VAE, GAN, and diffusion models, are end-to-end systems. This means that the structure generation, structure
search, and structure optimization are all done by neural networks, making it difficult to control each step. In-
terestingly, this is also the biggest advantage of current advancedMLmodels: they reduce human intervention.
Parameters are determined by algorithms and training data, giving ML models the potential to extract better
features and design better workflows than humans. However, there is still a long way to go, and more efforts
are needed to fully control these advanced ML models.

At the end of this section, to help the readers quickly learn about the progress of CSP method development
or to apply CSP codes in their research, we summarize the conventional CSP and ML-based CSP methods in
Tables 2 and 3.

When selecting CSPmethods, it is important to consider the system’s complexity and specific needs. GAs, such
as those in USPEX, are effective for exploring large search spaces, making them ideal for complex, multi-modal
problems. Random search methods in AIRSS provide a straightforward, computationally inexpensive option
for initial explorations. Particle swarm optimization, as used in CALYPSO, is suitable for systems requiring
quick convergence. For versatile applications, evolutionary algorithms in genetic algorithm for structure and
phase predictions (GASP) and module for ab initio structure evolution (MAISE) are recommended. Bayesian
optimization in global optimization with first-principles energy expressions (GOFEE) and BEACON excels
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Table 2. Summary of CSP algorithm categories with their advantages and disadvantages

Category Advantages Disadvantages/limitations

Conventional Methods Effective for complex search spaces
Fast convergence

Computationally expensive
Can get trapped in local minima

ML-based Methods Efficient with large datasets
Captures structural properties well

Requires extensive training data
Complexity in integration

Generative Models Good for exploring novel structures
Generates diverse structures

Computationally intensive
Complex model training

CSP: Crystal structure prediction.

Table 3. Some conventional and ML-based CSP codes, along with their applications

Software Methods Part of applications

USPEX (2006) [66] Evolutionary algorithm NaCl (2013) [191] , W-B (2018) [192]

XtalOPT (2010) [193] Evolutionary algorithm NaH𝑛 (2011) [194] , H2O (2012) [195]

AIRSS (2011) [53,196] Random search SiH4 (2006) [196] , NH3±𝑥 (2008) [197]

CALYPSO (2012) [69,70] Particle swarm optimization Li (2011) [198] , LaH10 (2017) [199] , P (2024) [200]

GASP (2013) [201] Evolutionary algorithm Li-Be (2008) [202] , Li-Si (2013) [203]

AGA (2013) [86] Adaptive GA Zr-Co (2014) [204] , MgO-SiO2 (2017) [205]

MUSE (2014) [206] Evolutionary algorithm IrB4 (2016) [207] , NbSe2 (2017) [208]

IM2ODE (2015) [209] Differential evolution TiO2 (2014) [210] , 2D SiS (2016) [211]

SYDSS (2018) [54] Random search H2O-NaCl (2018) [54] , Cl-F (2020) [212]

MAISE (2021) [213] Evolutionary algorithm Fe-B (2010) [214] , NaSn2 (2016) [215]

GOFEE (2020) [216] Bayesian optimization & GA C24 (2022) [91] , Carbon clusters (2022) [91]

BEACON (2021) [89,90] Bayesian optimization Cu15 (2021) [89] , CuNi clusters (2021) [90]

CrySPY (2021) [217] Bayesian optimization & GA Y2Co17 (2018) [218] , Al2O3 (2018) [218]

FTCP (2022) [185] VAE Au2Sc2O3 (2022) [185] , Y2Zn2As2O3 (2022) [185]

GN-OA (2022) [67] GNN & Optimization algorithms Tested on typical compounds (2022) [67]

MAGUS (2023) [165,219] GA & Bayesian optimization WN6 (2018) [166] , HeH2O (2019) [167]

SCCOP (2023) [150] GNN & Simulated annealing B-C-N (2023) [150] , AgBiS2 (2024) [152,153]

iMatGen (2019) [184] VAE V-O (2019) [184]

CrystalGAN (2019) [187] GAN Pd-Ni-H (2019) [187] , Mg-Ti-H (2019) [187]

CCDCGAN (2021) [189] GAN MoSe2 (2021) [189]

MatterGen (2024) [121] Diffusion model V-Sr-O (2024) [121]

UniMat (2024) [220] Diffusion model Tested on typical compounds (2024) [220]

DiffCSP (2024) [221] Diffusion model Tested on typical compounds (2024) [221]

LLaMA-2 (2024) [222] Large language-based model Tested on typical compounds (2024) [222]

in optimizing expensive functions with fewer evaluations, which is ideal for computationally intensive prob-
lems. Generative models, such as those in iMatGen and CrystalGAN, are excellent for innovative materials
design and exploring unknown structures by learning complex distributions. For systems requiring relevant
propertymodeling, GNNs in SCCOP and graph network-optimization algorithm (GN-OA) are powerful tools.
Finally, to leverage large datasets, consider language-based models such as LLaMA-2. For beginners, starting
with USPEX or AIRSS is recommended, while CALYPSO and MAGUS are better suited for complex systems.
MatterGen and iMatGen are ideal for innovative designs, while IM2ODE is great for constrained problems.
SCCOP can greatly shorten the time while maintaining the DFT accuracy.

In general, conventional CSP methods remain successful due to their proven reliability and ability to handle
complex systems [14,73,191,192,198]. These methods are grounded in fundamental physical and chemical princi-
ples, making them robust and trustworthy for a wide range of materials. They also benefit from incorporating
geometric constraints and prior knowledge. Despite being computationally intensive, ongoing improvements
and the integration of ML techniques have further solidified their status in modern materials science. For the
ML-based CSPmethods, they can significantly reduce computational time compared to conventional methods
such as DFT. Traditional CSP approaches can take days to weeks to predict a structure on a small server con-
taining dozens to hundreds of CPU cores, while MLmodels, once trained, can predict structures in seconds to
minutes using the same computational resources [87,150,170]. This efficiency is achieved because ML approaches
learn from existing data, facilitating effective feature extraction, rapid structure screening, and optimization,
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thereby offering a more cost-effective alternative to conventional methods.

SUMMARY
In this review, we discussed the current progress in CSP, particularly focusing on the applications ofML in CSP.
To help the readers understand the basic concepts, progress, and challenges in this field, we first introduced
the basics of conventional CSP methods. Next, we reviewed ML models combined with general CSP steps,
including descriptors in structure generation, GNNs in structure search, and ML force fields in structure op-
timization. The application of ML models has significantly reduced the time required for CSP, and ML-based
CSP methods have helped to find more low-energy structures for desired compositions [113–115]. We further
discussed generative models, which differ greatly fromMLmodels combined with general CSP steps. Genera-
tive models for CSP are entirely based on neural networks without DFT calculations; thus, they can be applied
to very large systems.

AlthoughMLmodels have made significant progress in solving CSP, they still face several challenges: (i) Over-
fitting and data collapse: ML models may overfit the database, preventing them from identifying low-energy
structures in CSP, or may cause data collapse in generative models. To mitigate overfitting, techniques such
as data augmentation [223], dropout regularization [224], and ensemble learning can be employed [225]. Addi-
tionally, employing early stopping and cross-validation methods can help prevent overfitting by ensuring the
model is generalizing well on unseen data; (ii) Limited training data: ML models are often trained on stable or
metastable structures stored in databases, which represent only a small part of the complex potential energy
surface; thus, the generalization ofMLmodels cannot be guaranteed. To address this, transfer learning [175] and
active learning can be used to enhance model performance by incrementally expanding the training dataset
with more diverse structures; (iii) Mismatch between local fitting models and global optimization algorithms:
in CSP, ML models lack a theoretical guarantee of global generalization, which may cause global optimization
algorithms to fail while converging to the correct results. This issue can be tackled by techniques such as multi-
fidelity modeling [226], which combine high-fidelity simulations with ML predictions to improve the reliability
of global optimization. Despite these challenges, we remain optimistic that ML models will ultimately solve
the challenging task of CSP, similar to the advancements seen in protein structure prediction [227], thereby
boosting materials science research and the discovery and design of new materials.

DECLARATIONS
Authors’ contributions
Writing-original draft preparation: Li CN
Proposed the conception and design: Li CN, Liang HP, Zhang X
References collection: Li CN, Liang HP, Zhao BQ
Writing-review and editing: Zhang X, Wei SH
Supervision: Zhang X, Wei SH

Availability of data and materials
Not applicable.

Financial support and sponsorship
We acknowledge financial support from the National Natural Science Foundation of China (Nos. 52172136,
11774416, 11991060, 12088101, and U2230402).

Conflicts of interest
All authors declared that there are no conflicts of interest.

http://dx.doi.org/10.20517/jmi.2024.18


Li et al. J Mater Inf 2024;4:15 I http://dx.doi.org/10.20517/jmi.2024.18 Page 21 of 27

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
©The Author(s) 2024.

REFERENCES
1. Eisenstein M. Big data: the power of petabytes. Nature 2015;527:S2-4. DOI
2. Ghiringhelli LM, Baldauf C, Bereau T, et al. Shared metadata for data-centric materials science. Sci Data 2023;10:626. DOI
3. Tolle KM, Tansley DSW, Hey AJG. The fourth paradigm: data-intensive scientific discovery [point of view]. Proc IEEE 2011;99:1334-

7. DOI
4. Agrawal A, Choudhary A. Perspective: materials informatics and big data: Realization of the “fourth paradigm” of science in materials

science. APL Mater 2016;4:053208. DOI
5. Rajan K. Materials informatics: the materials “gene” and big data. Annu Rev Mater Sci 2015;45:153-69. DOI
6. Liu Y, Zhao T, Ju W, Shi S. Materials discovery and design using machine learning. J Materiomics 2017;3:159-77. DOI
7. Zdeborová L. New tool in the box. Nat Phys 2017;13:420-1. DOI
8. Rupp M. Machine learning for quantum mechanics in a nutshell. Int J Quantum Chem 2015;115:1058-73. DOI
9. Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C. Machine learning in materials informatics: recent applications and

prospects. NPJ Comput Mater 2017;3:54. DOI
10. Himanen L, Geurts A, Foster AS, Rinke P. Data-driven materials science: status, challenges, and perspectives. Adv Sci

2019;6:1900808. DOI
11. Lin Y, Wang H, Li J, Gao H. Data source selection for information integration in big data era. Inf Sci 2019;479:197–213. DOI
12. Needs RJ, Pickard CJ. Perspective: role of structure prediction in materials discovery and design. APL Mater 2016;4:053210. DOI
13. Jain A, Shin Y, Persson KA. Computational predictions of energy materials using density functional theory. Nat Rev Mater

2016;1:15004. DOI
14. Oganov AR, Pickard CJ, Zhu Q, Needs RJ. Structure prediction drives materials discovery. Nat Rev Mater 2019;4:331-48. DOI
15. Oganov AR. Modern methods of crystal structure prediction. Weinheim: Wiley-VCH; 2011. DOI
16. Oganov AR, Lyakhov AO, Valle M. How evolutionary crystal structure prediction works - and why. Acc Chem Res 2011;44:227-37. DOI
17. Oganov AR, Glass CW. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys

2006;124:244704. DOI
18. Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. Materials design and discovery with high-throughput density functional theory:

the open quantum materials database (OQMD). JOM 2013;65:1501-9. DOI
19. Rosen AS, Fung V, Huck P, et al. High-throughput predictions of metal–organic framework electronic properties: theoretical challenges,

graph neural networks, and data exploration. NPJ Comput Mater 2022;8:112. DOI
20. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B 1993;47:558-61. DOI
21. Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal - amorphous-semiconductor transition in germanium.

Phys Rev B 1994;49:14251-69. DOI
22. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B

1996;54:11169-86. DOI
23. Zunger A. Inverse design in search of materials with target functionalities. Nat Rev Chem 2018;2:0121. DOI
24. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature 2018;559:547-

55. DOI
25. Gubernatis JE, Lookman T. Machine learning in materials design and discovery: examples from the present and suggestions for the

future. Phys Rev Mater 2018;2:120301. DOI
26. Goldsmith BR, Esterhuizen J, Liu JX, Bartel CJ, Sutton C. Machine learning for heterogeneous catalyst design and discovery. AIChE J

2018;64:2311-23. DOI
27. Woodley SM, Catlow R. Crystal structure prediction from first principles. Nat Mater 2008;7:937-46. DOI
28. Gražulis S, Chateigner D, Downs RT, et al. Crystallography open database - an open-access collection of crystal structures. J Appl Cryst

2009;42:726-9. DOI
29. Curtarolo S, Setyawan W, Hart GLW, et al. AFLOW: An automatic framework for high-throughput materials discovery. Comput Mater

Sci 2012;58:218-26. DOI
30. Gusev VV, Adamson D, Deligkas A, et al. Optimality guarantees for crystal structure prediction. Nature 2023;619:68-72. DOI
31. Gavezzotti A. Are crystal structures predictable? Acc Chem Res 1994;27:309-14. DOI
32. Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett

http://dx.doi.org/10.20517/jmi.2024.18
http://dx.doi.org/10.1038/527S2a
http://dx.doi.org/10.1038/s41597-023-02501-8
http://dx.doi.org/10.1109/JPROC.2011.2155130
http://dx.doi.org/10.1063/1.4946894
http://dx.doi.org/https://doi.org/10.1146/annurev-matsci-070214-021132
http://dx.doi.org/https://doi.org/10.1016/j.jmat.2017.08.002
http://dx.doi.org/https://doi.org/10.1038/nphys4053
http://dx.doi.org/https://doi.org/10.1002/qua.24954
http://dx.doi.org/10.1038/s41524-017-0056-5
http://dx.doi.org/https://doi.org/10.1002/advs.201900808
http://dx.doi.org/https://doi.org/10.1016/j.ins.2018.11.029
http://dx.doi.org/10.1063/1.4949361
http://dx.doi.org/https://doi.org/10.1038/natrevmats.2015.4
http://dx.doi.org/https://doi.org/10.1038/s41578-019-0101-8
http://dx.doi.org/10.1002/9783527632831
http://dx.doi.org/https://doi.org/10.1021/ar1001318
http://dx.doi.org/https://doi.org/10.1063/1.2210932
http://dx.doi.org/https://doi.org/10.1007/s11837-013-0755-4
http://dx.doi.org/https://doi.org/10.1038/s41524-022-00796-6
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.49.14251
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/https://doi.org/10.1038/s41570-018-0121
http://dx.doi.org/https://doi.org/10.1038/s41586-018-0337-2
http://dx.doi.org/10.1103/PhysRevMaterials.2.120301
http://dx.doi.org/https://doi.org/10.1002/aic.16198
http://dx.doi.org/10.1038/nmat2321
http://dx.doi.org/10.1107/S0021889809016690
http://dx.doi.org/https://doi.org/10.1016/j.commatsci.2012.02.005
http://dx.doi.org/https://doi.org/10.1038/s41586-023-06071-y
http://dx.doi.org/doi: 10.1021/ar00046a004


Page 22 of 27 Li et al. J Mater Inf 2024;4:15 I http://dx.doi.org/10.20517/jmi.2024.18

2007;98:146401. DOI
33. Lorenz S, Groß A, Scheffler M. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks.

Chem Phys Lett 2004;395:210-5. DOI
34. Wu X, Kang F, Duan W, Li J. Density functional theory calculations: a powerful tool to simulate and design high-performance energy

storage and conversion materials. Prog Nat Sci 2019;29:247-55. DOI
35. Monticelli L, Tieleman DP. Force fields for classical molecular dynamics. In: Monticelli L, Salonen E. editors. Biomolecular simulations.

Methods in molecular biology. Humana Press; 2013. pp. 197-213. DOI
36. Röcken S, Zavadlav J. Accurate machine learning force fields via experimental and simulation data fusion. NPJ Comput Mater

2024;10:69. DOI
37. Pietrucci F. Strategies for the exploration of free energy landscapes: unity in diversity and challenges ahead. Rev Phys 2017;2:32-45. DOI
38. Wales DJ, Bogdan TV. Potential energy and free energy landscapes. J Phys Chem B 2006;110:20765-76. DOI
39. Bonyadi MR, Michalewicz Z. Particle swarm optimization for single objective continuous space problems: a review. Evol Comput

2017;25:1-54. DOI
40. Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks; 1995

Nov 27 - Dec 01; Perth, Australia. IEEE; 1995. pp. 1942-8. DOI
41. Gerges F, Zouein G, Azar D. Genetic algorithms with local optima handling to solve sudoku puzzles. In: Proceedings of the 2018

International Conference on Computing and Artificial Intelligence. Association for Computing Machinery; 2018. pp. 19-22. DOI
42. Katoch S, Chauhan SS, Kumar V. A review on genetic algorithm: past, present, and future. Multimed Tools Appl 2021;80:8091-126. DOI
43. Mockus J. The Bayesian approach to global optimization. In: Drenick RF, Kozin F, editors. System modeling and optimization. 1982. p.

473-81. DOI
44. Močkus J. On Bayesian methods for seeking the extremum. In: Optimization Techniques IFIP Technical Conference Novosibirsk; 1974

Jul 1-7. 1975. pp. 400-4. DOI
45. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem

Phys 1953;21:1087-92. DOI
46. Khachaturyan A, Semenovsovskaya S, Vainshtein B. The thermodynamic approach to the structure analysis of crystals. Acta Cryst

1981;37:742-54. DOI
47. Corso G, Stark H, Jegelka S, Jaakkola T, Barzilay R. Graph neural networks. Nat Rev Methods Primers 2024;4:17. DOI
48. Zhou J, Cui G, Hu S, et al. Graph neural networks: a review of methods and applications. AI Open 2020;1:57-81. DOI
49. Botu V, Batra R, Chapman J, Ramprasad R. Machine learning force fields: construction, validation, and outlook. J Phys Chem C

2017;121:511-22. DOI
50. Unke OT, Chmiela S, Sauceda HE, et al. Machine learning force fields. Chem Rev 2021;121:10142-86. DOI
51. Kingma DP, Welling M. Auto-encoding variational bayes. arXiv. [Preprint.] Dec 10, 2022 [accessed on 2024 Sep 23]. Available from:

https://arxiv.org/abs/1312.6114.
52. Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. arXiv. [Preprint.] Jun 10, 2014 [accessed on 2024 Sep

23]. Available from: https://arxiv.org/abs/1406.2661.
53. Pickard CJ, Needs RJ. Ab initio random structure searching. J Phys Condens Matter 2011;23:053201. DOI
54. Domingos R, Shaik KM, Militzer B. Prediction of novel high-pressure H2O-NaCl and carbon oxide compounds with a symmetry-driven

structure search algorithm. Phys Rev B 2018;98:174107. DOI
55. Lu Z, Zhu B, Shires BWB, Scanlon DO, Pickard CJ. Ab initio random structure searching for battery cathode materials. J Chem Phys

2021;154:174111. DOI
56. Morris AJ, Pickard CJ, Needs RJ. Hydrogen/nitrogen/oxygen defect complexes in silicon from computational searches. Phys Rev B

2009;80:144112. DOI
57. Pickard CJ, Needs RJ. Structure of phase III of solid hydrogen. Nat Phys 2007;3:473-6. DOI
58. Pickard CJ, Needs RJ. High-pressure phases of nitrogen. Phys Rev Lett 2009;102:125702. DOI
59. Pickard CJ, Needs RJ. Dense low-coordination phases of lithium. Phys Rev Lett 2009;102:146401. DOI
60. Wei SH, Ferreira LG, Bernard JE, Zunger A. Electronic properties of random alloys: special quasirandom structures. Phys Rev B

1990;42:9622-49. DOI
61. Zunger A, Wei SH, Ferreira LG, Bernard JE. Special quasirandom structures. Phys Rev Lett 1990;65:353-6. DOI
62. Zhang X, Wang H, Hickel T, Rogal J, Li Y, Neugebauer J. Mechanism of collective interstitial ordering in Fe–C alloys. Nat Mater

2020;19:849-54. DOI
63. Qin LX, Liang HP, Jiang RL. Structural transition from ordered to disordered of 𝐵𝑒𝑍𝑛𝑂2 alloy. Chinese Phys Lett 2020;37:057101. DOI
64. Yang J, Zhang P, Wei SH. Band structure engineering of Cs2AgBiBr6 perovskite through order–disordered transition: a first-principle

study. J Phys Chem Lett 2018;9:31-5. DOI
65. Falls Z, Avery P, Wang X, Hilleke KP, Zurek E. The XtalOpt evolutionary algorithm for crystal structure prediction. J Phys Chem C

2021;125:1601-20. DOI
66. Glass CW, Oganov AR, Hansen N. USPEX - evolutionary crystal structure prediction. Comput Phys Commun 2006;175:713-20. DOI
67. Cheng G, Gong XG, Yin WJ. Crystal structure prediction by combining graph network and optimization algorithm. Nat Commun

2022;13:1492. DOI
68. Florence AJ, Johnston A, Price SL, Nowell H, Kennedy AR, Shankland N. An automated parallel crystallisation search for predicted

crystal structures and packing motifs of carbamazepine. J Pharm Sci 2006;95:1918-30. DOI

http://dx.doi.org/10.20517/jmi.2024.18
http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/https://doi.org/10.1016/j.cplett.2004.07.076
http://dx.doi.org/https://doi.org/10.1016/j.pnsc.2019.04.003
http://dx.doi.org/10.1007/978-1-62703-017-5_8
http://dx.doi.org/10.1038/s41524-024-01251-4
http://dx.doi.org/https://doi.org/10.1016/j.revip.2017.05.001
http://dx.doi.org/doi: 10.1021/jp0680544
http://dx.doi.org/10.1162/EVCO_r_00180
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1145/3194452.3194463
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/https://doi.org/10.1007/BFb0006170
http://dx.doi.org/https://doi.org/10.1007/3-540-07165-2_55
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/https://doi.org/10.1107/S0567739481001630
http://dx.doi.org/10.1038/s43586-024-00294-7
http://dx.doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.1021/acs.jpcc.6b10908
http://dx.doi.org/10.1021/acs.chemrev.0c01111
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1406.2661
http://dx.doi.org/https://doi.org/10.1088/0953-8984/23/5/053201
http://dx.doi.org/http://dx.doi.org/10.1103/PhysRevB.98.174107
http://dx.doi.org/https://doi.org/10.1063/5.0049309
http://dx.doi.org/10.1103/PhysRevB.80.144112
http://dx.doi.org/10.1038/nphys625
http://dx.doi.org/10.1103/PhysRevLett.102.125702
http://dx.doi.org/10.1103/PhysRevLett.102.146401
http://dx.doi.org/10.1103/PhysRevB.42.9622
http://dx.doi.org/10.1103/PhysRevLett.65.353
http://dx.doi.org/10.1038/s41563-020-0677-9
http://dx.doi.org/10.1088/0256-307X/37/5/057101
http://dx.doi.org/10.1021/acs.jpclett.7b02992
http://dx.doi.org/https://doi.org/10.1021/acs.jpcc.0c09531
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2006.07.020
http://dx.doi.org/https://doi.org/10.1038/s41467-022-29241-4
http://dx.doi.org/https://doi.org/10.1002/jps.20647


Li et al. J Mater Inf 2024;4:15 I http://dx.doi.org/10.20517/jmi.2024.18 Page 23 of 27

69. Wang Y, Lv J, Zhu L, Ma Y. Crystal structure prediction via particle-swarm optimization. Phys Rev B 2010;82:094116. DOI
70. Wang Y, Lv J, Zhu L, Ma Y. CALYPSO: a method for crystal structure prediction. Comput Phys Commun 2012;183:2063-70. DOI
71. Yang G, Shi S, Yang J, MaY. Insight into the role of Li2S2 in Li–S batteries: a first-principles study. JMater Chem A 2015;3:8865-9. DOI
72. Li D, Tian F, Lv Y, et al. Stability of sulfur nitrides: a first-principles study. J Phys Chem C 2017;121:1515-20. DOI
73. Feng X, Lu S, Pickard CJ, Liu H, Redfern SAT, Ma Y. Carbon network evolution from dimers to sheets in superconducting ytrrium

dicarbide under pressure. Commun Chem 2018;1:85. DOI
74. Lv J, Xu M, Lin S, et al. Direct-gap semiconducting tri-layer silicene with 29% photovoltaic efficiency. Nano Energy 2018;51:489-95. DOI
75. Zhang C, Kuang X, Jin Y, et al. Prediction of stable ruthenium silicides from first-principles calculations: stoichiometries, crystal

structures, and physical properties. ACS Appl Mater Interfaces 2015;7:26776-82. DOI
76. Deaven DM, Ho KM. Molecular geometry optimization with a genetic algorithm. Phys Rev Lett 1995;75:288-91. DOI
77. Lyakhov AO, Oganov AR, Stokes HT, Zhu Q. New developments in evolutionary structure prediction algorithm USPEX. Comput Phys

Commun 2013;184:1172-82. DOI
78. Liu W, Liang H, Duan Y, Wu Z. Predicting copper gallium diselenide and band structure engineering through order-disordered transition.

Phys Rev Mater 2019;3:125405. DOI
79. Lv F, Liang H, Duan Y. Funnel-shaped electronic structure and enhanced thermoelectric performance in ultralight C𝑥 (BN)1−𝑥 biphenylene

networks. Phys Rev B 2023;107:045422. DOI
80. Liang H, Zhong H, Huang S, Duan Y. 3-X structural model and common characteristics of anomalous thermal transport: the case of

two-dimensional boron carbides. J Phys Chem Lett 2021;12:10975-80. DOI
81. Liang H, Duan Y. Structural reconstruction and visible-light absorption versus internal electrostatic field in two-dimensional GaN–ZnO

alloys. Nanoscale 2021;13:11994–2003. DOI
82. Wang J, Hanzawa K, Hiramatsu H, et al. Exploration of stable strontium phosphide-based electrides: theoretical structure prediction and

experimental validation. J Am Chem Soc 2017;139:15668-80. DOI
83. Yu S, Zeng Q, Oganov AR, Frapper G, Zhang L. Phase stability, chemical bonding and mechanical properties of titanium nitrides: a

first-principles study. Phys Chem Chem Phys 2015;17:11763-9. DOI
84. DuanD, Liu Y, Tian F, et al. Pressure-inducedmetallization of dense (𝐻2𝑆)2𝐻2 with high-T𝑐 superconductivity. Sci Rep 2014;4:6968. DOI
85. Ma Y, Eremets M, Oganov AR, et al. Transparent dense sodium. Nature 2009;458:182-5. DOI
86. Wu SQ, Ji M, Wang CZ, et al. An adaptive genetic algorithm for crystal structure prediction. J Phys Condens Matter

2013;26:035402. DOI
87. Podryabinkin EV, Tikhonov EV, Shapeev AV, Oganov AR. Accelerating crystal structure prediction by machine-learning interatomic

potentials with active learning. Phys Rev B 2019;99:064114. DOI
88. Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N. Taking the human out of the loop: a review of Bayesian optimization. Proc

IEEE 2016;104:148-75. DOI
89. Kaappa S, del Río EG, Jacobsen KW. Global optimization of atomic structures with gradient-enhanced Gaussian process regression.

Phys Rev B 2021;103:174114. DOI
90. Kaappa S, Larsen C, Jacobsen KW. Atomic structure optimization with machine-learning enabled interpolation between chemical ele-

ments. Phys Rev Lett 2021;127:166001. DOI
91. Bisbo MK, Hammer B. Global optimization of atomic structure enhanced by machine learning. Phys Rev B 2022;105:245404. DOI
92. Regis RG. Trust regions in Kriging-based optimization with expected improvement. Eng Optim 2016;48:1037-59. DOI
93. Titsias M. Variational learning of Inducing variables in sparse Gaussian processes. In: Proceedings of the Twelfth International Confer-

ence on Artificial Intelligence and Statistics. 2009. pp. 567-74. Available from: https://proceedings.mlr.press/v5/titsias09a.html. [Last
accessed on 23 Sep 2024]

94. Siemenn AE, Ren Z, Li Q, Buonassisi T. Fast Bayesian optimization of Needle-in-a-Haystack problems using zooming memory-based
initialization (ZoMBI). NPJ Comput Mater 2023;9:79. DOI

95. Kirkpatrick S, Gelatt CD Jr, Vecchi MP. Optimization by simulated annealing. Science 1983;220:671-80. DOI
96. Wille LT. Searching potential energy surfaces by simulated annealing. Nature 1987;325:374. DOI
97. Doll K, Schön JC, Jansen M. Global exploration of the energy landscape of solids on the ab initio level. Phys Chem Chem Phys

2007;9:6128-33. DOI
98. Doll K, Jansen M. Ab initio energy landscape of GeF2: a system featuring lone pair structure candidates. Angew Chem Int Ed

2011;50:4627-32. DOI
99. Doll K, Schön JC, Jansen M. Structure prediction based on ab initio simulated annealing for boron nitride. Phys Rev B

2008;78:144110. DOI
100. Timmermann J, Lee Y, Staacke CG, Margraf JT, Scheurer C, Reuter K. Data-efficient iterative training of Gaussian approximation

potentials: Application to surface structure determination of rutile IrO2 and RuO2. J Chem Phys 2021;155:244107. DOI
101. Fischer CC, Tibbetts KJ, Morgan D, Ceder G. Predicting crystal structure by merging data mining with quantum mechanics. Nat Mater

2006;5:641-6. DOI
102. Goldschmidt VM. Die gesetze der krystallochemie. Naturwissenschaften 1926;14:477-85. DOI
103. Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G. Data mined ionic substitutions for the discovery of new compounds. Inorg Chem

2011;50:656-63. DOI
104. Sun W, Bartel CJ, Arca E, et al. A map of the inorganic ternary metal nitrides. Nat Mater 2019;18:732-9. DOI
105. Deng B, Zhong P, Jun K, et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat

http://dx.doi.org/10.20517/jmi.2024.18
http://dx.doi.org/10.1103/PhysRevB.82.094116
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.05.008
http://dx.doi.org/10.1039/C5TA00499C
http://dx.doi.org/10.1021/acs.jpcc.6b11563
http://dx.doi.org/10.1038/s42004-018-0085-0
http://dx.doi.org/https://doi.org/10.1016/j.nanoen.2018.06.079
http://dx.doi.org/10.1021/acsami.5b08807
http://dx.doi.org/10.1103/PhysRevLett.75.288
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.12.009
http://dx.doi.org/10.1103/PhysRevMaterials.3.125405
http://dx.doi.org/10.1103/PhysRevB.107.045422
http://dx.doi.org/10.1021/acs.jpclett.1c03248
http://dx.doi.org/10.1039/D1NR02548A
http://dx.doi.org/10.1021/jacs.7b06279
http://dx.doi.org/10.1039/C5CP00156K
http://dx.doi.org/10.1038/srep06968
http://dx.doi.org/10.1038/nature07786
http://dx.doi.org/10.1088/0953-8984/26/3/035402
http://dx.doi.org/10.1103/PhysRevB.99.064114
http://dx.doi.org/https://doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.1103/PhysRevB.103.174114
http://dx.doi.org/10.1103/PhysRevLett.127.166001
http://dx.doi.org/10.1103/PhysRevB.105.245404
http://dx.doi.org/https://doi.org/10.1080/0305215X.2015.1082350
https://proceedings.mlr.press/v5/titsias09a.html
http://dx.doi.org/https://doi.org/10.1038/s41524-023-01048-x
https://doi.org/10.1126/science.220.4598.671
http://dx.doi.org/https://doi.org/10.1038/325374c0
http://dx.doi.org/https://doi.org/10.1039/B709943F
https://doi.org/10.1002/anie.201008070
http://dx.doi.org/10.1103/PhysRevB.78.144110
http://dx.doi.org/https://doi.org/10.1063/5.0071249
http://dx.doi.org/10.1038/nmat1691
http://dx.doi.org/10.1007/BF01507527
http://dx.doi.org/https://doi.org/10.1021/ic102031h
http://dx.doi.org/https://doi.org/10.1038/s41563-019-0396-2


Page 24 of 27 Li et al. J Mater Inf 2024;4:15 I http://dx.doi.org/10.20517/jmi.2024.18

Mach Intell 2023;5:1031-41. DOI
106. Merchant A, Batzner S, Schoenholz SS, Aykol M, Cheon G, Cubuk ED. Scaling deep learning for materials discovery. Nature 2023;624:

80-5. DOI
107. Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties.

Phys Rev Lett 2018;120:145301. DOI
108. Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A. Universal fragment descriptors for predicting properties of inorganic

crystals. Nat Commun 2017;8:15679. DOI
109. Deringer VL, Bartók AP, Bernstein N, Wilkins DM, Ceriotti M, Csányi G. Gaussian process regression for materials and molecules.

Chem Rev 2021;121:10073-141. DOI
110. Zhang L, Han J, Wang H, Saidi WA, Car R, E W. End-to-end symmetry preserving inter-atomic potential energy model for finite and

extended systems. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems; Montréal, Canada.
2018. Available from: https://proceedings.neurips.cc/paper_files/paper/2018/file/e2ad76f2326fbc6b56a45a56c59fafdb-Paper.pdf. [Last
accessed on 23 Sep 2024]

111. Noh J, Gu GH, Kim S, Jung Y. Machine-enabled inverse design of inorganic solid materials: promises and challenges. Chem Sci
2020;11:4871-81. DOI

112. Damewood J, Karaguesian J, Lunger JR, et al. Representations of materials for machine learning. Annu Rev Mater Sci 2023;53:399-
426. DOI

113. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK. Computational high-throughput screening of electrocatalytic materials
for hydrogen evolution. Nat Mater 2006;5:909-13. DOI

114. Yeo BC, Nam H, Nam H, et al. High-throughput computational-experimental screening protocol for the discovery of bimetallic catalysts.
NPJ Comput Mater 2021;7:137. DOI

115. RittiruamM, Noppakhun J, Setasuban S, et al. High-throughput materials screening algorithm based on first-principles density functional
theory and artificial neural network for high-entropy alloys. Sci Rep 2022;12:16653. DOI

116. Szymanski NJ, Rendy B, Fei Y, et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 2023;624:86-
91. DOI

117. Chmiela S, Vassilev-Galindo V, Unke OT, et al. Accurate global machine learning force fields for molecules with hundreds of atoms. Sci
Adv 2023;9:eadf0873. DOI

118. Sauceda HE, Gálvez-González LE, Chmiela S, Paz-Borbón LO, Müller KR, Tkatchenko A. BIGDML - towards accurate quantum
machine learning force fields for materials. Nat Commun 2022;13:3733. DOI

119. Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation.
APL Mater 2013;1:011002. DOI

120. Choudhary K, Garrity KF, Reid ACE, et al. The joint automated repository for various integrated simulations (JARVIS) for data-driven
materials design. NPJ Comput Mater 2020;6:173. DOI

121. Zeni C, Pinsler R, Zügner D, et al. MatterGen: a generative model for inorganic materials design. arXiv. [Preprint.] Jan 29, 2024
[accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.2312.03687.

122. Xie T, Fu X, Ganea OE, Barzilay R, Jaakkola T. Crystal diffusion variational autoencoder for periodic material generation. arXiv.
[Preprint.] Mar 14, 2022 [accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.2110.06197.

123. Behler J. Constructing high-dimensional neural network potentials: a tutorial review. Int J Quantum Chem 2015;115:1032-50. DOI
124. Hoffmann J, Maestrati L, Sawada Y, Tang J, Sellier JM, Bengio Y. Data-driven approach to encoding and decoding 3-D crystal structures.

arXiv. [Preprint.] Sep 3, 2019 [accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.1909.00949.
125. Schütt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Müller KR. SchNet - a deep learning architecture for molecules and materials.

J Chem Phys 2018;148:241722. DOI
126. Chen C, Ye W, Zuo Y, Zheng C, Ong SP. Graph networks as a universal machine learning framework for molecules and crystals. Chem

Mater 2019;31:3564-72. DOI
127. Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A. Quantum-chemical insights from deep tensor neural networks. Nat

Commun 2017;8:13890. DOI
128. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing for quantum chemistry. arXiv. [Preprint.] Jun 12, 2017

[accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.1704.01212.
129. Sanderson RT. An interpretation of bond lengths and a classification of bonds. Science 1951;114:670-2. DOI
130. Sanderson RT. An explanation of chemical variations within periodic major groups. J Am Chem Soc 1952;74:4792-4. DOI
131. Cordero B, Gómez V, Platero-Prats AE, et al. Covalent radii revisited. Dalton Trans 2008:2832-8. DOI
132. Haynes WM. CRC handbook of chemistry and physics. CRC Press; 2014. Available from: https://doi.org/10.1201/b17118. [Last

accessed on Sep 23 2024]
133. Choudhary K, DeCost B. Atomistic line graph neural network for improved materials property predictions. NPJ Comput Mater

2021;7:185. DOI
134. Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J Chem Phys

2011;134:074106. DOI
135. Bartók AP, De S, Poelking C, et al. Machine learning unifies the modeling of materials and molecules. Sci Adv 2017;3:e1701816. DOI
136. Irwin JJ, Tang KG, Young J, et al. ZINC20 - a free ultralarge-scale chemical database for ligand discovery. J Chem Inf Model

2020;60:6065-73. DOI
137. Haastrup S, StrangeM, PandeyM, et al. The computational 2Dmaterials database: high-throughputmodeling and discovery of atomically

http://dx.doi.org/10.20517/jmi.2024.18
http://dx.doi.org/https://doi.org/10.1038/s42256-023-00716-3
http://dx.doi.org/https://doi.org/10.1038/s41586-023-06735-9
http://dx.doi.org/10.1103/PhysRevLett.120.145301
http://dx.doi.org/https://doi.org/10.1038/ncomms15679
http://dx.doi.org/https://doi.org/10.1021/acs.chemrev.1c00022
https://proceedings.neurips.cc/paper_files/paper/2018/file/e2ad76f2326fbc6b56a45a56c59fafdb-Paper.pdf
http://dx.doi.org/10.1039/D0SC00594K
http://dx.doi.org/https://doi.org/10.1146/annurev-matsci-080921-085947
http://dx.doi.org/https://doi.org/10.1038/nmat1752
http://dx.doi.org/https://doi.org/10.1038/s41524-021-00605-6
http://dx.doi.org/https://doi.org/10.1038/s41598-022-21209-0
http://dx.doi.org/https://doi.org/10.1038/s41586-023-06734-w
http://dx.doi.org/https://doi.org/10.1126/sciadv.adf0873
http://dx.doi.org/https://doi.org/10.1038/s41467-022-31093-x
http://dx.doi.org/https://doi.org/10.1063/1.4812323
http://dx.doi.org/https://doi.org/10.1038/s41524-020-00440-1
https://doi.org/10.48550/arXiv.2312.03687
https://doi.org/10.48550/arXiv.2110.06197
http://dx.doi.org/https://doi.org/10.1002/qua.24890
https://doi.org/10.48550/arXiv.1909.00949
http://dx.doi.org/https://doi.org/10.1063/1.5019779
http://dx.doi.org/10.1021/acs.chemmater.9b01294
http://dx.doi.org/https://doi.org/10.1038/ncomms13890
https://doi.org/10.48550/arXiv.1704.01212
http://dx.doi.org/10.1126/science.114.2973.670
http://dx.doi.org/10.1021/ja01139a020
http://dx.doi.org/10.1039/B801115J
https://doi.org/10.1201/b17118
http://dx.doi.org/https://doi.org/10.1038/s41524-021-00650-1
http://dx.doi.org/https://doi.org/10.1063/1.3553717
http://dx.doi.org/https://doi.org/10.1126/sciadv.1701816
http://dx.doi.org/10.1021/acs.jcim.0c00675


Li et al. J Mater Inf 2024;4:15 I http://dx.doi.org/10.20517/jmi.2024.18 Page 25 of 27

thin crystals. 2D Mater 2018;5:042002. DOI
138. Zhou J, Shen L, Costa MD, et al. 2DMatPedia, an open computational database of two-dimensional materials from top-down and

bottom-up approaches. Sci Data 2019;6:86. DOI
139. Alizamir M, Kisi O, Ahmed AN, et al. Advanced machine learning model for better prediction accuracy of soil temperature at different

depths. PLoS One 2020;15:e0231055. DOI
140. Salehin I, Islam MS, Saha P, et al. AutoML: a systematic review on automated machine learning with neural architecture search. J Inf

Intell 2024;2:52-81. DOI
141. Ali Y, Hussain F, Haque MM. Advances, challenges, and future research needs in machine learning-based crash prediction models: a

systematic review. Accid Anal Prev 2024;194:107378. DOI
142. Jun K, Sun Y, Xiao Y, et al. Lithium superionic conductors with corner-sharing frameworks. Nat Mater 2022;21:924-31. DOI
143. Zhong M, Tran K, Min Y, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020;581:178-

83. DOI
144. Leitherer A, Ziletti A, Ghiringhelli LM. Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning.

Nat Commun 2021;12:6234. DOI
145. DuvenaudDK,Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learningmolecular fingerprints. arXiv. [Preprint.]

Nov 3, 2015 [accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.1509.09292.
146. Li Y, Tarlow D, Brockschmidt M, Zemel R. Gated graph sequence neural networks. arXiv. [Preprint.] Sep 22, 2017 [accessed on 2024

Sep 23]. Available from: https://doi.org/10.48550/arXiv.1511.05493.
147. Battaglia PW, Pascanu R, Lai M, Rezende D, Kavukcuoglu K. Interaction networks for learning about objects, relations and physics.

arXiv. [Preprint.] Dec 1, 2016 [accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.1612.00222.
148. Kearnes S, McCloskey K, Berndl M, Pande V, Riley P. Molecular graph convolutions: moving beyond fingerprints. J Comput Aided

Mol Des 2016;30:595-608. DOI
149. Bruna J, Zaremba W, Szlam A, LeCun Y. Spectral networks and locally connected networks on graphs. arXiv. [Preprint.] May 21, 2014

[accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.1312.6203.
150. Li CN, Liang HP, Zhang X, Lin Z, Wei SH. Graph deep learning accelerated efficient crystal structure search and feature extraction. NPJ

Comput Mater 2023;9:176. DOI
151. Li C, Liang H, Duan Y, Lin Z. Machine-learning accelerated annealing with fitting-search style for multicomponent alloy structure

predictions. Phys Rev Mater 2023;7:033802. DOI
152. Liang HP, Geng S, Jia T, et al. Unveiling disparities and promises of Cu and Ag chalcopyrites for thermoelectrics. Phys Rev B

2024;109:035205. DOI
153. Liang HP, Li CN, Zhou R, et al. Critical role of configurational disorder in stabilizing chemically unfavorable coordination in complex

compounds. J Am Chem Soc 2024;146:16222-8. DOI
154. Harrison JA, Schall JD, Maskey S, Mikulski PT, Knippenberg MT, Morrow BH. Review of force fields and intermolecular potentials

used in atomistic computational materials research. Appl Phys Rev 2018;5:031104. DOI
155. Senftle TP, Hong S, Islam MM, et al. The ReaxFF reactive force-field: development, applications and future directions. NPJ Comput

Mater 2016;2:15011. DOI
156. Batzner S, Musaelian A, Sun L, et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat

Commun 2022;13:2453. DOI
157. Batatia I, Kovács DP, Simm GNC, Ortner C, Csányi G. MACE: higher order equivariant message passing neural networks for fast and

accurate force fields. arXiv. [Preprint.] Jan 26, 2023 [accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.2206.
07697.

158. Gale JD, LeBlanc LM, Spackman PR, Silvestri A, Raiteri P. A universal force field for materials, periodic GFN-FF: implementation and
examination. J Chem Theory Comput 2021;17:7827-49. DOI

159. Cole DJ, Horton JT, Nelson L, Kurdekar V. The future of force fields in computer-aided drug design. Future Med Chem 2019;11:2359-
63. DOI

160. Robustelli P, Piana S, Shaw DE. Developing a molecular dynamics force field for both folded and disordered protein states. Proc Natl
Acad Sci 2018;115:E4758-66. DOI

161. Deringer VL, Caro MA, Csányi G. Machine learning interatomic potentials as emerging tools for materials science. Adv Mater
2019;31:1902765. DOI

162. Gao H, Wang J, Sun J. Improve the performance of machine-learning potentials by optimizing descriptors. J Chem Phys
2019;150:244110. DOI

163. Liu P, Verdi C, Karsai F, Kresse G. Phase transitions of zirconia: machine-learned force fields beyond density functional theory. Phys
Rev B 2022;105:L060102. DOI

164. Zhang L, Han J, Wang H, Car R, EW. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics.
Phys Rev Lett 2018;120:143001. DOI

165. Wang J, Gao H, Han Y, et al. MAGUS: machine learning and graph theory assisted universal structure searcher. Natl Sci Rev
2023;10:nwad128. DOI

166. Xia K, Gao H, Liu C, et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci
Bull 2018;63:817-24. DOI

167. Liu C, Gao H, Wang Y, et al. Multiple superionic states in helium-water compounds. Nat Phys 2019;15:1065-70. DOI

http://dx.doi.org/10.20517/jmi.2024.18
http://dx.doi.org/10.1088/2053-1583/aacfc1
http://dx.doi.org/https://doi.org/10.1038/s41597-019-0097-3
http://dx.doi.org/10.1371/journal.pone.0231055
http://dx.doi.org/https://doi.org/10.1016/j.jiixd.2023.10.002
http://dx.doi.org/https://doi.org/10.1016/j.aap.2023.107378
http://dx.doi.org/https://doi.org/10.1038/s41563-022-01222-4
http://dx.doi.org/https://doi.org/10.1038/s41586-020-2242-8
http://dx.doi.org/10.1038/s41467-021-26511-5
https://doi.org/10.48550/arXiv.1509.09292
https://doi.org/10.48550/arXiv.1511.05493
https://doi.org/10.48550/arXiv.1612.00222
http://dx.doi.org/https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.48550/arXiv.1312.6203
http://dx.doi.org/https://doi.org/10.1038/s41524-023-01122-4
http://dx.doi.org/10.1103/PhysRevMaterials.7.033802
http://dx.doi.org/10.1103/PhysRevB.109.035205
http://dx.doi.org/10.1021/jacs.4c04201
http://dx.doi.org/https://doi.org/10.1063/1.5020808
http://dx.doi.org/https://doi.org/10.1038/npjcompumats.2015.11
http://dx.doi.org/https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.48550/arXiv.2206.07697
https://doi.org/10.48550/arXiv.2206.07697
http://dx.doi.org/https://doi.org/10.1021/acs.jctc.1c00832
http://dx.doi.org/https://doi.org/10.4155/fmc-2019-0196
http://dx.doi.org/https://doi.org/10.1073/pnas.1800690115
http://dx.doi.org/https://doi.org/10.1002/adma.201902765
http://dx.doi.org/10.1063/1.5097293
http://dx.doi.org/10.1103/PhysRevB.105.L060102
http://dx.doi.org/10.1103/PhysRevLett.120.143001
http://dx.doi.org/10.1093/nsr/nwad128
http://dx.doi.org/https://doi.org/10.1016/j.scib.2018.05.027
http://dx.doi.org/10.1038/s41567-019-0568-7


Page 26 of 27 Li et al. J Mater Inf 2024;4:15 I http://dx.doi.org/10.20517/jmi.2024.18

168. Hong C, Choi JM, Jeong W, et al. Training machine-learning potentials for crystal structure prediction using disordered structures. Phys
Rev B 2020;102:224104. DOI

169. Tong Q, Xue L, Lv J, Wang Y, Ma Y. Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface.
Faraday Discuss 2018;211:31-43. DOI

170. Tong Q, Gao P, Liu H, et al. Combining machine learning potential and structure prediction for accelerated materials design and discovery.
J Phys Chem Lett 2020;11:8710-20. DOI

171. Kang S, Jeong W, Hong C, Hwang S, Yoon Y, Han S. Accelerated identification of equilibrium structures of multicomponent inorganic
crystals using machine learning potentials. npj Comput Mater 2022;8:108. DOI

172. Hwang S, Jung J, Hong C, Jeong W, Kang S, Han S. Stability and equilibrium structures of unknown ternary metal oxides explored by
machine-learned potentials. J Am Chem Soc 2023;145:19378-86. DOI

173. Deringer VL, Pickard CJ, Csányi G. Data-driven learning of total and local energies in elemental boron. Phys Rev Lett
2018;120:156001. DOI

174. Smith JS, Isayev O, Roitberg AE. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost.
Chem Sci 2017;8:3192-203. DOI

175. Zhuang F, Qi Z, Duan K, et al. A comprehensive survey on transfer learning. Proc IEEE 2021;109:43-76. DOI
176. Zhang Q, Zhu S. Visual interpretability for deep learning: a survey. Frontiers Inf Technol Electronic Eng 2018;19:27-39. DOI
177. Han S, Pool J, Tran J, Dally WJ. Learning both weights and connections for efficient neural networks. arXiv. [Preprint.] Oct 30, 2015

[accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.1506.02626.
178. Cheng Y, Wang D, Zhou P, Zhang T. Model compression and acceleration for deep neural networks: the principles, progress, and

challenges. IEEE Signal Process Mag 2018;35:126-36. DOI
179. Ramesh A, Pavlov M, Goh G, et al. Zero-shot text-to-image generation. arXiv. [Preprint.] Feb 26, 2021 [accessed on 2024 Sep 23].

Available from: https://doi.org/10.48550/arXiv.2102.12092.
180. Yu J, Xu Y, Koh JY, et al. Scaling autoregressive models for content-rich rext-to-image generation. arXiv. [Preprint.] Jun 22, 2022

[accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.2206.10789.
181. Ho J, Chan W, Saharia C, et al. Imagen video: high definition video generation with diffusion models. arXiv. [Preprint.] Oct 5, 2022

[accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.2210.02303.
182. Singer U, Polyak A, Hayes T, et al. Make-a-video: text-to-video generation without text-video data. arXiv. [Preprint.] Sep 29, 2022

[accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.2209.14792.
183. Anil R, Dai AM, Firat O, et al. PaLM 2 technical report. arXiv. [Preprint.] Sep 13, 2023 [accessed on 2024 Sep 23]. Available from:

https://doi.org/10.48550/arXiv.2305.10403.
184. Noh J, Kim J, Stein HS, et al. Inverse design of solid-state materials via a continuous representation. Matter 2019;1:1370-84. DOI
185. Ren Z, Tian SIP, Noh J, et al. An invertible crystallographic representation for general inverse design of inorganic crystals with targeted

properties. Matter 2022;5:314-35. DOI
186. Kim S, Noh J, Gu GH, Aspuru-Guzik A, Jung Y. Generative adversarial networks for crystal structure prediction. ACS Cent Sci

2020;6:1412-20. DOI
187. Nouira A, Sokolovska N, Crivello JC. CrystalGAN: learning to discover crystallographic structures with generative adversarial networks.

arXiv. [Preprint.] May 25, 2019 [accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.1810.11203.
188. Kim B, Lee S, Kim J. Inverse design of porous materials using artificial neural networks. Sci Adv 2020;6:eaax9324. DOI
189. Fung V, Zhang J, Hu G, Ganesh P, Sumpter BG. Inverse design of two-dimensional materials with invertible neural networks. NPJ

Comput Mater 2021;7:200. DOI
190. Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. arXiv. [Preprint.] Dec 16, 2020 [accessed on 2024 Sep 23]. Available

from: https://doi.org/10.48550/arXiv.2006.11239.
191. Zhang W, Oganov AR, Goncharov AF, et al. Unexpected stable stoichiometries of sodium chlorides. Science 2013;342:1502–5. DOI
192. Zhao C, Duan Y, Gao J, et al. Unexpected stable phases of tungsten borides. Phys Chem Chem Phys 2018;20:24665–70. DOI
193. Lonie DC, Zurek E. XtalOpt: an open-source evolutionary algorithm for crystal structure prediction. Comput Phys Commun

2011;182:372-87. DOI
194. Baettig P, Zurek E. Pressure-stabilized sodium polyhydrides: NaH𝑛 (𝑛 > 1). Phys Rev Lett 2011;106:237002. DOI
195. Hermann A, Ashcroft NW, Hoffmann R. High pressure ices. Proc Natl Acad Sci 2012;109:745-50. DOI
196. Pickard CJ, Needs RJ. High-pressure phases of silane. Phys Rev Lett 2006;97:045504. DOI
197. Pickard CJ, Needs RJ. Highly compressed ammonia forms an ionic crystal. Nat Mater 2008;7:775-9. DOI
198. Lv J, Wang Y, Zhu L, Ma Y. Predicted novel high-pressure phases of lithium. Phys Rev Lett 2011;106:015503. DOI
199. Liu H, Naumov II, Hoffmann R, Ashcroft NW, Hemley RJ. Potential high-T𝐶 superconducting lanthanum and yttrium hydrides at high

pressure. Proc Natl Acad Sci USA 2017;114:6990–5. DOI
200. Wang H, Song Y, Huang G, et al. Seeded growth of single-crystal black phosphorus nanoribbons. Nat Mater 2024;23:470-8. DOI
201. Tipton WW, Hennig RG. A grand canonical genetic algorithm for the prediction of multi-component phase diagrams and testing of

empirical potentials. J Phys Condens Matter 2013;25:495401. DOI
202. Feng J, Hennig RG, Ashcroft NW, Hoffmann R. Emergent reduction of electronic state dimensionality in dense ordered Li-Be alloys.

Nature 2008;451:445-8. DOI
203. Tipton WW, Bealing CR, Mathew K, Hennig RG. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials.

Phys Rev B 2013;87:184114. DOI

http://dx.doi.org/10.20517/jmi.2024.18
http://dx.doi.org/10.1103/PhysRevB.102.224104
http://dx.doi.org/10.1039/C8FD00055G
http://dx.doi.org/10.1021/acs.jpclett.0c02357
http://dx.doi.org/https://doi.org/10.1038/s41524-022-00792-w
http://dx.doi.org/10.1021/jacs.3c06210
http://dx.doi.org/10.1103/PhysRevLett.120.156001
http://dx.doi.org/10.1039/C6SC05720A
https://doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/https://doi.org/10.1631/FITEE.1700808
https://doi.org/10.48550/arXiv.1506.02626
http://dx.doi.org/10.1109/MSP.2017.2765695
https://doi.org/10.48550/arXiv.2102.12092
https://doi.org/10.48550/arXiv.2206.10789
https://doi.org/10.48550/arXiv.2210.02303
https://doi.org/10.48550/arXiv.2209.14792
https://doi.org/10.48550/arXiv.2305.10403
https://doi.org/10.1016/j.matt.2019.08.017
https://doi.org/10.1016/j.matt.2021.11.032
http://dx.doi.org/10.1021/acscentsci.0c00426
https://doi.org/10.48550/arXiv.1810.11203
http://dx.doi.org/10.1126/sciadv.aax9324
http://dx.doi.org/10.1038/s41524-021-00670-x
https://doi.org/10.48550/arXiv.2006.11239
http://dx.doi.org/10.1126/science.1244989
http://dx.doi.org/10.1039/C8CP04222E
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2010.07.048
http://dx.doi.org/10.1103/PhysRevLett.106.237002
http://dx.doi.org/10.1073/pnas.1118694109
http://dx.doi.org/10.1103/PhysRevLett.97.045504
http://dx.doi.org/10.1038/nmat2261
http://dx.doi.org/10.1103/PhysRevLett.106.015503
http://dx.doi.org/10.1073/pnas.1704505114
http://dx.doi.org/10.1038/s41563-024-01830-2
http://dx.doi.org/10.1088/0953-8984/25/49/495401
http://dx.doi.org/10.1038/nature06442
http://dx.doi.org/10.1103/PhysRevB.87.184114


Li et al. J Mater Inf 2024;4:15 I http://dx.doi.org/10.20517/jmi.2024.18 Page 27 of 27

204. Zhao X, NguyenMC, ZhangWY, et al. Exploring the structural complexity of intermetallic compounds by an adaptive genetic algorithm.
Phys Rev Lett 2014;112:045502. DOI

205. Umemoto K, Wentzcovitch RM, Wu S, Ji M, Wang CZ, Ho KM. Phase transitions in MgSiO3 post-perovskite in super-Earth mantles.
Earth Planet Sci Lett 2017;478:40-5. DOI

206. Liu ZL. 𝑀𝑢𝑠𝑒: multi-algorithm collaborative crystal structure prediction. Comput Phys Commun 2014;185:1893-900. DOI
207. Li X, Wang H, Lv J, Liu Z. Phase diagram and physical properties of iridium tetraboride from first principles. Phys Chem Chem Phys

2016;18:12569–75. DOI
208. Liu ZL, Jia H, Li R, Zhang XL, Cai LC. Unexpected coordination number and phase diagram of niobium diselenide under compression.

Phys Chem Chem Phys 2017;19:13219–29. DOI
209. Zhang YY, Gao W, Chen S, Xiang H, Gong XG. Inverse design of materials by multi-objective differential evolution. Comput Mater

Sci 2015;98:51–5. DOI
210. Chen HZ, Zhang YY, Gong X, Xiang H. Predicting new TiO2 phases with low band gaps by a multiobjective global optimization

approach. J Phys Chem C 2014;118:2333-7. DOI
211. Yang JH, Zhang Y, Yin WJ, Gong XG, Yakobson BI, Wei SH. Two-dimensional SiS layers with promising electronic and optoelectronic

properties: theoretical prediction. Nano Lett 2016;16:1110-7. DOI
212. Olson MA, Bhatia S, Larson P, Militzer B. Prediction of chlorine and fluorine crystal structures at high pressure using symmetry driven

structure search with geometric constraints. J Chem Phys 2020;153:094111. DOI
213. Hajinazar S, Thorn A, Sandoval ED, Kharabadze S, Kolmogorov AN. MAISE: Construction of neural network interatomic models and

evolutionary structure optimization. Comput Phys Commun 2021;259:107679. DOI
214. Kolmogorov AN, Shah S, Margine ER, Bialon AF, Hammerschmidt T, Drautz R. New superconducting and semiconducting Fe-B

compounds predicted with an ab initio evolutionary search. Phys Rev Lett 2010;105:217003. DOI
215. Shao J, Beaufils C, Kolmogorov AN. Ab initio engineering of materials with stacked hexagonal tin frameworks. Sci Rep

2016;6:28369. DOI
216. Bisbo MK, Hammer B. Efficient global structure optimization with a machine-learned surrogate model. Phys Rev Lett

2020;124:086102. DOI
217. Yamashita T, Kanehira S, Sato N, et al. CrySPY: a crystal structure prediction tool accelerated by machine learning. Science Technol

Adv Mater 2021;1:87-97. DOI
218. Terayama K, Yamashita T, Oguchi T, Tsuda K. Fine-grained optimization method for crystal structure prediction. npj Comput Mater

2018;4:32. DOI
219. Gao H, Wang J, Guo Z, Sun J. Determining dimensionalities and multiplicities of crystal nets. NPJ Comput Mater 2020;6:143. DOI
220. Yang S, Cho K, Merchant A, et al. Scalable diffusion for materials generation. arXiv. [Preprint.] Jun 3, 2024 [accessed on 2024 Sep 23].

Available from: https://doi.org/10.48550/arXiv.2311.09235.
221. Jiao R, Huang W, Lin P, et al. Crystal structure prediction by joint equivariant diffusion. arXiv. [Preprint.] Mar 7, 2024 [accessed on

2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.2309.04475.
222. Gruver N, Sriram A, Madotto A, Wilson AG, Zitnick CL, Ulissi Z. Fine-tuned language models generate stable inorganic materials as

text. arXiv. [Preprint.] Feb 6, 2024 [accessed on 2024 Sep 23]. Available from: https://doi.org/10.48550/arXiv.2402.04379.
223. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data 2019;6:60. DOI
224. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting.

J Mach Learn Res 2014;15:1929-58. Available from: https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_con
tent=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer, . [Last accessed on 23 Sep 2024]

225. Dietterich TG. Ensemble methods in machine learning. In: Multiple classifier systems. Springer Berlin Heidelberg; 2000. pp. 1-15. DOI
226. Peherstorfer B, Willcox K, Gunzburger M. Survey of multifidelity methods in uncertainty propagation, inference, and optimization.

SIAM Review 2018;60:550. DOI
227. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583-9. DOI

http://dx.doi.org/10.20517/jmi.2024.18
http://dx.doi.org/10.1103/PhysRevLett.112.045502
http://dx.doi.org/https://doi.org/10.1016/j.epsl.2017.08.032
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2014.03.017
http://dx.doi.org/10.1039/C6CP00208K
http://dx.doi.org/10.1039/C7CP00805H
http://dx.doi.org/https://doi.org/10.1016/j.commatsci.2014.10.054
http://dx.doi.org/10.1021/jp411437f
http://dx.doi.org/10.1021/acs.nanolett.5b04341
http://dx.doi.org/10.1063/5.0018402
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2020.107679
http://dx.doi.org/10.1103/PhysRevLett.105.217003
http://dx.doi.org/10.1038/srep28369
http://dx.doi.org/10.1103/PhysRevLett.124.086102
http://dx.doi.org/10.1080/27660400.2021.1943171
http://dx.doi.org/10.1038/s41524-018-0090-y
http://dx.doi.org/https://doi.org/10.1038/s41524-020-00409-0
https://doi.org/10.48550/arXiv.2311.09235
https://doi.org/10.48550/arXiv.2309.04475
https://doi.org/10.48550/arXiv.2402.04379
http://dx.doi.org/https://doi.org/10.1186/s40537-019-0197-0
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer,
https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer,
http://dx.doi.org/https://doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1137/16M1082469
http://dx.doi.org/https://doi.org/10.1038/s41586-021-03819-2

	Introduction
	Conventional CSP Methods
	Random search
	Particle swarm optimization
	GA
	Bayesian optimization
	Simulated annealing
	Template-based method

	Applications of ML in CSP
	Structure generation
	Atom features
	Bonding features

	Global structure search
	Local structure optimization
	Generative model

	Summary
	Declarations
	Authors’ contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright




