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Abstract
As device form factors evolve towards increased complexity and flexibility, the role of adhesives within the display 
module stack becomes increasingly crucial. These adhesives are essential for bonding functional layers with 
minimal thickness while mitigating stress during the dynamic behavior of flexible devices. This paper offers a 
comprehensive overview of the essential properties of adhesives - such as adhesion, viscoelasticity, optical 
characteristics, and environmental reliability - necessary for the stable operation of flexible display devices across 
diverse form factors and environments. In particular, it provides an in-depth look at ongoing research in simulation, 
material selection, polymer network control, and the integration of new functionalities to achieve optimal 
performance. Furthermore, this paper discusses extensive research outcomes addressing the growing demand for 
sustainable solutions. Building on this knowledge, we highlight the future direction of adhesives for flexible displays.
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INTRODUCTION
The advancement of information technology has transformed information exchange, enabling seamless 
communication with realistic content, unrestricted by time or space[1,2]. This shift has led users to favor 
visual content, such as videos and images, for more accurate information transmission compared to text. As 
a result, there is a rising demand for portable yet large displays, which has spurred the development of 
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foldable smartphones and laptops [Figure 1A]. Additionally, the growing interest in optimizing space and 
enhancing interior design has driven the creation of rollable TVs, with research focused on reducing the 
curvature radius and improving the reliability of these displays. In healthcare, the need for personalized 
solutions has increased interest in realistic displays, such as feelable or implantable ones, used in medical 
sensors. Consequently, extensive research is being conducted on flexible, large-form-factor displays to meet 
diverse application needs[3-7] [Figure 1B].

Adhesives, particularly pressure-sensitive adhesives (PSAs), are widely used in various fields ranging from 
tapes and labels to electronics, automotive, and sealing because they can easily attach to numerous solid 
surfaces with light pressure[8,9]. Among them, acrylic PSAs lead the market due to their resistance to 
ultraviolet (UV) light, humidity, and temperature, as well as their excellent optical properties and cost-
effectiveness, showing a steady growth in market share[10]. Specifically, optically clear adhesives (OCAs), a 
type of acrylic PSA, play a vital role in the diverse designs of modern displays. In traditional rigid displays, it 
is crucial to use OCAs that ensure strong adhesion for each functional layer, maintain optical transparency, 
preserve organic light-emitting diode (OLED) light brightness, and offer high reliability under diverse 
environmental conditions. With the increasing demand for space-saving and ubiquitous communication, 
the newly released foldable phone features additional integrated layers made of thinner, more flexible 
materials compared to existing rigid phones, necessitating the use of more adhesives [Figure 2A, right]. As 
these functional layers become thinner, they exhibit lower bending stiffness, which increases their 
flexibility[11-15] [Figure 2B]. Consequently, the layers used in flexible displays are composed of thin and 
flexible materials[16-23]. With the transition to flexible displays, the role of adhesives has become more 
significant. These adhesives are crucial because they not only bond adjacent layers but also mitigate stress 
caused by deformation[24-26]. They must accommodate dynamic movement while maintaining optical clarity 
and color integrity. Depending on the application and curvature radius of the flexible display, the required 
properties of the adhesive can vary. Therefore, the development of flexible adhesives must consider 
mechanical properties, adhesion properties, optical properties, and environmental stability.

As devices undergo structural and functional advancements, high-tech flexible adhesives must further 
enhance their already well-defined properties. Future adhesives need to retain their current properties while 
being manufactured thinner or maintaining stable performance across a broader temperature range. With 
the advancement of display technology, new functionalities such as UV blocking, stimuli responsiveness, 
and shock resistance are being added[27-29]. Additionally, to enhance eco-friendliness from an environmental, 
social, and governance (ESG) perspective, research on sustainable adhesives throughout all stages of 
production, use, and processing is essential.

In this paper, we explore the development of adhesives for flexible displays as influenced by changes in 
display form factors. We identify the key parameters required for these adhesives and, based on current 
research, consider how they should evolve as display form factors, functionality, and usability become more 
sophisticated. Additionally, we review the current status of eco-friendly adhesives and offer insights into 
future directions for developing flexible adhesives that meet both sustainability and functionality 
requirements.

THE DEVELOPMENT OF ADHESIVES FOR FLEXIBLE DEVICES
The advent of flexible display devices has necessitated the development of new technologies across various 
fields to ensure their sophisticated and stable operation. OLED-based devices, in particular, have been 
widely adopted and studied due to their inherent flexibility. To improve adoption in wearable sensors and 
smart textiles, alternative display technologies such as mechanoluminescence[30-32] and thermolu-
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Figure 1. (A) The development of IT and smart devices; (B) The changes of device form factor. Foldable and rollable devices are 
designed to deform primarily in 2-dimensions along a single axis. Stretchable devices are engineered to deform in 3-dimensions with 
more complex geometries. IT: Information technology.

minescence[33] are recently being developed, moving beyond traditional electroluminescent OLEDs. 
Research has expanded not only on the emissive layers of displays but also on the surrounding components. 
Notably, adhesives play a crucial role in enhancing the mechanical durability of these devices. Flexible 
adhesives have been developed to effectively mitigate various forms of stress (e.g., tensile, compressive, and 
shear) acting on devices, thereby preventing defects such as cracking, delamination, and buckling, and 
ensuring the mechanical stability of display modules[34]. To address these challenges, the neutral plane 
splitting strategy, which is a promising technology for foldable devices, has been proposed[24,35-37]. According 
to this strategy, by applying adhesives with the very low complex shear modulus, multiple neutral planes can 
be created within the display module, allowing for efficient stress dissipation[38-42]. These neutral planes are 
designed to offset the stresses, thereby enhancing the structural robustness of the device and preventing 
defects during flexible motions [Figure 2C]. The adhesives used in current foldable devices are meticulously 
designed to possess a suitable low complex shear modulus, considering factors such as productivity, creep 
and recovery properties, and adhesion force.

As foldable devices become more prevalent, the required properties for adhesives are generally well-defined. 
As flexible devices encounter diverse situations and users, new problems emerge, necessitating increasingly 
sophisticated specifications for adhesives to address these issues. However, even within the same category of 
foldable devices, the reliability requirements can vary significantly based on the device’s size (e.g., mobile 
phones, tablets, or laptops) and application (e.g., mobile or automotive). For example, foldable devices are 
categorized into foldable smartphones and laptops, each tailored for different usage environments and thus 
requiring distinct design specifications such as curvature radii and screen sizes. Smartphones, prioritizing 
portability, feature a small folding radius and a maximum unfolded screen size of 7.8 inches. Laptops, 
designed for larger displays, range from 13 to 17 inches. Due to greater exposure to external conditions, 
smartphones undergo more stringent UV stability and environmental testing, with reliability test 
temperatures ranging from -20 to 80 °C, compared to 0 to 60 °C for laptops. This results in vastly different 
specifications needed for flexible adhesives [Figure 2D]. Additionally, the stress applied to the display 
module varies greatly depending on the device’s form (e.g., U-shape, Ω-shape, Z-shape, or G-shape) and 



Page 4 of Park et al. Soft Sci 2024;4:28 https://dx.doi.org/10.20517/ss.2024.2228

Figure 2. (A) The module stack structure of OLED devices. The rigid or curved phone (left) and foldable phone (right) structures are 
different. The nomenclatures are generalized for each layer; (B) The bending stiffness of bending structures relates to the thickness and 
modulus of each layer that constitutes the device as depicted[15]. Reproduced with permission. Copyright © 2020 The Society for 
Information Display; (C) The failure mode of display modules occurs when they are bent. The occurrence of failure is related to the 
modulus of adhesives. If the shear modulus of adhesives is extremely low, the stress throughout the device is dissipated due to the 
existence of multiple neutral planes; (D) The requirements of environmental reliability according to various applications. OLED: Organic 
light-emitting diode.

deformation mode (e.g., foldable, rollable, or stretchable). Therefore, the adhesive’s properties must be 
carefully considered based on the specific deformation shape and application of the device.

Slidable or rollable devices, which undergo two-dimensional pre-designed deformations, share similar 
mechanisms with foldable devices. However, unlike foldable devices that bend in specific areas, slidable or 
rollable devices transform across most of the screen area, significantly increasing adhesive deformation. 
While foldable devices use plastic OLED and thin film encapsulation to enhance flexibility, rollable TVs 
employ glass OLED and metal encapsulation, resulting in much greater stress during deformation. 
Additionally, the automotive sector, a major application area for space-saving slidable or rollable devices, 
demands adhesives with extreme thermal and UV stability beyond those used in conventional foldable 
devices. Therefore, research on rollable adhesives focuses on withstanding excessive deformations and 
enhancing environmental reliability[43]. To prevent extreme deformation, it is crucial to enhance the 
adhesive's cohesion properties, ensuring it does not tear under significant stress and can recover during 
unrolling. Cohesion is achieved through chemical crosslinking to form covalent networks and physical 
crosslinking, such as hydrogen bonding. Additionally, novel approaches such as using dynamic 
crosslinkers[44-49] or employing mechanophores[50-52] are being explored to increase cohesion without limiting 
deformation due to shear[53-55].



Page 5 of Park et al. Soft Sci 2024;4:28 https://dx.doi.org/10.20517/ss.2024.22 28

Stretchable displays, unlike previously mentioned device forms, undergo unexpected three-dimensional 
deformations. Current research on textile displays and medical sensors aims to advance the technological 
maturity of free-form displays[56-61]. Despite significant progress in driving cell technologies[58-67], such as 
serendipity circuits, island-type driving layers, and micro light-emitting diode (μLED) emission layers, 
research on adhesives for stretchable displays remains insufficient, and the required properties are not well-
defined. However, insights from related fields, such as drug delivery systems or skin adhesives for medical 
sensors, could help identify necessary properties for display adhesives[57,68-75].

In addition to stretchability, adhesives for the drive part must be flowable enough to fill and flatten 
substantial unevenness caused by μLEDs and serendipity circuits. For applications such as medical sensors 
or textile displays, properties such as biocompatibility, easy detachability, water resistance, and chemical 
resistance are also crucial. Since stretchable devices often use elastic materials such as polydimethylsiloxane 
(PDMS) or polyurethane as substrates[65,76-82], conventional acrylic adhesives may not provide sufficient 
adhesion. This has led to suggestions for using silicone adhesives or adding adhesion promoters to acrylic 
adhesives. Hydrogel adhesives are also being researched as candidates due to their excellent biocompatibility 
and stretchability[83-86]. While the required characteristics of adhesives for stretchable displays can be 
anticipated, specific specifications remain uncertain. Thus, in-depth research is needed to clearly define 
these properties.

Table 1 summarizes the essential properties of adhesives for flexible devices with different form factors. 
Rigid and foldable adhesives have well-defined specifications based on the requirements of commercially 
available display devices. In contrast, the parameters for rollable and stretchable adhesives are less 
established, as they are still in the research and development stage and are derived from recent publications. 
These specifications are approximate and may vary depending on the device's size and purpose. In the next 
chapters, we explain in detail how Table 1 was derived. We will first define the key parameters for adhesives 
used in flexible devices with different form factors and explore strategies to achieve these parameters. 
Additionally, we will review the solutions researchers have developed to address the trade-offs among these 
key parameters.

KEY PARAMETERS FOR ADHESIVES IN FLEXIBLE DEVICES
Low modulus across a wide temperature range
Adhesives for flexible devices relieve stress across device modules by forming multiple neutral planes, which 
decouple strain in adjacent layers. The formation of these neutral planes and the resulting strain decoupling 
reduce the amount of stress and strain acting on each layer, thus preventing defects such as cracks or 
delamination. For these neutral planes to be effective, the adhesive’s complex shear modulus must be 
significantly low. An adhesive with a shear modulus of under 5 × 104 Pa at room temperature (RT) can 
alleviate overall module stress[15,25,35,39,87-91] [Figure 3A]. It is crucial to maintain the adhesive’s modulus close 
to its RT value across a wide range of operating temperatures to ensure the temperature reliability of flexible 
devices. Near and below the glass transition temperature (Tg), a rapid increase in complex shear modulus 
can disrupt the neutral plane design strategy. At higher temperatures, the polymer might become more 
flowable and lose elasticity, degrading its recovery properties. To prevent a rapid increase in modulus at low 
temperatures, low Tg monomers are introduced to lower the adhesive’s Tg close to the lower boundary of the 
industrial temperature range. This results in increased flowability near the upper boundary of the industrial 
temperature range, thus necessitating control through an appropriate introduction of chemical/physical 
crosslinking to manage cohesion. This strategy has been chosen to maintain low modulus across a wide 
temperature range. This approach helps maintain designed strain decoupling and neutral plane splitting 
within a broad temperature range, based on the properties set at RT. Therefore, to preserve the mechanical 
stability of flexible devices, the adhesive must maintain an extremely low modulus across a broad 
temperature range[24,42].
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Table 1. The required properties of flexible adhesives for various forms and applications

Flat                         Foldable                                  Rollable                                   Stretchable

Thickness (μm) 100~200 ≤ 50 50~100 50~100

Peel strength (N/cm) > 7 > 1 > 5 > 1

Recommended adhesive behavior Hyperelastic Viscoelastic + hyperelastic Viscoelastic + hyperelastic Hyperelastic

Material group Acrylate, silicone Acrylate Acrylate, silicone Acrylate, silicone, rubber,
hydrogel

Glass transition temperature (Tg,
°C)

- < -30 °C < -40 °C -

Storage modulus (G’, Pa, @RT) ~106 ~104 ~105 ~104

Creep (%, @RT) - 100%~200% > 150% > 250%

Recovery (%, @RT) - > 80% > 85% > 90%

Required environmental stability -20 °C 
60 °C / 90% RH 
85 °C

-20 °C 
60 °C / 90% RH 
85 °C

-40 °C 
85 °C / 85% RH 
105 °C

-

Fatigue stabilitya (@RT, 
dynamic/static)

- > 1,000,000 times / 720 h > 100,000 times / 1,000 h > 1,000 times / N.D.c

Fatigue stabilitya (@Environ.b, 
dynamic/static)

- > 50,000 times / 300 h > 10,000 times / 500 h N.D.c

UV stability 2.4 W/m2 
300 h

2.4 W/m2 
300 h

55 W/m2 
500 h

N.D.c

Applications TV, IT, mobile IT, mobile TV, auto Medical sensor 
Textile display

Additional requirements - UV-blocking - Biocompatibility 
Water-resistance 
Detachable

aFatigue stability is synonymous with dynamic durability or mechanical cycle stability; bEnvironmental conditions are the same as those listed in 
the row immediately above; cNot defined. The required properties are not yet defined and will need to be established in the near future. Tg: 
Transition temperature; RT: room temperature; RH: relative humidity; N.D.: not defined; UV: ultraviolet; IT: information technology.

Creep and recovery (Stress relaxation)
Adhesives for flexible devices must deform effectively in response to dynamic changes and return to their 
original state once external stress is removed[92]. Otherwise, repeated deformations could lead to permanent 
damage, such as buckling and screen distortion from wrinkles. As mentioned in Section “Low modulus 
across a wide temperature range”, although adhesives with an extremely low modulus offer superior stress 
relaxation compared to conventional adhesives, their enhanced flowability can adversely affect their 
recovery characteristics. Enhancing the recovery properties necessitates adjusting the polymer network 
through chemical/physical crosslinking and increasing polymer entanglement. The adhesive’s creep and 
recovery characteristics, as well as its stress relaxation properties, are analyzed using dynamic mechanical 
analysis (DMA) and a rheometer [Figure 3B].

To control the viscoelastic properties of the adhesive effectively, it is essential to manage both the 
combination of monomers and the properties of the polymer network that forms the adhesive. This 
polymer network is created through crosslinking and polymer entanglement. Polymer entanglement is 
closely related to viscoelasticity, while crosslinked networks primarily affect elasticity. The polymer network 
determines the rheological properties of the adhesive, which vary with temperature, frequency, and shear 
force. Rheological testing methods, such as frequency sweep, temperature sweep, and creep and recovery, 
enable detailed analysis of the adhesive polymer’s network[93-99]. Based on these analytical results, the 
adhesive polymer structure can be precisely adjusted to optimize its rheological properties, thereby 
enhancing the mechanical stability of flexible devices.
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Figure 3. (A) The ideal shear modulus of flexible adhesives in temperature sweep test. With low Tg adhesives, it facilitates the formation
of multiple neutral planes through the entire integrated structures; (B) DMA and rheometer are used to measure the viscoelastic
properties of flexible adhesives such as temperature sweep, frequency sweep, creep and recovery, S-S curve, and so on; (C) The 
plastic-viscoelastic deformation occurs during the peel test. The stronger deformation occurs at peel front, the larger adhesion force is 
detected. Tg: Transition temperature; DMA: dynamic mechanical analysis.

Adhesion strength
Compared to adhesives used in conventional rigid devices, those for flexible devices are thinner and have 
lower adhesion force, making it challenging to maintain sufficient bonding and ensure cohesive movement 
of adjacent layers[34,100-103]. The adhesion force is primarily determined by the interfacial interactions and the 
bulk deformation loss within the adhesive. During peel tests, energy dissipation occurs with the formation 
of a plastic-viscoelastic zone at the peel front, where the debonding process takes place [Figure 3C]. The 
formation of this zone is influenced by the adhesive thickness and peeling speed. As the thickness decreases, 
a fully developed plastic-viscoelastic zone cannot form at the peel front, leading to a drop in adhesion 
force[104]. For adequate bonding with adjacent layers, the adhesion force of flexible adhesives should be at 
least 1 N/cm, based on standards for foldable adhesives[34]. To achieve this, flexible adhesives should be 
formulated to allow for effective crosslinking, enhancing resistance to cohesive failure, and ensuring 
sufficient wetting and bonding at the interface[105-109].
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Optical properties
In addition to the previously mentioned key characteristics, adhesives used in displays must exhibit optical 
clarity, especially in the front layers, and are classified as OCAs. Optical transparency and refractive index 
are critical to ensure the efficient transmission of light emitted from OLEDs without additional loss. To 
maintain the integrity of the OLED’s color, specifications related to color, such as the yellow index and Lab, 
are also crucial. Furthermore, driven by the trend towards minimizing components, enhancing light 
transmittance, and reducing power consumption in flexible devices, innovative technologies such as color 
filter on encapsulation (CoE) and touch on encapsulation (ToE) have been developed. These advancements 
have enabled the elimination of polarizers. In OLED devices, the role of the polarizer has diminished 
compared to its application in LCDs, yet it still performs critical functions such as blocking external light 
reflections, enhancing contrast ratio, and providing UV-blocking ability to prevent OLED 
degradation[110-112]. Since the removal of the polarizer in foldable devices, technological developments have 
been underway to address the reduction of external light reflections and enhancement of contrast ratio 
through the application of anti-reflection coatings on the cover window and the black matrix on color 
filters, respectively. However, since other layers cannot compensate for the UV-blocking ability required to 
prevent OLED degradation, it necessitates incorporating UV-block capabilities into the adhesive[27-29]. 
Reflecting these needs, recent research has advanced to incorporate the evolving requirements of display 
technology.

The aging resistance
Given that electronic devices are typically used over extended periods, the aging resistance of adhesives is 
critically important for maintaining their long-term functionality and reliability[113]. Aging resistance is the 
ability of an adhesive to preserve its physical and chemical properties over time, which is essential for 
ensuring the long-term reliability of flexible displays. Aging of adhesives typically results from exposure to 
factors such as heat, humidity, UV, oxygen, and various chemicals. These factors could change or degrade 
the polymer structure of the adhesive, thereby reducing its mechanical and rheological properties. For 
example, at high temperatures, the chemical bonds within the adhesive could be degraded by oxidation, 
reducing mechanical strength and adhesion[114]. Humidity and oxygen could accelerate the oxidation and 
hydrolysis reactions in the adhesive, weakening its flexibility and tensile strength[115]. To counteract these 
issues, adhesives could be formulated with stabilizers such as antioxidants, UV absorbers, and thermal 
stabilizers, to enhance aging resistance. Additionally, selecting monomers and crosslinkers with high 
thermal and moisture resistance could further improve aging resistance. To evaluate aging resistance, 
various accelerated aging tests can be conducted. These tests expose the adhesive to extreme conditions such 
as high temperatures, high humidity, and UV exposure to observe the long-term aging effects within a short 
period[116,117]. Beyond evaluating the adhesive itself, the aging resistance of adhesives can be further assessed 
by applying adhesives to display modules and conducting stability tests under varying temperature, 
humidity, and UV exposure conditions [Table 1]. These tests can identify phenomena such as bleaching, 
color changes, or bubbles resulting from adhesion loss. Collectively, ensuring the aging resistance of 
adhesives is essential to maintain the mechanical and optical reliability of flexible displays.

RECENT ADVANCES IN ADHESIVES FOR FLEXIBLE DEVICES
Employing finite element analysis for adhesive design
Finite element analysis (FEA) is a method that uses partial differential equations to numerically and 
mathematically simulate and analyze specific physical phenomena. This technique is particularly valuable 
for predicting the behavior of individual components, layered structures, or assemblies under various 
conditions. Researchers actively use FEA software in adhesive design to optimize layered components and 
determine the necessary physical properties of adhesives, thereby reducing trial-and-error experimentation 
and lowering costs. In the field of flexible devices, FEA with the modulus of the adhesives effectively 
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predicts the mechanical stress distribution in multi-layered structures, identifies the location of neutral 
planes, and assesses the potential for delamination or cracking[14,16,25,39,118].

For example, FEA simulations have been utilized to analyze how variations in modulus and thickness of 
adhesives affect stress distribution across the entire device and impact adjacent elastic layers. Kim et al. 
demonstrated that using extremely soft adhesives prevents damage to electrodes by splitting the neutral 
plane[90]. They experimentally tested whether the indium tin oxide (ITO) electrodes formed on polyethylene 
terephthalate (PET) films were damaged during bending tests, depending on the modulus of the adjacent 
adhesive, by measuring the resistance of the electrodes. As shown in Figure 4A, the device with low 
modulus adhesives operated well without any damage to the ITO electrode.

Another study by Ma et al. reported how the modulus of adhesives in rollable devices affects the location of 
the neutral plane and strain decoupling in adjacent layers[119]. They indicated that by adjusting the properties 
of the adhesive layers, it is possible to place the neutral plane in brittle and hard-to-replace layers such as 
thin-film transistors (TFT), electroluminescent (EL) layers, and electrodes, thereby enhancing the 
mechanical stability of the device [Figure 4B].

Li et al. conducted research showing that the primary deformation of adhesives during flexible operations is 
shear deformation[120]. They found that thicker adhesives better facilitate the formation of neutral planes 
through shear deformation, effectively decoupling strain in rigid layers[40] [Figure 4C]. Strain decoupling 
refers to the phenomenon where a layer with extremely low modulus between two high modulus layers 
causes stress inversion through shear deformation in the middle layer, resulting in independent strain 
behavior in the top and bottom layers. These studies suggest that a stack structure with alternating high-
elastic films and extremely low-modulus adhesives can effectively alleviate stress in the device by facilitating 
the formation of multiple neutral planes, thereby ensuring mechanical stability[121].

The aforementioned studies assumed that adhesives behave as linear elastic materials. However, this 
approach does not account for the complex shear deformations caused by hyperelasticity and viscoelasticity, 
leading to notable discrepancies when simulating smaller folding radii or more complicated deformations 
such as rollable or stretchable forms[26]. Hyperelasticity represents nonlinear elastic behavior, while 
viscoelasticity reflects changes in material properties over time[122].

To accurately predict the real behavior of devices, it is necessary to use theoretical models that account for 
both hyperelasticity and viscoelasticity, matching the measured properties of adhesives and incorporating 
these into simulations[25,26,92,122-125]. Hyperelasticity is typically derived from stress-strain curves and 
represented using models such as the Ogden, Yeoh, or Mooney-Rivlin models, which are based on the 
strain energy density function. Viscoelasticity, which is time-dependent, is represented by properties 
extracted from stress relaxation curves or master curves of adhesives, often using the generalized Maxwell 
model or the standard linear model, represented by Prony series.

Zhang et al. analyzed the actual behavior of flexible adhesives using various fitting models to determine the 
most appropriate one[125]. They measured stress-strain curves at different strain rates to find the optimal 
model for hyperelastic properties and correlated the data with the Yeoh, Ogden, and Mooney-Rivlin 
models. They concluded that the 5-parameter Mooney-Rivlin model best fits all data sets regardless of strain 
rate. For viscoelastic properties, they measured stress relaxation and master curves at different temperatures 
and found that the generalized Maxwell model, using the 3rd Prony series, provided a good fit. This 
research underscores the importance of selecting the constitutive model that best represents the genuine 
properties of the adhesive, which is crucial for improving the accuracy of simulation results.
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Figure 4. (A) The multiple neutral planes formation applying low modulus adhesives in integrated structure[90]. Reproduced with 
permission. Copyright © 2017 IOP Publishing; (B) The location of multiple neutral planes is controlled by a combination of high and low 
modulus adhesives in top and bottom sides[119]. Reproduced with permission. Copyright © 2020 KMEPS (CC BY NC); (C) The strain 
splitting of rigid layers (orange) occurs well with increasing thickness of adhesives through forming neutral multiple planes[40]. 
Reproduced with permission. Copyright © 2016 The Royal Society.

Reflecting these insights, recent studies have significantly advanced the understanding of the role of 
adhesives in flexible displays and the stress distribution across different device shapes. Jia et al. incorporated 
hyperelastic properties into their FEA simulations using the 3rd Yeoh model. Their results[122], as shown in 
Figure 5A, indicate that increasing the thickness of the first OCA layer reduces the maximum strain, 
primarily affecting only the adjacent layer. This can be attributed to strain decoupling in the rigid layers due 
to the stress relaxation of the low modulus adhesive, as well as the shielding effect that obscures the 
influence between adhesives caused by the rigid layers.

Niu et al. used the 4th Ogden model and Prony model to incorporate hyperelastic and viscoelastic 
properties into FEA simulations, respectively, predicting stress variations for different folding shapes 
(U-shape vs. Ω-shape)[123]. They found that an Ω-shape, resembling a water drop, reduces overall stress in the 
central folding area and in the TFT and OLED layers compared to a U-shape module [Figure 5B]. This 
suggests that an Ω-shape is advantageous for reducing the folding radius in foldable displays.

Han et al. reported that incorporating the measured properties of adhesives into rollable display simulations 
provides a more precise prediction of stress distribution compared to using conventional linear elastic 
models[26]. When using a conventional linear elastic model for OCAs, multiple neutral planes do not form 
well across the entire rolling angle range. However, incorporating nonlinear elastic properties with the Yeoh 
model results in well-distributed stress and strain throughout the rolling region [Figure 5C].

Advancements in FEA modeling enable accurate predictions of the intricate physical behavior in stacked 
structures, providing researchers with logical and visual insights. The ability to rapidly accumulate extensive 
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Figure 5. (A) The changes of max strain based on OCA thickness (blue shadow, left) and the shielding effect of rigid layer (right). The 
more distant layers are less affected by 1st adhesive thickness[122]. Reproduced with permission. Copyright © 2019 Elsevier B.V.; (B) The 
max stress distribution based on folding shape. The Ω-shape is favorable for reducing folding radius[123]. Reproduced with permission. 
Copyright © 2022 MDPI (Basel, Switzerland) (CC BY); (C) The strain splitting across all rolling angle ranges is modeled in the FEA 
simulation by inputting viscoelastic data of the adhesives[26]. Reproduced with permission. Copyright © 2023 Springer Nature Limited 
(CC BY). OCA: Optically clear adhesive.

data makes FEA simulations valuable for developing artificial intelligence (AI) models that identify 
mechanically stable structures and determine the necessary physical and mechanical properties of 
component layers.

Materials selection
To facilitate the formation of multiple neutral planes and manage sudden changes in modulus at low 
temperatures, adhesives should have an extremely low modulus, achieved by lowering the polymer’s Tg. 
Adhesives with a low Tg maintain viscoelastic behavior similar to that at RT over a wider temperature range, 
including low temperatures[126-130]. Monomers with long or branched alkyl chains, which have a high free 
volume, act as low Tg monomers. Examples include 2-ethylhexyl acrylate (EHA, Tg: -68 °C), butyl acrylate 
(BA, Tg: -55 °C), and isononyl acrylate (iNA, Tg: -58 °C). Typically, adhesives consist of a combination of 
low Tg monomers, high Tg monomers, and functional monomers. Flexible adhesives are primarily 
composed of extremely low Tg monomers combined with monomers possessing hydrophilic functionalities, 
which influence the wettability and cohesion of the adhesive. Commonly used monomers with hydrophilic 
functionalities include 4-hydroxybutyl acrylate (HBA), 2-hydroxyethyl acrylate (HEA), and acrylic acid 
(AA).
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Following this monomer selection strategy, Lee et al. used EHA as the low Tg monomer and investigated the 
impact of various functional monomers on stretchability[126,127]. They incorporated acrylamide (AM), methyl 
acrylate (MA), AA, and HEA to create adhesives that fully recovered after 25% elongation, demonstrating 
significant flexibility. Stress-strain hysteresis analysis confirmed the recovery properties imparted by the 
functional monomers. Cohesion through entanglement and hydrogen bonding with AM or AA resulted in 
significant hysteresis loss, while HEA showed minimal loss, indicating its superiority for recovery in 
stretchable adhesives. This study suggested HEA as a suitable functional monomer for stretchable adhesives 
[Figure 6A]. The same research group developed a fully reversible adhesive with minimal stress-strain 
hysteresis using 2-carboxyethyl acrylate (CEA) as a functional monomer alongside EHA[128]. They 
determined that the recovery delay, previously identified due to carboxy groups, was caused by strong 
hydrogen bonds formed by these groups after deformation, resulting in residual strain[126]. They found that 
the residual strain was dependent on the amount of CEA and remained consistent even after repeated 
experiments. To address this issue, they introduced a pre-strain strategy. The pre-strained adhesive 
demonstrated immediate recovery without hysteresis loss after additional deformation [Figure 6B]. This 
study is significant as it resolves the recovery delay issue by analyzing the characteristics of the monomer, 
particularly when incorporating a carboxy-containing monomer that dramatically enhances adhesion 
properties.

Studies have also explored the application of specialized monomers, such as silane acrylates and ethylene 
glycol-containing acrylates, in flexible adhesives. Seok et al. demonstrated that using various silane acrylates 
increases the polymer’s free volume due to the larger Si−O−Si bond angle compared to the C−O−C bond 
angle, effectively lowering the shear modulus at low temperatures (≤ -20 °C)[131]. They also showed that 
ethylene glycol silane acrylate ensures polymer entanglement through physical crosslinking from ethylene 
glycol, while the bulky silane group reduces the low-temperature modulus, resulting in a stable modulus 
across a wide temperature range[132]. Creep and recovery tests confirmed that the bulky silane group controls 
the elasticity of acrylic adhesives, preventing excessive deformation [Figure 6C].

Additionally, studies are being conducted on hydrogels, demonstrating their potential as adhesives for 
stretchable and wearable devices through 2-axis stretch tests[83-86]. These studies utilize substances that act as 
movable linkers, such as cyclodextrin or sulfonic acid, or use polymers such as polyvinylpyrrolidone (PVP), 
which easily form a hydrogen bond. As adhesives, hydrogels exhibit desirable properties in folding tests or 
2-axis stretch tests, stretching and recovering without tearing or buckling issues. For example, Han et al. 
designed a novel hydrogel adhesive with a dopamine-containing diacrylate crosslinker[86]. Tri(ethylene 
glycol) diacrylate reacted with dopamine via the aza-Michael reaction to synthesize the crosslinker, which 
was then copolymerized with AA to create the hydrogel adhesive. This hydrogel demonstrated a high lab 
shear strength of about 70 kPa on skin tissue, attributed to the hydrophilic dopamine unit. It also showed 
complete recovery without residual strain up to 150% elongation. Given their biocompatible and stretchable 
properties, hydrogels are considered suitable materials for stretchable applications, emphasizing the need to 
develop mechanically stable hydrogels similar to conventional acrylic adhesives.

These investigations have highlighted that the structure of monomers can significantly influence the overall 
properties of a polymer, such as its Tg, complex shear modulus, elasticity, and recovery properties. The 
geometry or composition of monomers and linkers affects not only the structure of the polymer network 
but also determines rheological properties such as the temperature stability of the complex shear modulus, 
creep, recovery, and adhesion properties.
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Figure 6. (A) The stretch hysteresis of several acrylate adhesives. Incorporating with HEA or MA, the elastic energy is conserved rather 
than lost as heat[126]. Reproduced with permission. Copyright © 2019 Elsevier Ltd; (B) The pristine adhesive remained ~10% residual 
strain after 100 cycle hysteresis due to its newly formed hydrogen bonds. The pre-strained adhesive was recovered immediately[128]. 
Reproduced with permission. Copyright © 2022 Elsevier B.V.; (C) The dynamic temperature sweep (C1) and creep and recovery test 
(C2) of adhesives with ethylene glycol silane acrylate. It enhanced cohesion and controlled the shear flow[132]. Reproduced with 
permission. Copyright © 2023 MDPI (Basel, Switzerland). HEA: 2-hydroxyethyl acrylate; MA: methyl acrylate.

Optimizing network structure
Polymer networks in adhesives are formed through two primary mechanisms: chemical/physical 
crosslinking and entanglement. Chemical crosslinking typically occurs via crosslinkers or hydrogen atom 
transfer (HAT) processes[133-135], creating covalent bonds. Physical crosslinking, on the other hand, happens 
through secondary interactions such as hydrogen bonding or coordination bonds, allowing for dynamic 
exchange. In network polymers, the gel content can be experimentally quantified to determine the 
proportion of crosslinked polymer within the entire polymer matrix. The crosslinking density can also be 
estimated from the storage modulus in the rubbery region during a temperature sweep.

Entanglement results from the interlocking of polymer backbones or long side chains and is significantly 
influenced by the molecular weight and functionality of the polymer. The molecular weight can be 
controlled by polymerization conditions, including the amount of the initiator, reaction time, and 
temperature[130,136,137]. When polymers have a molecular weight above the entanglement molecular weight 
(Me), the flowability of the polymer is restricted through inter- or intra-polymer entanglements[138,139]. 
Increased entanglement strength broadens the plateau region observed in rheological data, indicating its 
impact on the polymer’s elasticity. Particularly, a low Tg polymer with appropriate cohesion through 
polymer configuration can achieve a wider temperature range of shear modulus stability, encompassing 
both low and high temperatures, and exhibit excellent recovery properties.
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The use of diacrylate crosslinkers to induce chemical crosslinking is common practice. Adjusting the 
structure and quantity of the crosslinker allows control over the crosslinking density. Generally, shorter, 
structurally rigid crosslinkers, and linkers with stronger secondary interactions result in higher polymer 
crosslinking density, thereby enhancing cohesion properties. To increase the cohesion of flexible adhesives, 
researchers have introduced chemical and physical crosslinking methods or explored novel linker designs. 
These studies are crucial for guiding the design of polymer networks using crosslinkers.

Yi et al. also investigated the rheological properties resulting from the formation of crosslinking networks 
using cyclodextrin-based acrylate (CDA) and 1,6-Hexanediol diacrylate (HDDA)[87]. They studied three 
network structures: the covalent crosslinking network (CCN) formed solely with HDDA, the movable 
crosslinking network (MCN) with CDA alone, and the confined sliding network (CSN) with both HDDA 
and CDA. The investigation revealed significant differences in rheological properties, particularly in strain 
recovery. Polymers with CCN and CSN, which possess chemical crosslinking, demonstrated over 80% strain 
recovery due to their elasticity. In contrast, the MCN polymer, featuring only physical crosslinking, 
exhibited poor strain recovery of 50% due to plastic deformation. During a 3mmR folding test, the CCN 
polymer sample cracked and delaminated, while the CSN polymer sample showed no defects [Figure 7A]. 
This suggested that the strictly crosslinked structure in the CCN polymer, resulting from full chemical 
crosslinking, induces a stiff network that leads to crack initiation and subsequent delamination.

Park et al. overcame the limitations of traditional crosslinkers, such as their rigid structure and consequent 
reduction in adhesion, by designing a novel urethane acrylate linker[2]. They incorporated two key concepts 
into the core structure. First, they used m-Xylylene diisocyanate (XDI) and 1,3-bis(isocyanatomethyl)-
cyclohexane (H6XDI) to enhance light stability and strength; Second, they employed poly(ethylene glycol) 
(PEG)-acrylate to improve chain mobility and cohesion, resulting in the creation of PEG-contained 
urethane diacrylate. The XDI-PEG linker (XPD) and H6XDI-PEG linker (HPD) were compared to the 
commercially used linker HDDA. The findings showed that, while maintaining similar adhesion properties, 
the recovery speed at 20% strain was significantly faster [Figure 7B]. Notably, HPD exhibited a strain 
recovery speed of over ten times faster. This rapid recovery is attributed to the cyclohexane in HPD acting 
as a soft segment with PEG, providing flexibility and limiting urethane hydrogen bond formation due to 
steric hindrance. Conversely, XPD showed a slower recovery speed compared to HPD, as the benzene acts 
as a hard segment in the linker and allows urethane hydrogen bond formation. This study suggests that in 
designing crosslinkers, ensuring sufficient mobility through the use of soft moieties and suppressing 
hydrogen bond formation can significantly improve the strain recovery rate of adhesives.

Zhang et al. studied how network structure affects the behavior of stretchable adhesives[140]. They found that 
adhesives with hyperelastic properties recover well without wrinkles after deformation, unlike those with 
viscoelastic properties. Their adhesive system involves coating an elastic adhesive surface with a viscoelastic 
adhesive, creating interlinks between the elastic and viscoelastic polymers, forming a heterogeneous 
network. This combination of interlinks and conventional crosslinks preserves the overall elasticity of the 
adhesive while maintaining interface adhesion and shear flow due to the viscoelastic polymer [Figure 7C]. A 
similar strategy involving the formation of a heterogeneous network was also employed by Jeong et al., who 
developed an adhesive using PDMS as the hyperelastic layer[42]. This adhesive maintains the extremely low 
modulus even at -50 °C, ensuring foldability without delaminations or cracks across a broad temperature 
range from -50 to 100 °C. The significance of their research lies in maintaining the heterogeneous network 
while ensuring low modulus across the harsh temperatures. These studies highlight the importance of 
elasticity for flexible adhesives by introducing new lamellar structured adhesives.
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Figure 7. (A) The different crosslinked network structure determines the strain recovery property and foldability. The CSN network is 
suitable for flexible adhesives because it incorporates both covalent crosslinked network and movable crosslinked network, allowing 
controlled movement of the polymer[87]. Reproduced with permission. Copyright © 2022 Elsevier B.V.; (B) The PEG contained urethane 
acrylate linker shows superior strain recovery rate compared with commercial linker[2]. Reproduced with permission. Copyright © 2023 
Wiley�VCH GmbH; (C) The hyperelastic adhesive prevents wrinkles after deformation. Viscoelastic materials on the surface and 
hyperelastic materials in the bulk created a heterogeneous network[140]. Reproduced with permission. Copyright © 2022 American 
Chemical Society; (D) The cross-linked network is formed by photo iCVD method. The frequency sweep test and the dynamic 
temperature sweep test exhibit network formation of polymer indicating plateau region and rubbery region[141]. Reproduced with 
permission. Copyright © 2018 American Chemical Society; (E) The crosslinking density of adhesive could be controlled by manipulating 
UV intensity through grayscale mask[144]. Reproduced with permission. Copyright © 2021 Elsevier B.V.; (F) The schematic depicts the 
bicontinuous phase of a heterogeneous adhesive induced by polymerization-induced microphase separation[145]. Reproduced with 
permission. Copyright © 2024 Wiley�VCH GmbH. CSN: Confined sliding network; PEG: poly(ethylene glycol); iCVD: initiated chemical 
vapor deposition; UV: ultraviolet.

Additionally, the degree of crosslinking can be controlled by modifying the manufacturing process. Unlike 
traditional methods, using photo-initiated chemical vapor deposition (iCVD) allows the formation of 
crosslinked networks without the need for crosslinkers[24,141]. Moon et al. revealed that adhesives produced 
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by thermal iCVD do not form crosslinked structures, whereas those produced by photo iCVD do[141]. By 
using both thermal and photo iCVD simultaneously, the degree of crosslinking can be adjusted, which 
affects the formation of the plateau region in frequency sweeps and the rubbery region in temperature 
sweeps [Figure 7D].

Adjusting the UV light intensity or exposure time can effectively control the crosslinking density of 
adhesives prepared by photocuring. Kim et al. demonstrated that increasing the UV exposure time, while 
maintaining a constant light intensity, enhances the gel content. This increase in gel content promotes the 
formation of the crosslinked network, allowing for precise control over stress relaxation properties[142,143]. 
Employing this approach, they fabricated patterned adhesives with varying crosslinking densities by 
manipulating the UV dosages. They cured the low-cured area via primary UV curing and formed the high-
cured area through secondary curing using the photomask. Compared to the non-patterned sample, the 
patterned sample showed a significant improvement in the recovery performance. The patterned sample 
also exhibited a relatively high modulus compared to the non-patterned sample, while demonstrating 
similar adhesion strength. Subsequently, by changing the gray scale and size of the patterned mask, they 
effectively tuned the density of crosslinked network[144]. Smaller pattern sizes enhanced adhesion forces and 
recovery properties, demonstrating the potential of UV-patterned adhesives as flexible adhesives 
[Figure 7E]. These studies highlight that the crosslinked network can be controlled not only by changing 
materials but also through manufacturing processes, offering significant insights into the versatility of 
adhesive technologies.

Recently, Back et al. successfully developed a highly resilient adhesive with low crosslinking density but 
excellent strain recovery characteristics by leveraging polymerization-induced microphase separation 
(PIMS) that incorporates both hard and soft domains to form a nano-scaled bicontinuous phase[145]. When a 
macro chain transfer agent (CTA) and monomers are blended and cured, the linear monomer blocks grown 
from the CTA ends are kinetically trapped by the crosslinked polymer domains, resulting in phase 
separation that ultimately forms a nanoscale bicontinuous phase [Figure 7F]. In the bicontinuous phase, the 
soft domains, formed solely by entanglement without crosslinking, deform immediately under folding 
strain, allowing for a wide range of deformation, while the hard domains, possessing a crosslinked network, 
exhibit superior recovery characteristics that enable them to return to their original state once external 
deformation is removed. This research presents a significant strategy that overcomes the limitations 
previously faced in controlling the behavior of traditional flexible adhesives, where it was challenging to 
independently control flowability and recovery properties solely based on gel contents, i.e., the content of 
crosslinked polymers.

Sustainability
For several decades, environmental concerns have driven increased attention to the sustainability of 
materials across various fields[146-152]. This societal interest has significantly influenced the research and 
development of adhesives, with studies focusing on monomer perspectives, manufacturing methods, and 
post-use considerations.

To produce acrylate monomers in an environmentally friendly manner, AA reacts with hydroxy-containing 
materials derived from natural sources[91,153-163]. AA, a crucial precursor for acrylate monomers, has already 
been commercialized using an eco-friendly method[164-167]. Commonly used hydroxy-containing sources 
include terpenoid and lignin-based materials [Figure 8A]. Depending on the type of hydroxy-containing 
material used, either high Tg monomers or low Tg monomers are produced. High Tg monomers such as 
menthyl acrylate and isobornyl acrylate have been extensively studied[168-171], while innovations in low Tg 
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Figure 8. (A) The representative starting materials for preparing bio-based acrylate monomers. All starting materials can be obtained 
from plants or trees; (B) The photocatalyst (blue) and co-initiators (green) for visible-light-driven polymerization. Using the 
photocatalyst and co-initiators, the PIS mechanisms were proposed[27]. Reproduced with permission. Copyright © 2024 Springer Nature; 
(C) The concept and preparation method for debondable adhesives. The UV is a stimulus for adhesion control[190]. The mechanism of 
adhesion control was proved through MD simulation. Reproduced with permission. Copyright © 2024 Wiley�VCH GmbH; (D) Thermo-
switchable adhesion is achieved by controlling the number of hydrogen bonding sites[196]. Reproduced with permission. Copyright © 
2024 Royal Society of Chemistry. PIS: Photoinitiating system; UV: ultraviolet.

monomers have introduced candidates such as stearyl acrylate, 2-octyl acrylate, and tetrahydrogeranyl 
acrylate (THGA)[172-174]. Functional monomers, such as HBA and HEA, can be derived from CO2 or 
biomass-derived ethylene glycol[158,175].

Baek et al. have utilized tetrahydrogeranyl (meth)acrylates to create UV-curable adhesives with a Tg between 
-20 and 30 °C, demonstrating the potential for plant-derived ingredients in flexible adhesives[171,172]. Park et 
al. successfully prepared OCAs for foldable displays using fully terpene-based monomers[91]. They selected 
two terpenes: tetrahydrogeraniol from geranium and citronellol from rose oil. THGA, chosen as a low Tg 
monomer, and vicinal diol-contained citronellol-based acrylate (CDA) were identified as suitable functional 
monomers for flexible adhesives. The resulting OCAs exhibited low Tg and moduli across a wide 
temperature range. Their foldability was confirmed through a 2 mmR dynamic folding test under various 
conditions.
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Current adhesive production methods predominantly involve solvent-based thermal polymerization and 
solvent-free photopolymerization. To make these processes more environmentally friendly, several 
approaches have been suggested, including the use of water and other eco-friendly solvents[176-181], as well as 
substituting UV light with harmless visible light[182-188]. Noppalit et al. used cyclademol and tetrageraniol-
based (meth)acrylates to produce adhesives with a Tg of -30 °C, employing a miniemulsion polymerization 
method that uses both toluene and water as solvents, reflecting an environmentally conscious 
manufacturing approach[178]. Kwon et al. successfully developed a highly efficient visible-light 
photoinitiating system (PIS) by combining a previously developed visible-light-absorbing photocatalyst 
combined with appropriate co-initiators[27,189] [Figure 8B]. Unlike existing visible-light PIS, this new system 
can efficiently facilitate polymerization with a minimal amount of photocatalyst, enabling the production of 
highly transparent OCAs suitable for display applications. Compared to existing UV systems, this method is 
energy-efficient, ensures user safety, and allows for the creation of functional OCAs previously unattainable 
with UV-light curing. The visible-light curing system can be easily scaled up using halogen lamps or LEDs, 
making it a cost-effective alternative to expensive xenon lamps for UV curing and directly applicable to 
industrial processes. Building upon this technology, they have developed UV-blocking[27,28], UV-
debondable[190], and sustainable OCAs[91].

Research on the after-use of adhesives has gained attention due to the challenges of recycling or disposing of 
them, mainly caused by their crosslinked networks and the tackiness of residues left on surfaces[190-197]. 
Several research groups have been investigating methods, such as stimuli-responsive adhesive, to selectively 
control adhesion forces for clean detachment from surfaces[190,196,197]. Stimuli-responsive adhesives are crucial 
in the display industry as they enable error correction and facilitate the recycling of display components 
after use. Recent studies by Kim et al. have focused on adhesion control for displays using benzophenone 
moieties that respond selectively to UV light[190]. This allows additional crosslinking responding to post-UV 
irradiation, which increases cohesion while reducing adhesion force, thereby enhancing the recyclability of 
displays or cover glass after use [Figure 8C]. Hwang et al. reported on an adhesive with switchable adhesion 
properties activated by temperature changes[196]. The lower critical solution temperature (LCST) 
phenomenon of N-isopropylacrylamide is a key factor in modulating adhesive strength based on 
temperature. They successfully demonstrated that the adhesion force is reversible, with high adhesion forces 
at RT and 97% reduction in adhesion at 90 °C, by utilizing changes in inter- and intra-hydrogen bonding 
formation [Figure 8D].

For several years, research on (bio)degradable adhesives has been actively advancing, with studies focusing 
on copolymerizing acrylate monomers with degradable units and creating adhesives entirely from 
degradable monomers[198-209]. Current research underscores the need to understand how degradable units 
influence rheological properties. This insight is crucial for developing adhesives that maintain high 
performance while minimizing environmental impact.

Various optical properties for flexible devices
The adhesive used above the light-emitting layer in display devices must be optically transparent to ensure 
that light reaches the user without any loss. Additionally, its refractive index (n) should closely match that of 
the cover glass to prevent light loss due to surface reflection or diffraction. Acrylic adhesives, with n = 1.49, 
are well-suited for this purpose. Their refractive index is slightly lower than that of cover glass (n~1.50) and 
slightly higher than that of TAC film (n~1.47) used in polarizers, minimizing light loss at interfaces. 
Moreover, the adhesive must be colorless to avoid distorting displayed colors. This can be verified using 
parameters such as the yellowness index and the Lab color index to ensure a true white color.
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Recent trends in flexible devices aim to enhance energy efficiency, minimize thickness, and reduce 
manufacturing costs by utilizing multifunctional layers. A notable example is the replacement of polarizers 
with color filters in new OLED displays [Figure 9A]. However, removing the polarizer exposes the OLED to 
UV light, potentially accelerating the degradation of emitters. This underscores the need for UV-blocking 
adhesives. These adhesives are also in high demand for automotive displays, which are exposed to strong 
sunlight for extended periods. Traditional UV-cured polymerization processes face challenges when 
incorporating UV-cut additives, as UV light is essential for curing.

To address this, Kwon et al. utilized a visible-light-driven polymerization method to successfully create a 
flexible adhesive with UV-blocking capabilities[27]. This adhesive not only completely blocks UV light below 
400 nm but also uses minimal amounts of a photocatalyst that absorbs visible light, ensuring optical 
transparency and colorlessness. Additionally, the rapid polymerization process makes it economically 
viable. The UV-blocking adhesive effectively blocks UV light, preventing luminescence loss and voltage 
drop in blue OLEDs [Figure 9B]. This study is significant for its industrial applicability and for 
incorporating additional functions without compromising the characteristics of existing flexible adhesives.

PERSPECTIVES
With the advancement of information technology (IT) infrastructure and increasing demand for real-time 
information sharing, display form factors are expected to become more diverse and complex. The 
development of innovative designs such as foldable, rollable, and transparent displays enhances consumer 
convenience and introduces new user experiences. As these devices evolve, the adhesives used in them are 
also being developed to meet various requirements, with ongoing efforts to push existing material properties 
to their limits or incorporate new functionalities. While adhesives for foldable phone and laptop/tablet 
displays are relatively well-developed, those for automotive displays still require improvements due to more 
stringent reliability conditions. According to the temperature standards for existing automotive displays[210], 
adhesives must maintain their rheological properties over a broader range, ensuring reliability down to 
-40 °C[42]. Additionally, as smartphone display structures are simplified - such as through the removal of 
polarizers and the implementation of CoE - further research is needed to incorporate additional properties 
such as UV protection into adhesives.

Rollable displays, which offer significant enhancements in space utilization and portability, are particularly 
promising for automotive applications and thus demand high environmental reliability. Adhesives for these 
displays need to endure considerable deformation without tearing and recover effectively when unrolled, 
requiring a blend of existing techniques and innovative approaches. Similarly, adhesives for stretchable 
displays, such as those used in attachable medical sensors or textile displays, necessitate additional 
functionalities. These adhesives should exhibit well-defined properties tailored to specific applications, 
including the capacity to fill micro LED step heights and considerations for biocompatibility and water 
resistance. Textile displays, in particular, demand adhesives with fiber compatibility, enhanced wash 
durability, and chemical resistance, necessitating a sophisticated set of properties. As evidenced, the 
properties required for adhesives used in rollable or stretchable displays are not as well-defined as those 
used in foldable displays. Therefore, in-depth research is essential to identify the target properties crucial for 
ensuring the durability and reliability of these devices.

Additionally, adhesives used in all types of flexible displays must ensure long-term stability to maintain the 
durability of the display and the device in which it is utilized. The repeatability and stability of adhesives are 
crucial for the practical application of flexible devices. Given that flexible devices such as foldable 
smartphones, rollable TVs, wearable sensors, and human-computer interaction displays are used over long 
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Figure 9. (A) The conventional OLED module structure (left) and pol-less OLED module structure (right). Excluding the polarizer 
necessitates the introduction of a black matrix on the color filter and a UV-blocking adhesive; (B) The UV-blocking adhesives were 
prepared via visible-light-driven polymerization. With UV-block adhesive, the luminescence and voltage change were negligible after UV 
exposure test[27]. Reproduced with permission. Copyright © 2024 Springer Nature. OLED: Organic light-emitting diode; UV: ultraviolet.

periods, these adhesives should retain their properties without degradation, demonstrating aging resistance 
and maintaining mechanical stability despite repeated flexible motions. Furthermore, aging resistance 
against environmental conditions such as temperature, humidity, and UV can be accomplished by 
appropriately formulating the monomers and additives that compose the adhesive, thereby creating a stable 
adhesive under various environmental conditions.

In the future, flexible devices will need to operate reliably in extreme environments, be thinner yet more 
efficient, and exhibit greater energy efficiency. Consequently, future adhesives must maintain consistent 
viscoelastic properties over a wide temperature range, offer improved impact resistance despite low 
thickness, and provide versatile functionalities. These functionalities may include UV blocking properties to 
protect against everyday UV exposure and excellent heat dissipation properties to manage thermal loads. 
Increasing energy efficiency can be approached from various perspectives. From the standpoint of using a 
flexible device longer within a limited battery capacity, energy efficiency can be enhanced by minimizing the 
drop-in brightness from the display to the user. This can be achieved by matching the refractive index of the 
adhesive with adjacent layers and maximizing optical transmittance. Another perspective is to look at the 
production aspect of adhesives. Energy efficiency in adhesive production can be increased by using faster 
curing speeds and lower intensity light sources, which can be achieved by utilizing efficient photocatalysts 
and initiators. Additionally, the development of flexible adhesives must support environmental 
sustainability. There is significant demand for OCAs made from degradable, recyclable, or reusable eco-
friendly materials, aligning with global sustainability goals. This requires a comprehensive approach 
encompassing the entire lifecycle of adhesives, from monomer synthesis and polymerization to post-use 
disposal or recycling, ensuring they meet technical requirements while contributing to a sustainable future.

In summary, the requirements for adhesives used in flexible displays become increasingly complex as 
display form factors evolve and functional demands grow. For foldable displays, particularly as the 
technology matures in mobile phones, adhesives must reliably operate over a wider temperature range and 
provide excellent UV blocking capabilities to expand their use to automotive devices. Conversely, adhesives 
for rollable and stretchable displays are not yet fully commercialized, so their exact specifications remain 
undetermined. However, these adhesives need superior viscoelastic properties and functionality to perform 
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reliably under broader temperature ranges and harsher mechanical deformation compared to those for 
foldable displays. As commercialization progresses and user feedback is gathered, these specifications will be 
refined and improved. Additionally, global requirements for environmental sustainability must be 
considered, necessitating active research into adhesives that can be degraded or reused in flexible displays.
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