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Abstract
Aim: This study aims to evaluate the impact of experimental workflow on fecal metaproteomic observations, 
including the recovery of small and antimicrobial proteins often overlooked in metaproteomic studies. The 
overarching goal is to provide guidance for optimized metaproteomic experimental design, considering the 
emerging significance of the gut microbiome in human health, disease, and therapeutic interventions.

Methods: Mouse feces were utilized as the experimental model. Fecal sample pre-processing methods (differential 
centrifugation and non-differential centrifugation), protein digestion techniques (in-solution and filter-aided), data 
acquisition modes (data-dependent and data-independent, or DDA and DIA) when combined with parallel 
accumulation-serial fragmentation (PASEF), and different bioinformatic workflows were assessed.

Results: We showed that, in DIA-PASEF metaproteomics, the library-free search using protein sequence database 
generated from DDA-PASEF data achieved better identifications than using the generated spectral library. 
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Compared to DDA, DIA-PASEF identified more microbial peptides, quantified more proteins with fewer missing 
values, and recovered more small antimicrobial proteins. We did not observe any obvious impacts of protein 
digestion methods on both taxonomic and functional profiles. However, differential centrifugation decreased the 
recovery of small and antimicrobial proteins, biased the taxonomic observation with a marked overestimation of 
Muribaculum species, and altered the measured functional compositions of metaproteome.

Conclusion: This study underscores the critical impact of experimental choices on metaproteomic outcomes and 
sheds light on the potential biases introduced at different stages of the workflow. The comprehensive 
methodological comparisons serve as a valuable guide for researchers aiming to enhance the accuracy and 
completeness of metaproteomic analyses.
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INTRODUCTION
The human gut microbiome contains an estimated 100 trillion microorganisms, including bacteria, fungi, 
protozoa, and viruses, which interact with each other and their host to foster a complex and dynamic 
environment[1-3]. The symbiotic host-microbial relationship of the gut microbiome is crucial to human 
health and contributes to many biological processes, such as metabolism, immunomodulation, etc.[4]. Many 
studies also suggest that microbiome dysbiosis is correlated with and may lead to the development of 
neurodegenerative, cardiovascular, metabolic, and gastrointestinal diseases, among others[3,5-7]. With the 
emerging importance of the gut microbiome in human health, disease, and therapeutics, studies on the 
microbiome, its taxa, and its products have become increasingly significant[8].

Given the extremely high complexity of the microbiome, meta-omics approaches including metagenomics, 
metatranscriptomics, metabolomics, and metaproteomics, are commonly used in studying the microbiome 
composition and functions[9,10]. Among the different omics approaches, metaproteomics uses a mass 
spectrometer to directly measure the protein expressions and post-translational modifications (PTMs) of 
the microbial community[11]. Mass spectrometry (MS) analysis can be conducted with a data-dependent 
acquisition (DDA) or data-independent acquisition (DIA) strategy. DDA-based metaproteomics is 
commonly used due to its easy setup and analysis, flexibility, breadth of detection, and ability to relatively 
quantify chemically labeled peptides[12]. In a DDA mode, the most abundant ions from MS1 scan will be 
selected and fragmented during tandem MS scans; however, this data acquisition mode can risk losing 
information on the other less abundant peptides, particularly in complex samples such as microbiomes, 
which limits the depth, sensitivity, and reproducibility of metaproteomic data[13,14]. Contrastingly, DIA can 
sample all the peptides within the selected mass range and, therefore, theoretically can detect lower-
abundance peptides in complex samples[15]. In the past few years, the application of DIA-MS-based 
proteomics was profoundly expanded due to these advantages, the advancement of bioinformatics tools, 
such as DIA-NN[16], and advanced instrumental developments, such as timsTOF Pro[17] and Astral MS 
analyzer[18]. More recently, the application of DIA-MS in metaproteomics has been reported, demonstrating 
great potential in increasing the depth of identification and accuracy of quantifications[19-21].

One advantage of metaproteomics is the capability to measure non-bacterial components, including 
proteins originating from the host, as well as viral, fungal and archaeal species, without the need for 
additional experimental efforts[22]. This is particularly ideal for trans-kingdom, host-microbiome interaction 
studies[23,24]. The intestinal lumen is the home of diverse biotic and abiotic components, including host-
secreted proteins such as antimicrobial proteins and proteins produced by microbes themselves, such as 
small microbial proteins. These small proteins/polypeptides, including a high proportion of antimicrobial 
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peptides, are implicated in cell-signaling, transport, enzymatic activities, antitoxin systems, pathogenic 
colonization resistance, etc.[25-27]. Theoretically, these small proteins present in the intestinal samples can be 
identified in metaproteomics data; however, in practice, their identification is often overlooked due to 
suboptimal sample preparation and bioinformatics annotation steps, resulting in the loss of these portions 
of protein components[28,29]. Sample preparation methods, such as differential centrifugation, are commonly 
used to enrich and purify microbial cells from fecal sample debris and remove chemical contaminants that 
can impact downstream protein extraction and protein digestion[30]. However, the secreted small 
antimicrobial peptides from either the host or microbes may be lost during differential centrifugation.

It is well recognized that different sample processing methods such as the use of differential centrifugation, 
protein extraction methods, and protein digestion methods, and differences in data analysis workflows can 
yield different results and metaproteomic insights[30-32]. We have previously reported that physical disruption 
using bead beating or ultrasonication is needed to optimally extract proteins from Bacillota (previously 
Firmicutes)[32]. Tanca et al. showed that stool pretreatment by differential centrifugation significantly 
impacted metaproteomic observations[30]. However, there is still a need for further evaluation of the bias 
introduced by different steps of the experimental workflow as well as the emerging DIA data acquisition 
mode, and how they can contribute to the recovery of otherwise overlooked components, such as small 
antimicrobial proteins. Therefore, in this study, we conducted a comprehensive comparison of fecal sample 
preparation, protein digestion, data acquisition mode, and bioinformatic workflow using mouse feces to 
serve as a guide for metaproteomic experimental design.

METHODS
Mouse feces collection and differential centrifugation
Mouse fecal samples were collected from nine female C3H/HeN mice purchased from Charles River 
Laboratories, Senneville, Quebec, Canada. The animal procedures were approved by the Animal Care 
Committee in Health Canada and performed in accordance with institutional guidelines. Fecal samples 
were combined and crushed into a homogenous powder. This stock fecal sample was used for both 
differential centrifugation (DC) and non-differential centrifugation (NC) workflows.

Differential centrifugation of feces was performed according to a previous study[32]. Briefly, 0.5 mL glass 
beads (BioSpec, Cat#11079125) and 7.5 mL cold phosphate-buffered saline (PBS) per gram of fecal sample 
were added to the samples, followed by vortexing and centrifugation at 300 g at 4 °C for 5 min to collect the 
supernatant. The remaining fecal pellets were extracted three more times with 7.5, 5, and 5 mL cold PBS, 
and the fecal pellet at the end of the 4 extractions was discarded. Once pooled, additional debris from the 
extractions was removed by three centrifugations at 300 g at 4 °C for 5 min. The supernatant extract was 
then spun down at 14,000 g at 4 °C for 20 min to collect the microbial pellet. The microbial pellet was 
washed twice with cold PBS by resuspending and centrifuging at 14,000 g at 4 °C for 20 min, then frozen 
until use.

Protein extraction, trypsin digestion and desalting
Sample lysis
NC feces were lysed by directly resuspending dry, frozen, crushed fecal pellet in lysis buffer at a ratio of 
20 mg dry fecal powder material / 1 mL lysis buffer. DC microbial pellets were lysed by resuspending the 
wet microbial pellets with a ratio of 100 mg wet pellets / 1 mL lysis buffer (assuming that 20% of the wet 
pellets are dry materials). The same lysis buffer was used for all samples, consisting of 4% (w/v) sodium 
dodecyl sulfate (SDS), 8 M urea, and 1× Halt protease inhibitor single-use cocktail (Thermo Scientific, 
Cat#78425) in 50 mM Tris-HCl (pH 8). Sample lysates were sonicated using a QSonica Q700 water-chilled 
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cup-horn sonicator at 50% amplitude, 10 s pulse on/off cycle, for 20 min active sonication time at 8 °C. The 
lysate was then centrifuged at 16,000 g for 10 min at 8 °C to remove any non-lysed debris. Protein-
containing supernatant was transferred to a new tube and protein concentrations were determined using 
the Pierce BCA protein assay kit (Thermo Fisher Scientific, Cat#23225) following the manufacturer’s 
protocol.

In-solution trypsin digestion
For in-solution trypsin digestion, proteins underwent acetone precipitation by adding 5 volumes of protein 
precipitation buffer composed of 50% acetone, 50% acetonitrile (ACN), 0.1% acetic acid, mixed through 
inversion and incubated at -20 °C overnight. Samples were spun down at 16,000 g at 4 °C for 25 min and the 
supernatant was discarded. The remaining pellet was washed with ice-cold acetone, sonicated with a 
QSonica Q700 water-chilled cup-horn sonicator at 50% amplitude for 10 s, and spun down at 16,000 g at 
4 °C for 10 min for a total of 3 washes. After briefly air drying, the protein pellets were resuspended in 6 M 
urea in 50 mM ammonium bicarbonate (ABC) buffer (pH 8) for trypsin digestion. Protein concentrations 
were determined using the Pierce BCA protein assay kit, and 100 µg of protein lysates of each sample were 
reduced with 10 mM 1,4-dithiothreitol (DTT) incubated at 850 rpm at 56 °C for 30 min and alkylated with 
20 mM iodoacetamide (IAA) for 40 min at room temperature protected from light. Samples were diluted in 
50 mM ABC buffer to a final urea concentration of 0.6 M and then digested with 4 µg MS-grade Trypsin 
(Promega, Cat#V511B, lot: 0000575718) / 100 µg of protein incubated at 850 rpm at 37 °C for 20 h. The 
reaction was stopped by adding formic acid (FA) to acidify the samples to pH 2-3 prior to desalting, as 
described below.

Filter-aided sample preparation digestion
For filter-assisted digestion methods, two different molecular weight cut-off filters were used, namely filter-
aided sample preparation (FASP)-10kDa and FASP-3kDa (Merck Millipore Ltd). For each sample, 100 µg of 
protein lysate was directly diluted to 200 µL of 8 M urea in 100 mM Tris-HCl buffer and added to the pre-
rinsed FASP columns. SDS was diluted twice using 200 µL of 8 M urea in 100 mM Tris-HCl buffer each 
time. Reduction was performed by adding 8 M urea in 100 mM Tris-HCl buffer containing a final 
concentration of 20 mM DTT and incubated at 850 rpm at 37 °C for 30 min. After removing the flow-
through, samples were then alkylated by 20 mM IAA at room temperature in the dark for 30 min. To 
remove excessive IAA, an additional 200 µL 20 mM DTT in 8 M urea in 100 mM Tris-HCl buffer was 
added, incubated at room temperature for 2 min, and eluates were discarded. The column was then washed 
with 8 M urea in 100 mM Tris-HCl buffer once and 100 mM Tris-HCl buffer for four times prior to adding 
200 µL 100 mM Tris-HCl buffer containing 4 µg of trypsin (1 µg trypsin : 25 µg protein input). The trypsin 
digestion was performed by shaking at 850 rpm at 37 °C for 20 h. Peptides were eluted by spinning at 
16,000 g at room temperature for 20 min followed by additional elution with 200 µL fresh 100 mM Tris-HCl 
buffer. Both eluents were combined and acidified to a pH of 2-3 using 10% (v/v) FA for desalting.

Desalting
Desalting was performed using C18 columns (Thermo Scientific, Cat#89870). Columns were activated by 
adding 100% ACN, centrifuging at 100 g for 1 min for a total of 3 times, and then equilibrated with 0.1% 
(v/v) FA, centrifuging at 300 g for 2 min for 2 times. Samples were loaded to the column and centrifuged at 
300 g to remove flow-through until all samples were loaded. The desalting column was washed with 0.1% 
(v/v) FA for 2 times. Desalted peptides were then eluted with 100 µL 80% (v/v) ACN / 0.1% (v/v) FA buffer 
for two times by centrifuging at 100 g for 1 min for each elution. The eluates containing desalted tryptic 
peptides were then dried on a centrivap (Labconco, Cat#7810010) and stored at -20 °C until LC-MSMS 
analysis.
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LC-MSMS analysis
Dried tryptic peptides were resuspended in 0.1% (v/v) FA to a final concentration of 1µg/µL, and 3 µg
peptides were loaded for MS analysis using a timsTOF Pro 2 mass spectrometer (Bruker Daltonik, Bremen,
Germany) coupled to a nanoElute 2 UPLC system (Bruker Daltonik). The instrument was calibrated prior
to analysis with Chip Cube High Mass Reference Standard (Agilent, Cat#G1982-85001). A two-column
system of HPLC was used consisting of a C8 trap column before separating on a PepSep Twenty-five
analytical column (25 cm × 75 μm column packed with 1.9 μm C18 particles) (Bruker Daltonik,
Cat#1893477). Chromatographic separation was achieved at a flow rate of 0.5 µL/min over 48 min in linear
steps as follows (solvent A was 0.1% FA in water, solvent B was 0.1% FA in ACN): initial, 2%B; 40 min,
35%B; 40.5 min, 95%B; 45 min, 95%B; 48 min, 95%B. The eluting peptides were analyzed in either data-
dependent acquisition coupled with parallel accumulation-serial fragmentation (DDA-PASEF) mode or
data-independent acquisition coupled with PASEF (DIA-PASEF) mode in the timsTOF Pro 2 mass
spectrometer.

For DDA-PASEF mode, a MS survey scan of 100-1,700 m/z and ion mobility range of 0.85-1.30 Vs/cm2 was
performed in the timsTOF MS. During the MS/MS scan, 4 PASEF ramps were run with an intensity
threshold of 2,500, target intensity of 20,000, and a maximum precursor charge of 5. The TIMS analyzer was
operated in a 100% duty cycle with equal accumulation and ramp times of 100 ms each and a total cycle
time of 0.53 s. The collision energy was ramped linearly as a function of mobility from 59 eV at 1/k0 =
1.6 Vs/cm2 to 20 eV at 1/k0 = 0.6 Vs/cm2.

For DIA-PASEF mode, a MS survey scan of 100-1,700 m/z with an ion mobility range of 0.6-1.60 Vs/cm2

was performed. The TIMS analyzer was operated in a 100% duty cycle with equal accumulation and ramp
times of 100 ms each and a total cycle time estimated at 1.8 s. During DIA-PASEF MS/MS scan, precursors
with m/z between 400 and 1,200 were defined in 16 scans containing 32 ion mobility steps with an isolation
window of 26 Da in each step with 1 Da overlap with neighboring windows. The collision energy for DIA-
PASEF scan was ramped linearly from 59 eV at 1/k0 = 1.3 V·s/cm2 to 20 eV at 1/k0 = 0.85 V·s/cm2.

Bioinformatic data processing
Spectral library and reduced database generation
The mouse gut microbial gene catalog database, containing ~2.6 million nonredundant protein sequences,
was downloaded from GigaScience Database (http://gigadb.org/dataset/100114)[33]. The reviewed mouse
UniProtKB database was downloaded from UniProt (downloaded on 2024/01/01, 17,179 protein entries).
These two databases were combined as the starting original database for generating a spectral library or a
reduced FASTA database using the DDA-PASEF dataset, employing either pFind[34] or MSFragger[35]. For
pFind search, MS raw files were first converted from .d to .mgf files using MSconvert (v3.0.23240). The
resulting MGF files were then searched using open search mode against the combined database with the
following parameters: enzyme: Trypsin KR_C, number of missed cleavages: 3, precursor and fragment
tolerance: +/- 20 ppm, and an false discovery rate (FDR) of < 1% at both peptide and protein levels. The
protein sequences of all identified proteins in the pFind search, including indistinguishable proteins, were
extracted from the original database to generate a pFind-generated reduced database using an in-house Perl
script. For MSfragger search, FragPipe (v20.0) was used with either the full combined database or the pFind-
generated reduced database for generating spectral libraries that will be used for analysis for the DIA-PASEF
dataset. For MSfragger search using the full combined database, a database split factor of 10 was used. Both
searches followed the default workflow and used ciRT for spectral library generation with a peptide and
protein level FDR threshold of 1%. In addition to spectral libraries generated, the protein sequences of all
identified proteins, including indistinguishable proteins, of MSFragger search against the original database
were extracted using an in-house Perl script to generate a MSFragger-derived reduced FASTA database.

http://gigadb.org/dataset/100114
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DIA-NN search for identification and quantitation of DIA-PASEF data
DIA-PASEF data were processed with DIA-NN[16] (v1.8.1) using either spectral libraries generated through 
MSFragger or a library-free mode using reduced FASTA databases generated through pFind or MSFragger 
searches as described above, with a precursor FDR threshold of 1%. Default settings were used for all the 
DIA-NN searches.

MSFragger search for identification and quantitation of DDA-PASEF data
To obtain identification and quantitation results of the DDA-PASEF dataset, the DDA data were processed 
with the FragPipe (v21.1) MSFragger node using the LFQ-MBR workflow. The full mouse gut microbial 
gene catalog and host database were used. Similar to the spectral library generation workflow, a split 
database strategy was used to improve the sensitivity of peptide-spectrum match (PSM) with a database split 
factor of 10. MaxLFQ intensity of identified protein groups was used in this study with a minimum ion of 1.

Taxonomic and functional annotation and analysis
Taxonomic and functional annotation and analysis for both DIA-NN and MSFragger outputs were 
performed using MetaLab[36] (version 2.3). Briefly, the DIA-NN outputs report_pg.tsv and report_pr.tsv files 
were used for functional and taxonomic annotations, respectively. Similarly, the MSFragger outputs 
combined_proteins.tsv and combined_peptides.tsv were used for functional and taxonomic annotations, 
respectively. Unipept option in MetaLab was used to generate taxonomic annotations for both database 
search results, and a minimum of three distinct peptides was used for confident identification of taxa.

Database search for small proteins and antimicrobial peptides
A small protein database derived from the human gut microbiome was downloaded from the supplemental 
data of a previous study by Sberro et al.[25]. We used the protein cluster data table, which contained 444,054 
entries, to generate the small protein database. The AMPsphere AMP database was downloaded on 
September 1, 2024, from AMPsphere (https://ampsphere.big-data-biology.org/home), containing 863,498 
entries[37]. To enable the calculation of the relative abundance of small protein or antimicrobial peptides 
(AMPs) to total proteins in a sample, all identified peptide sequences from previous search using the 
combined database (gut microbial gene catalog and mouse proteome) were concatenated with the AMP or 
small protein databases for DIA-NN search or MSFragger search for DIA-PASEF data or DDA-PASEF data, 
respectively. DDA and DIA data were quantitatively analyzed using the methods described above with the 
respective alternate databases.

Data visualization and statistical analysis
Experimental flowcharts were generated using BioRender (https://www.biorender.com/). Graphs were 
generated using R package ggplot2 and ggpubr.

RESULTS
Evaluating bioinformatics workflows for DIA-PASEF metaproteomics
To evaluate fecal sample preparation workflows, a pooled fecal sample from C3H/HeN female mice was 
crushed into a powder, homogenized and aliquoted for either microbial enriched protein extraction through 
DC or direct protein extraction with NC workflow [Figure 1A]. To assess the potential impacts of protein 
digestion methods, both DC and NC protein lysates were subjected to in-solution trypsin digestion 
(following acetone precipitation for detergent removal), FASP with 10kDa molecular weight cut-off filter 
(FASP10), or 3kDa filter (FASP3). All comparisons were conducted with five replicates with a total of 30 
peptide samples for MS analysis on a timsTOF Pro 2 mass spectrometry system using both DDA- and DIA-
PASEF acquisition modes [Figure 1A].

https://ampsphere.big-data-biology.org/home
https://www.biorender.com/
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Figure 1. Experimental Overview and evaluation of bioinformatics workflow. (A) Flowchart depicting mouse fecal sample processing 
workflow and MS data acquisition. (B) Flowchart depicting different bioinformatic workflows tested in this study. Histograms of the total 
number of peptides and proteins identified with the different bioinformatics processing workflows as shown in (B) for (C) DDA and (D) 
DIA datasets, respectively. MS: Mass spectrometry; DDA: data-dependent acquisition; DIA: data-independent acquisition.

A major challenge for DIA metaproteomic data analysis is that bioinformatics tools, such as DIA-NN, 
cannot handle large databases. Currently, most workflows utilize DDA data of the same or representative 
samples to generate a spectral library from the original protein databases. We therefore first evaluated the 
use of two widely used database search engines for DDA data, pFind (open search) and MSFragger (closed 
search with split databases), to generate reduced databases from the mouse gut microbial gene catalog 
database [Figure 1B]. The pFind open search for all 30 DDA data files identified 91,524 peptides 
corresponding to 15,011 protein groups in total, while the MSFragger search for the 30 DDA data files 
identified 54,093 peptides corresponding to 15,077 protein groups [Figure 1C]. DIA-NN searches with 
spectral library or library-free modes from either pFind or MSFragger reduced databases were then 
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conducted to see which pipeline for DIA data processing yields the best identification results. Briefly, 
protein sequences were extracted from both search outputs to generate reduced FASTA databases for DIA-
NN search with library-free mode (pFind-LibF for using pFind-generated protein database, and MSF-LibF 
for using MSFragger-generated database). Spectral libraries were generated by MSFragger with either the 
full database or a pFind-generated reduced protein database, and were used for DIA data analysis (MSF-Lib 
and pFind-Lib, respectively). As shown in Figure 1D, all DIA-NN search inputs yielded similar protein 
group numbers, falling between 12,647 and 14,001. The main difference in identification was found in the 
peptide level, where all workflows tested resulted in approximately 58,000-60,000 peptides except for MSF-
LibF which identified 72,979 peptides in total for the DIA-PASEF dataset. Based on these evaluations, we 
then chose MSF-LibF workflow for DIA-PASEF data processing, and to be consistent, the MSFragger LFQ-
MBR quantification using the full database (with 10 splits) was used for the analysis of the DDA-PASEF 
dataset.

DIA-PASEF metaproteomics achieved better identification and quantification
We first compared the DDA-PASEF and DIA-PASEF data acquisition modes in terms of peptide and 
protein identification, as well as protein quantification in fecal metaproteomics. Across all fecal sample 
preparation methods, there was a consistent increase in peptides and protein groups identified per sample 
when samples were run using DIA-PASEF mass spectrometry compared to those run with DDA-PASEF 
mode [Figure 2A and B]. This finding is in agreement with a previous study by Gómez-Varela et al.[21]. For 
the identification of peptides and protein groups, the digestion method using a FASP-10kDa approach had a 
slight edge over other digestion methods tested in DC preparations, and in-solution digestion had a slight 
edge in NC samples [Figure 2A and B]. DIA-PASEF runs for DC samples achieved the highest number of 
precursor identifications with nearly 50,000 precursors per sample (identifications ranging from 36,912 to 
49,928 precursors, 35,324 to 46,665 peptides, 9,598 to 10,705 protein groups), while nearly 21,000 peptides 
(identifications ranging from 14,029 to 20,852 peptides, to 5,068 to 6,891 protein groups) were identified for 
the same samples with DDA-PASEF runs. DIA-PASEF runs for NC samples achieved a competitive number 
of precursor identifications with nearly 45,000 precursors per sample (identifications ranging from 17,681 to 
44,915 precursors, 17,457 to 42,646 peptides, 7,002 to 11,031 protein groups), while up to almost 20,000 
peptides (identifications ranging from 6,334 to 19,389 peptides, 3,292 to 7,492 protein groups) were 
identified for the same samples with DDA-PASEF runs. The filter-assisted sample preparation, using the 
FASP-3kDa columns, showed comparable identification rates for DC samples compared to other digestion 
methods, but it led to a decrease in peptide and protein group identifications when applied to NC samples 
[Figure 2A and B]. The identified peptides in the NC with the FASP-3kDa group exhibited smaller average 
peptide lengths and fewer missed cleavage sites compared to the other groups [Supplementary Figure 1]. 
These differences might be due to the potential undesirable interactions between the FASP column matrix 
and non-protein components in NC samples and the resulting low efficiency for eluting large peptides.

The impacts of MS data acquisition and sample preparation on quantification were then assessed with the 
amount of missing values across samples in each group. In Figure 2C, Q0 indicates a protein group with 
quantified intensity in at least 1/5 replicates in the group, Q50 is present in at least 3/5 replicates, and Q100 
is present in all replicates. Along with an increased number of protein group identifications in DIA-PASEF 
data across all sample preparation methods, there is a distinctly higher proportion of protein groups 
quantified in all sample replicates (Q100) for DIA-PASEF data compared with DDA-PASEF, in particular 
for samples prepared with in-solution digestion and FASP-10K column (73%-80% in DIA vs. 49%-53% in 
DDA; Figure 2C). Evaluation of the intra-group sample-wise Pearson’s correlation of the quantified protein 
intensities indicates high quantitative reproducibility in both DDA and DIA datasets for all proteins 
(Pearson’s r of 0.89-0.96 and 0.90-0.97, respectively) and for low abundant small proteins (100 amino acid 
length threshold; Pearson’s r of 0.82-0.96, 0.84-0.97, respectively) [Supplementary Figure 2]. Therefore, 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/mrr3021-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/mrr3021-SupplementaryMaterials.pdf
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Figure 2. Comparison of identification and quantification abilities of DDA and DIA-PASEF approaches. Number of peptides identified by 
DDA and DIA-PASEF (A) mass spectrometry methods. Number of protein groups identified by DDA and DIA-PASEF (B) mass 
spectrometry methods. Number of quantitated protein groups in any, half, or all (Q0, Q50, and Q100, respectively) samples in each 
group identified by DDA- or DIA-PASEF (C) mass spectrometry. For each figure panel, facet_grid function in ggplot2 was used to 
generate different sections; DC groups are at the top and NC at the bottom, while DDA groups are on the left side and DIA on the right 
side. DDA: Data-dependent acquisition; DIA: data-independent acquisition; PASEF: parallel accumulation-serial fragmentation; DC: 
differential centrifugation; NC: non-differential centrifugation.

DIA-PASEF mass spectrometry methods for mouse metaproteomic samples from various preparations 
provide more identifications with fewer missing values, enhancing the potential for quantitative analysis.

DIA-PASEF for non-enriched samples yielded the highest recovery of small proteins and 
antimicrobial peptides
When conducting the database search, we included both microbiome and host protein sequences. When 
looking at host proteins, DIA-PASEF mass spectrometry methods identified a higher number of host 
proteins per sample than DDA; this outcome was anticipated, as DIA-PASEF identified more proteins. 
Despite an increased diversity of host proteins identified in the DIA-PASEF dataset for each sample, the 
relative abundance of host proteins per sample did not show an obvious difference between both data 
acquisition and protein digestion methods [Supplementary Figure 3]. Differential centrifugation does not 
appear to have a major impact on the identification count of host proteins or their relative abundances, 
which is different from a previous study with human feces[30]. This might be due to the relatively low 
amount of host protein (less than 18% in abundance) in the feces of healthy mice that were used in this 
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study [Supplementary Figure 3]. The most abundant host proteins identified in the fecal samples include
those involved in digestion function and antimicrobial activity, such as regenerating islet-derived protein
3-beta (Reg3β) and immunoglobins, which may bind tightly to the microbe surface and thereby become
enriched with microbial cells.

Next, we evaluated whether different sample preparation methods and MS data acquisition modes could
impact the identification of small proteins that are commonly overlooked in classical metaproteomics.
Among all the identified proteins in this dataset, there were 31 protein groups with ≤ 50 amino acids and
845 with ≤ 100 amino acids. With the application of recent more sensitive mass spectrometers, > 2,000 small
proteins (< 100 amino acids) can be identified in a similar experimental system[38]. We selected a 100 amino
acids cut-off in this study to facilitate comparison between groups[28,39]. There were 200-600 small proteins
identified per sample, with DIA-PASEF yielding higher identifications than DDA-PASEF mode
[Figure 3A]. Differential centrifugation reduced the number of small protein identifications when the
extracted proteins were digested using in-solution and FASP-10kDa methods, but not for those with FASP-
3kDa method, which may be due to the lower overall performance of FASP-3kDa for NC samples. When
considering the sum relative abundance of those small proteins, the type of digestion, FASP column size and
MS acquisition mode all present minimal impacts [Figure 3B]. We then performed functional and
taxonomic annotation using GhostKOALA for these identified small proteins, which showed that they are
significantly enriched in genetic information processing and lipid metabolism pathways [Figure 3C and D,
Supplementary Figure 4]. In addition, the identified small proteins in both DDA and DIA datasets were
significantly enriched in undefined taxa (adjust P value of 1.59E-68 and 1.08E-45 for DDA and DIA
datasets, respectively) from the microbiomes [Supplementary Figure 5]. This might be due to the fact that
small protein sequences have lower information content for taxonomic annotation and are being under-
represented in current knowledge databases. Altogether, this study showed that the use of differential
centrifugation depleted the abundance of small proteins within sample sets across both DDA and DIA
acquisition modes and protein digestion methods, suggesting that the NC method is superior when
targeting and investigating small proteins specifically. It is worth mentioning that the NC method also has
the advantage of shortened sample preparation steps and time, and thereby reduces the sample-to-sample
variations introduced during sample preparation.

Previous metagenomics data mining identified small open reading frames (sORF) encoding > 4,000 small
proteins (≤ 50 amino acids) in the human microbiome, with the majority having no known function[25].
Although the human microbiome may not fully encapsulate the small proteins that would be present in a
mouse microbiome, the overlap that exists can help reinforce the evaluation of the impacts of different
sample preparation methods and MS data acquisition mode on small protein identification. To enable
calculation of the relative abundance and mitigate false discovery, all identified mouse gut microbial peptide
sequences in this study were combined with the predicted small protein sequences for database search for
both DDA and DIA-PASEF data using MSFragger and DIAN-NN, respectively. A consistent and large
increase in small protein identifications in all sample preparation methods was observed when samples were
run using a DIA-PASEF mode than with DDA-PASEF regardless of upstream sample preparation
workflows [Supplementary Figure 6]. NC combined with FASP-3kDa digestion workflow tends to identify
the lowest number of small proteins, which may be due to the overall low protein identifications in this
group; however, the small proteins identified represented the largest percentage in abundance in samples. In
fact, for both in-solution and FASP digestion workflows, NC leads to an increased abundance of small
proteins regardless of protein digestion methods and MS acquisition modes, suggesting that differential
centrifugation depletes small proteins within the sample. Altogether, the findings in this study suggest that
direct fecal lysis for protein extraction, followed by digestion with either in-solution or FASP-10kDa
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Figure 3. Quantitation of small proteins and antimicrobial peptides in mouse fecal samples. (A) Count and (B) relative abundance of 
small proteins in samples using a 100 amino acid cut-off. Functional enrichment analysis of identified small proteins in (C) the DDA-
PASEF dataset and (D) the DIA-PASEF dataset, using all identified proteins as background in DDA and DIA datasets, respectively. 
Functional annotation was performed using GhostKOALA, and only significantly enriched functions were shown (adjusted P value ≤ 
0.05). (E) Count and (F) relative abundance of AMPs when searched against the AMPsphere database. Facet_grid function in ggplot2 
was used to generate different sections; DC and DDA groups are on the left side, while NC and DIA on the right side. DDA: Data-
dependent acquisition; PASEF: parallel accumulation-serial fragmentation; DIA: data-independent acquisition; AMPs: antimicrobial 
peptides; DC: differential centrifugation.

workflows, and quantification using DIA-PASEF presented the highest number of identifications and 
relative abundance of small proteins within the sample [Supplementary Figure 6].

Small proteins are implicated in diverse functions of the microbiome, including defense against other 
microbes or pathogens[26]. Among the predicted small proteins in the human microbiome, around 30% were 
predicted to be secreted or transmembrane proteins and 39 protein families were predicted to be novel 
AMPs[25]. By using a deep learning approach, Ma et al. identified 2,349 potential AMPs from human 
microbiome metagenomic data and preliminary biological validation showed > 80% positive rate[27]. More 
recently, Santos-Júnior et al. leveraged a vast dataset of more than 1.5 million metagenomes or microbial 
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genomes of diverse origins to establish a prokaryotic AMP database, AMPSphere[37], which consists of
863,498 predicted AMPs. To evaluate the impacts of a metaproteomic workflow for AMP identification, we
re-searched both DDA and DIA datasets using the AMPSphere database concatenated with all identified gut
microbial peptide sequences. Consistent with total and small protein identification, DIA-PASEF showed a
higher AMP identification (200~300 AMPs, excluding the FASP-3K group) compared to DDA-PASEF
methods (50~150 AMPs) [Figure 3E and Supplementary Figure 7]. When looking at the relative abundance
of AMPs within each sample, it appears that differential centrifugation decreases the abundance of AMPs
[Figure 3F]. Evaluation of the sample-wise Pearson’s correlation of the quantified AMP intensities indicates
higher correlations intra-groups compared to inter-groups in both DDA and DIA datasets [Supplementary
Figure 2E and F]. The findings suggest that NC samples with digestion methods of either in-solution and
FASP-10kDa followed by MS analysis with DIA-PASEF mode resulted in high AMP diversity observed at a
high relative abundance.

Over-representation of Muribaculum in mouse fecal metaproteome with differential centrifugation
We next evaluated whether different sample preparation methods and MS data acquisition mode impact the
taxonomic profiles using metaproteomics. By using a threshold of a minimum of three distinctive peptides
for confident taxon identification, this study identified 12 phyla, 13 classes, 21 orders, 23 families, 62 genera,
and 96 species in the DDA-PASEF dataset, and 17 phyla, 22 classes, 19 orders, 32 families, 70 genera, and 96
species in the DIA-PASEF dataset. Here, we selected the phylum and genus levels for the evaluation. No
obvious difference in the abundance distribution of abundant taxa was observed between DDA and DIA
datasets at both phylum and genus levels [Figure 4]. The major differences were observed between DC and
NC, which is in agreement with previous studies of both human and mouse microbiomes[30,40]. A higher
relative abundance of Chordata or Mus (host) was observed in NC groups compared to DC groups, in
particular at the genus level [Figure 4A-D]. Interestingly, we observed a difference in Mus (host) relative
abundance between different protein digestion methods in DDA-PASEF data, but not in DIA-PASEF data
[Figure 4C and D, Supplementary Figure 8]. On the contrary, the microbial compositions were highly
consistent in both DDA-PASEF and DIA-PASEF datasets.

Metaproteomics analysis demonstrated that Bacillota (previous Firmicutes) and Bacteroidota (previous
Bacteroidetes) were the two predominant phyla in mouse feces, but the relative abundances of these two
phyla were dramatically altered by the use of differential centrifugation during sample pre-processing.
Marked higher relative abundances of Bacteroidota and lower abundances of Bacillota were observed in DC
samples compared to NC in both DDA and DIA datasets. This is in agreement with previous studies on
mouse metaproteomes[40]. However, the direct opposite of changes was reported in human microbiomes
where lower levels of Bacteroidota and higher levels of Baccilota were obtained when samples were prepared
using differential centrifugation[30]. This difference might be due to the known marked different bacterial
genus/species compositions of mice and human microbiomes. As shown in Figure 4E and F, Muribaculum
was the genus mainly driving the elevation of Bacteroidota in DC samples, which represent ~70% of the
microbial abundance in the samples. Muribaculum species are known to be dominant in mouse gut
microbiota, but were only recently well characterized and demonstrated to have very high host preference
(prevalence of 67% in mice compared to 7% in human gut)[41]. In contrast, in human gut microbiota, the
genus Bacteroides is usually the most abundant in Bacteroidota[42]. In this study, we found that the relative
abundance of Bacteroides was lower in DC compared to NC, which is in agreement with the observations in
human gut microbiota. It is unknown why Muribaculum displayed different responses to DC compared to
their neighboring genera within the sample phylum Bacteroidota, but this observation suggests that sample
preparation methods need to be optimized for microbiomes of different origins and the microbial species of
interest for a particular study.
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Figure 4. Taxonomic profiles of mouse fecal metaproteome. (A and B) Phylum level, (C and D) genus level with host (Mus), or (E and F) 
without host were shown. The group mean relative abundance of phyla or genera was used for plotting. Top 5 phyla or top 10 genera 
were shown, with the remainder grouped as “Other” in the stacked plots. Facet_grid function in ggplot2 was used to generate different 
sections; DC groups are on the left side and NC on the right side. DC: Differential centrifugation; NC: non-differential centrifugation.

Differential centrifugation altered the functional profiles of fecal metaproteomes
Lastly, we evaluated the influence of sample preparation methods and MS acquisition on the functional 
profiles obtained using fecal metaproteomics. We identified 24 out of the 26 Clusters of Orthologous Gene 
(COG) categories for both DDA and DIA datasets with 1,356 and 1,261 COGs, respectively, in this study. As 
shown in Figure 5, a consistent COG category-level composition of fecal metaproteome was observed 
regardless of protein digestion method and MS acquisition mode. However, both DDA-PASEF and DIA-
PASEF datasets demonstrated that the differential centrifugation dramatically altered the observed 
functional profiles in metaproteomics. These include the marked decrease in functional category J 
(translation, ribosomal structure and biogenesis) and N (cell motility) by differential centrifugation, while 
increased category E (amino acid transport and metabolism), M (cell wall/membrane/envelope biogenesis), 
R (general function prediction only), and P (inorganic ion transport and metabolism). The decrease in 
functions related to translation and cell motility suggests that the differential centrifugation may result in an 
underestimation of microbial species with more active cell proliferation and higher motility. The functional 
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Figure 5. Composition of identified COG categories in mouse fecal metaproteome. The group mean relative abundance of COG category 
was plotted for (A) DDA and (B) DIA dataset, respectively. Each letter represents a COG category according to the Database of COGs 
https://www.ncbi.nlm.nih.gov/research/cog/. COG: Clusters of Orthologous Gene; DDA: data-dependent acquisition; DIA: data-
independent acquisition.

profiles analysis again demonstrated that sample preparation methods need to be optimized for studies with 
specific objectives or functional pathways of interest.

DISCUSSION
In this study, our findings showed that DIA acquisition provided a clear advantage compared to DDA for 
identification and quantification of proteins, including small and antimicrobial proteins/peptides, in 
microbiome samples. We also demonstrated that non-differential centrifugation methods improved the 
recovery of small proteins and AMPs, and that FASP workflow using 10kDa molecular cut-off filter 
achieved similar data outputs compared to in-solution digestion, both of which are commonly used in 
proteomic and metaproteomic studies. While trying to provide a comprehensive comparison of different 
experimental steps in metaproteomics, there are still limitations to be considered when continuing this 
work. Firstly, this study used healthy mouse feces, which might not be representative of human feces, in 
particular for diseased human fecal samples. To enable the assessment of multiple parameters, we used a 
pooled mouse fecal sample and technical replicates in this study; the use of biological replicates for further 
validation is needed and will provide more statistical power. Other sample types can also be tested, such as 
intestinal content and aspirate samples. Secondly, the current bioinformatic workflow relies on the gene 
catalog database and DDA data-generated spectral library or reduced protein database, which limits the 
advantage of DIA-based metaproteomics. This study demonstrated that a library-free search with a full 
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protein sequence database, including those indistinguishable proteins, improved identifications of both gut 
microbial peptides and taxa. However, it is expected that the use of DDA-independent bioinformatics tools, 
such as MetaDIA[43], and more comprehensive metagenomic assembled genome (MAG) databases, would 
benefit the performance of metaproteomics and, thereby, the evaluations of the workflow.

Nevertheless, this study offered a comprehensive comparison of different experimental parameters, 
including fecal sample pre-processing methods (differential centrifugation and non-differential 
centrifugation), protein digestion techniques (in-solution and FASP with different molecular cut-off sizes), 
data acquisition modes (DDA- and DIA-PASEF), and different bioinformatic workflows. We have 
previously reported that lysis buffer and protein extraction protocols had major impacts on metaproteomics 
observations, and the protein extraction protocols with strong detergent SDS and ultrasonication achieved 
the best protein yields and peptide/protein identifications[32]. Together with this previous study, we 
highlighted the critical impact of experimental choices on metaproteomic outcomes and shed light on the 
potential biases introduced at every step of the workflow. The outcomes of this study provide valuable 
information in standardizing the metaproteomics workflow for applications, such as clinical study, drug 
development, and regulatory assessment, especially for microbiome-based medicinal products.
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