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Abstract
As smart manufacturing technology continues to advance, laser marking robots have been applied to automotive tire
marking, revolutionizing the traditionalmanual process. In order to improve productivity, these robots face challenges
posed by tire positioning, environmental variations, and the light-absorbing properties of the material. In order to
solve the problem, a robot vision modeling method based on the fusion of the 3D point cloud information and 2D
image information on the surface of automotive tires is presented and is used to construct a visual laser marking
robot system for automotive tires. The constructed visual laser marking robot system for automotive tires has been
tested and the results show that the laser marking is more effective compared to the traditional manual marking
process; the lasermarking robot system equippedwith amulti-information fusion visionmodel increases themarking
success rate by 8%, increases the speed by nearly nine times, reduces the waste tire rate by 8%, and reduces the
economic consumption by nearly 56 times; compared with a single vision information marking robot system, the
marking success rate increases by 3% and the tire waste rate reduces by 3%.
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1. INTRODUCTION
In recent years, with the rapid development of automation and intelligent technology, the field of intelligent
manufacturing and the automotive tire industry ushered in a revolutionary change. In this context, laser mark-
ing robots are gradually applied to laser marking work on the surface of automotive tires. The advantages of
these advanced robots are not only reflected in the replacement of traditional manual processes, such as pre-
embedded cycle cards, steel tickets, and vulcanized hollow bar codes, but also in the significant productivity
gains for the automotive tire manufacturing sector. Through the use of laser marking robots, automotive tire
manufacturers have been able to dramatically increase automation in the production of automotive tires, re-
ducing reliance on human labor and thus significantly improving production efficiency. This shift not only
helps shorten cycle times, but also ensures the stability and consistency of product quality. At the same time,
less human involvement also means fewer errors due to human factors, further improving the overall quality
of automotive tire manufacturing.

The marking accuracy of a laser marking robot depends largely on the accuracy of its vision system in detect-
ing and identifying the surface of automotive tires. Visual information is one of the main ways for human
beings to perceive the world, and it is also the core research object in the field of computer vision and image
processing. Wang et al. described the basic principles of digital image and machine vision technology, cate-
gorized and sorted out the current use of machine vision in various laser processing equipment, and pointed
out the development direction and trend of machine vision in the field of laser fine processing [1]. Zhang et al.
designed a laser marking system guided by machine vision positioning, which combined laser marking tech-
nology with two-dimensional images to accurately mark arbitrarily placed workpieces on a conveyor belt [2].
The test results showed that this marking system has high precision for the identification of workpieces that
are neatly made, but has certain limitations when applied to automotive tires with complex characteristics.

In single-source information target detection and recognition, from single-stage detection networks repre-
sented by the YOLO [3] series to two-stage target detection networks represented by Region-based Convolu-
tional Neural Networks (RCNN) [4], Fast RCNN [5], Faster RCNN [6], and Mask RCNN [7] have achieved
great success in the task of detecting two-dimensional images. Zhao et al. proposed an automotive tire
specification character recognition method based on YOLOv5 network, in which three major modifications
are made on YOLOv5 [9] network [8]. The experiment results showed that the method improved the efficiency
and accuracy of automotive tire specification character recognition. Wang et al. proposed a machine vision-
based character recognition method on the surface of tire rubber by performing 2D image denoising,
character segmentation, and template matching to complete the character recognition [10]. The
experimental results showed that the accuracy of character recognition achieves the expected results.
Kazmi et al. applied convolutional neural network (CNN) classifier to text recognition, in which two
independent deep CNNs are used for character detection and recognition [11]. Additionally, the
experimental results showed that there is room for further improvement in text detection. Chen et al.
proposed an improved method of recognizing 2D images based on the DALSA image software processing
system, using the improved image processing method and marking technology to realize laser for tire
marking, which improved the positioning accuracy, simplified the focusing process, and reduced the scrap
produced by marking [12]. Zheng et al. used 3D data for automotive tire de-fect detection [13]. Using laser
scanning techniques, a 3D dataset containing scans of tire surfaces was created, and a framework for tire
defect detection based on 3D point cloud analysis was proposed. Experimental re-sults show that
challenging types of defects can be effectively detected in X-rays. The above methods based on a single
source of information achieved good results. However, the experimental environment is mostly ideal and
simple, which is far from the actual marking work. Furthermore, a single source of information is
vulnerable to the interference of the location of the automotive tires, coupled with the large differences in
the marking work environment of the automotive tire enterprises, as well as the automotive tires themselves
material light-absorbing properties, which affects the detection and identification of automotive tire.
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In terms of multi-source information target detection and recognition, 2D images provide rich texture, char-
acter, and semantic information, while 3D point clouds offer depth data; the fusion of these two kinds of
information can further improve target detection and recognition accuracy. Chen et al. used 3D point clouds
and 2D images as the input level bymulti-view 3D object detection (MV3D), and used region proposal network
to generate candidate proposals first, and then mapped the candidate proposals into three views, and detected
the target by fusing the information from the three views, which made the detection accuracy of MV3D not
high due to the loss of original information by way of multi-view mapping [14]. Jason et al. by aggregate view
object detection (AVOD) first used CNN to generate feature maps for a top view of 2D images and 3D point
clouds respectively, then employed the fused feature maps to generate proposals, and finally used the proposals
with high confidence level combined with the feature maps to classify and bracket box regression of the target,
because the fused feature maps have multi-dimensional feature information, which made the detection accu-
racy of AVOD higher than MV3D and the speed is also faster [15]. However, compared with F-PointNet [16],
which directly processes 3D point clouds without multi-view mapping and fuses them with 2D image target
detection results, the detection accuracy of AVOD is still lower. Xie et al. first projected 3D point clouds onto
2D images to generate 6D RGB point clouds [17]. They then extracted features on the input 6D RGB point
clouds to obtain low-dimensional feature maps and high-dimensional feature maps. These features were fused
to develop a high-precision real-time two-stage deep neural network, PointRGBNet, which was tested on the
open KITTI dataset. The results showed that PointRGBNet not only outperformed target detection networks
using only 2D images or 3D point clouds in terms of detection accuracy, but even surpassed some advanced
multi-sensor information fusion networks. Wu et al. proposed Bird-PointNet, a 3D target detection method
based on the remapping of point cloud top view, by combining the advantages of strong target recognition
ability of 2D image data and more accurate spatial information of point cloud data [18]. The experimental re-
sults of the top view detection and 3D detection on KITTI dataset show that the 3D detection accuracy of
Bird-PointNet method is higher compared to the baseline method which only uses the encoding of a top view
of point clouds. Zhang et al. proposed a point cloud semantic segmentation method and a fused graph convo-
lution network (FGCN) based on the multi-scale information of modalities in the phase of 2D images and 3D
point clouds [19]. Experiments on the dataset SSKIT showed that a significant improvement in the detection
and recognition and segmentation accuracies are obtained. The above studies effectively fuse 3D point cloud
and 2D image information through different methods to improve the accuracy of target detection, recognition,
and semantic segmentation, which provide a brand-new idea for the detection and recognition of automotive
tire surfaces.

In terms of multi-sensor fusion systems, current advanced systems and methods realize complementarity and
redundancy of information by integrating the advantages of multiple sensors, improving the accuracy and
reliability of information. Li et al. proposed a sensor fusion algorithm combined with a global optimization
algorithm [20]. Based on the keyframes, feature points in the local map, sensor information and loop informa-
tion, a global optimization algorithm based on the graph optimization model was constructed to optimize the
position and attitude of the intelligent hardware system and the position of the spatial feature points. Xue et
al. proposed a novel distance indicator based on spiking neural network (SNN) by integrating multiple sen-
sors [21]. The experimental results show that the introduction of SNN can realize effective multi-sensor data
fusion, thus providing accurate and fast distance estimation from the signal source. Wang et al. proposed a
multi-sensor data fusion algorithm to fuse filtered data from three single sensors to effectively solve the prob-
lems of mechanical vibration interference and sensor measurement errors [22]. Chen et al. proposed a novel
in-situ monitoring method for rapid defect detection based on multi-sensor fusion digital twin (MFDT) for
localized quality prediction and combined with a machine learning (ML) model for data fusion [23]. These ad-
vanced multi-sensor fusion systems and methods provide a theoretical basis for surface inspection, character
recognition, and positioning accuracy of our automotive tires. However, automotive tires are black in color,
the surface is extremely uneven, there are different fonts and symbols on the surface of different types of rubber
tires, and because of the complexity of the production environment, the above system and method can not be
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effectively utilized in the actual marking work of automotive tires.

In order to improve the detection, identification and localization accuracy of automotive tire surfaces, this
paper fuses the 3D point cloud information of the automotive tire surface and the image information of the
automotive tire surface, innovatively proposes a robot vision modeling method based on the fusion of the 3D
point cloud information of the automotive tire surface and the 2D image information, and applies it to the
construction of the automotive tire vision laser marking robot system. The multi-information fusion makes
full use of the spatio-temporal characteristics of multiple visual information acquisition sensors to realize the
detection, identification and localization of inspection targets. Multiple visual information acquisition sensors
can simultaneously collect multiple different feature information of the same target to provide support for laser
marking. Then, the laser marking robot needs to improve the robustness and generalization ability of the visual
model and reduce the computational complexity of the visual model when constructing the visual detection
model of multi-information fusion.

2. ROBOT VISION MODELING BASED ON MULTI-INFORMATION FUSION
2.1. Robot vision modeling flow
The robot visionmodeling flow is shown in Figure 1. First, 3D point cloud information and 2D image informa-
tion on the surface of automotive tires are collected using multiple information sensors. After grayscaling the
2D image information on the surface of automotive tires acquired by the camera, the “DOT” character recog-
nition is completed through template matching. At the same time, the 3D point cloud image information on
the surface of automotive tires acquired by the line scanning laser is also grayscaled, and the “DOT” charac-
ter recognition is completed through template matching. The point cloud corresponding to the recognized
“DOT” character in the 3D point cloud image is projected into the image through perspective transformation
and target-level information fusion is performed. Finally, the coordinates of the spatial position of the laser
marker are determined by a multi-information fusion method.

2.2. Multi-information acquisition
Multi-information fusion aims to effectively integrate and utilize diverse information resources to provide
more accurate, reliable, coordinated, and stable decision-making. As shown in Figure 1, the acquisition of 3D
point cloud information and 2D image information on the surface of automotive tires is the first step of robot
vision modeling, and its quality directly affects the effect of subsequent fusion.

Each automotive tire surface has a “DOT” logo, as shown in Figure 2, which is an “ID card” and contains
the date of production, manufacturer, and other information. In the laser marking process, the position of
the “DOT” logo is a reference benchmark to determine the specific location of the target marking. Therefore,
“DOT” is defined as a character template. Then, each character candidate region in the surface information of
the automotive tire is matched with the character template, and the region with the highest matching degree
is selected as the recognition result.

As shown in Figure 3, the information acquisition equipment consists of a line-scanning laser and camera that
convert real-world automotive tires into digital images. During the acquisition process, attention needs to be
paid to the effects of lighting conditions, equipment resolution, focal length, and other factors on the quality
of the information. Table 1 describes the detailed parameters of both equipment.
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Figure 1. Flowchart of robot vision modeling.

Figure 2. “DOT” marking on the surface of automotive tires.

2.3. Aberration correction
Due to lens processing and mounting errors, the camera imaging has radial and tangential aberrations from
the ideal small-hole imaging model. The mathematical expression for the aberration correction is:

{
𝑥 = 𝑋

(
1 + 𝑘1𝑟

2 + 𝑘2𝑟
4) + [

2𝑝1𝑌 + 𝑝2
(
𝑟2 + 2𝑋2) ]

𝑦 = 𝑌
(
1 + 𝑘1𝑟

2 + 𝑘2𝑟
4) + [

2𝑝2𝑋 + 𝑝1
(
𝑟2 + 2𝑌2) ] (1)
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Figure 3. Schematic diagram of robot vision information acquisition equipment.

Table 1. Detailed parameter description of information acquisition equipment

Equipment Parameters

Camera Model: Canon II D
Type: 35 mm focal plane shutter camera
Lens: Serenar 50mm f/2.8
Performance: the camera is equipped with clear imaging capability
and stable shutter speed for image capture under various lighting conditions.

Line-scanning laser Model: FU63511L5-GC12
Wavelength: 635 nm
Output power: 0.4-5 mW
Performance: the line-scanning laser is characterized by
high performance, good stability, constant output power, etc.
It can generate high-quality point cloud data and is suitable for
measuring and marking of various complex surfaces and workpieces

Where 𝑟 = 𝑋2 + 𝑌2, 𝑘1, 𝑘2 are the radial distortion coefficients, 𝑝1 and 𝑝2 are the tangential distortion co-
efficients, (𝑋,𝑌 ) is the ideal imaging pixel coordinate, and (𝑥, 𝑦) is the pixel coordinates after adding the
distortion.

2.4. Multi-information processing
In order to ensure that the information on the surface of automotive tires collected by the camera and the
line-scanning laser match each other, it is necessary for the sensors to spatially match the data, which is a pre-
requisite for multi-sensor data fusion. Spatial matching is the process of converting the respective coordinate
systems of the camera and the line-scanning laser into the same coordinate system for representation, ensuring
that both sensors recognize the same target in the same coordinate system and achieve spatial data matching.
This process requires a joint calibration of both sensors. The sensor coordinate system shown in Figure 4 is es-
tablished, in which the line-scanning laser coordinate system is𝑂𝐷 − 𝑋𝐷𝑌𝐷𝑍𝐷 , the camera coordinate system
is 𝑂𝐶 − 𝑋𝐶𝑌𝐶𝑍𝐶 , the image coordinate system is 𝑜 − 𝑥𝑦, and the pixel coordinate system is 𝑂 − 𝑢𝑣. In order
to obtain the positional relationship between the two sensor coordinate systems, taking a point 𝑃 in space
as an example, its coordinates are (𝑋𝐷 , 𝑌𝐷 , 𝑍𝐷), (𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶), and (𝑢0, 𝑣0) in the line-scanning laser, camera,
and pixel coordinate system, respectively. Converting from the line-scanning laser coordinate system to the
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Figure 4. Camera imaging schematic.

camera coordinate system, the mathematical expression is:
𝑋𝐶
𝑌𝐶
𝑍𝐶
1


=

[
𝑅 𝑇

0 1

] 
𝑋𝐷
𝑌𝐷
𝑍𝐷
1


(2)

where 𝑅 is the rotation matrix and 𝑇 is the translation matrix.

Converting from the camera coordinate system to the pixel coordinate system, the mathematical expression
is:

𝑍𝐶


𝑢

𝜈
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𝑌𝐶
𝑍𝐶

 (3)

where 𝑓 is focal length.

Associating expression (2) and expression (3), we obtain the conversion of the line-scanning laser coordinate
system to the pixel coordinate system, and the mathematical expression is:

𝑍𝐶


𝑢

𝑣

1

 = 𝑁1

[
𝑅 𝑇

0 1

] 
𝑋𝐷
𝑌𝐷
𝑍𝐷
1


= 𝑁1𝑁2


𝑋𝐷
𝑌𝐷
𝑍𝐷
1


(4)

Where

𝑁1 =


𝑓𝑥 0 𝑢0 0
0 𝑓𝑦 𝜈0 0
0 0 1 0

 (5)

𝑁2 =

[
𝑅 𝑇

0 1

]
(6)

where 𝑁1 is the internal reference matrix of the camera, and 𝑁2 is the external reference matrix from the
coordinate system of the line-scanning laser to the coordinate system of the camera.

http://dx.doi.org/10.20517/ir.2024.25


Page 429 Ren et al. Intell Robot 2024;4(4):422-38 I http://dx.doi.org/10.20517/ir.2024.25

Figure 5. 2D image “DOT” region detection and recognition result.

Based on the mathematical expression (4), the two parameter matrices 𝑁1 and 𝑁2 are solved to achieve the
fusion of the 3D point cloud and pixel points acquired by the line-scanning laser. Among them, 𝑁1 is obtained
by using Zhang Zhengyou calibration method [24] through the MATLAB camera calibration toolbox. 𝑁2 is
obtained by extracting the 3D and 2D coordinates corresponding to the corner points of the planar calibration
plate, and then solvePNP [25] iterative method in the software OpenCV3.4, which can be solved, and finally the
projections of the point cloud on the image can be realized.

After grayscaling the 2D image information on the surface of automotive tires captured by the camera, the
“DOT” character is identified by template matching, as shown in Figure 5. The minimum outer rectangular of
the identified “DOT” character is set as the “DOT” area, and its area 𝑆1 can be calculated as:

𝑆1 =
√
(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 ·

√
(𝑥3 − 𝑥2)2 + (𝑦3 − 𝑦2)2 (7)

where (𝑥1, 𝑥2), (𝑥2, 𝑦2), (𝑥3, 𝑦3), and (𝑥4, 𝑦4) are the coordinates corresponding to the four corners of the
minimum outer rectangle. The same processing method as the 2D image, after grayscaling the 3D point cloud
image information of the surface of automotive tires acquired by the line-scanning laser, the “DOT” character
is recognized by template matching, as shown in Figure 6. The minimum outer rectangular of the identified
“DOT” character is set as the “DOT” area. This region is projected onto the image to obtain a new region 𝑆2,
and the area of the overlapping region of 𝑆1 and 𝑆2 is 𝑆3.

2.5. Multi-information fusion method
In order to give full play to the advantages of the robot’s sensors, break the limitations of a single sensor,
and improve the accuracy of detection and identification in different production environments, a method for
detecting and identifying the surface of automotive tires is proposed, which fuses 3D point clouds and 2D
images collected by the line-scan laser and the camera, respectively. In the method, first, the overlap area 𝑆3 is
calculated, and then the ratio of 𝑆3 to 𝑆1 is calculated and is denoted as 𝐾 . In the paper, the judgment threshold
of 𝐾 is set to 0.98. When 𝐾 is greater than or equals 0.98, the “with” information fusion is used; i.e., the 3D
point cloud coordinates corresponding to the geometrical center of the overlapped part are used as the spatial
position coordinates of the laser marker. When 𝐾 is less than 0.98, the “or” information fusion is used; i.e.,
the spatial coordinates corresponding to the geometric center of the smallest outer rectangular region of the
“DOT” character in the 3D point cloud image are used as the spatial coordinates of the laser marker.

To evaluate the performance and advantages of the proposed method in this paper, we compare it with the

http://dx.doi.org/10.20517/ir.2024.25


Ren et al. Intell Robot 2024;4(4):422-38 I http://dx.doi.org/10.20517/ir.2024.25 Page 430

Figure 6. 3D point cloud image “DOT” region detection and identification result.

Table 2. Experimental results of multi-information fusion methods

Methods Detection objects Number of detections Accurate amount Accuracy rate (%)

Bayes estimation method The automotive tire surface characters 200 167 83.5
Artificial neural network method The automotive tire surface characters 200 174 87
Method of this paper The automotive tire surface characters 200 193 96.5

popular multi-information fusion methods, i.e., Bayes estimation and artificial neural network methods.

Bayes estimation method is a statistical inference method based on Bayes theorem. It uses prior information
and sample data to update the knowledge of unknown parameters to obtain the posterior distribution. In this
paper, the prior distribution is assumed to be normal and the posterior distribution is calculated based on
the observed data. The specific calculation steps include: first, calculating the kernel of the posterior distribu-
tion based on the likelihood function of the prior distribution and the observed data; then, normalizing the
posterior distribution to obtain the parameters of the posterior distribution; and finally, using the posterior
distribution for parameter estimation and prediction.

Artificial neural network is a ML algorithm that simulates the neuronal structure of the human brain. It
achieves prediction and classification of unknown data by learning the mapping relationship between input
and output. In this paper, a multilayer feed-forward neural network is used which includes input, hidden and
output layers. The input layer receives data from different sensors, the hidden layer extracts features through
nonlinear transformation, and the output layer outputs the prediction results. The back-propagation algorithm
is used for network training, and the prediction error is minimized by adjusting the network parameters. In
terms of parameter settings, the appropriate number of neurons, learning rate and number of iterations are
selected experimentally.

Experimentswere conducted using Bayes estimationmethod, artificial neural networkmethod and themethod
in this paper, respectively, and the corresponding experimental results were obtained, as shown in Table 2.

According to Table 2, it can be seen that the Bayes estimation method shows good accuracy in the detection
and recognition experiments of 200 automotive tire surface characters, but compared with the artificial neural
network method and the method proposed in this paper, its detection accuracy is the lowest, which indicates
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Table 3. System hardware components

Designation Introduction/parameters/functions

Controller Control of the entire laser marking robot with embedded visual inspection system for automotive tires
Laser marker Marking content: vulcanization code, cycle sign, personalized logo, etc.
Robotic arm Robotic arm with the flexibility to change the desired position
Information acquisition equipment A line-scanning laser, a camera
Power supply A voltage frequency: 3-380 V / 50 Hz, total power: 4 kW, total current: 32 A
Conveyor belt Suitable for transferring large, medium and small automotive tires, speed: 0.5 m/s
Code reader Reading automotive tire information
Detection sensors Detecting the real-time position of automotive tires
Power distribution box Control of individual equipment power switches
Industrial control machine Software and hardware integrated controller

Figure 7. Laser marker, conveyor belt, robotic arm, camera, line-scanning laser.

that there are some limitations of the Bayes estimation method in dealing with the complex problem of detect-
ing and recognizing the characters on the surface of automotive tires. The detection accuracy of the artificial
neural network method is between the Bayes estimation method and the method in this paper, and it shows
strong ability in multi-information fusion, but there are overfitting and underfitting problems in the training
process. The method proposed in this paper has the highest detection accuracy, which is 13% and 9.5% higher
than the Bayes estimation method and the artificial neural network method, respectively. This indicates that
the method proposed in this paper shows better performance in terms of character detection and recognition
accuracy on the surface of automotive tires and is suitable for automotive tire surface character detection and
recognition scenarios that require higher accuracy and comprehensiveness of information fusion.

3. AUTOMOTIVE TIRE VISION LASER MARKING ROBOT SYSTEM CONSTRUCTION
3.1. System hardware compositions
Theautomotive tire vision lasermarking robot system comprises different hardwaremodules, mainly including
vision laser marking modules. As shown in Table 3, the visual laser marking robot system includes a robot
(controller, laser marker, robotic arm, and information acquisition equipment), power supply, conveyor belt,
code reader, detection sensor, power distribution box, and industrial control machine. It has high integration
and multiple functions. The automotive tire vision laser marking system is designed based on machine vision
and to meet the intelligent and automated manufacturing of automotive tires, which can support automated
conveying, intelligent marking and autonomous inspection of automotive tires. The visual laser marking robot
system is suitable for large, medium and small automotive tires in different production environments. The
physical diagram of the piggyback hardware system is shown in Figure 7.
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Figure 8. Physical diagram of the piggyback software system.

3.2. System software compositions
The system software consists of four core subsystems: automotive tire visual inspection subsystem, manufac-
turing execution subsystem, decision control subsystem, and work alarm subsystem. Subsystems interact and
communicate with each other to jointly serve the entire laser marking robot system. The physical diagram of
the piggyback software system is shown in Figure 8.

An automotive tire vision inspection subsystem is an embedded software system developed based on a multi-
information fusion robot vision model. As shown in Figure 9, the system communicates with the camera,
line-scanning laser, code reader and manufacturing execution subsystem as needed to acquire 2D image data,
3D point cloud data, automotive tire molding barcode information, and production information. It interfaces
with the programmable logic controller (PLC) in the decision control subsystem to invoke the functions of
the system in the form of commands. Additionally, it communicates with the robot to transmit the current
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Figure 9. Subsystem interaction diagram.

marking command.

A manufacturing execution subsystem is an intelligent management system for workshop production of au-
tomotive tires. In the process from the entry of automotive tires into the marking system to the completion
of marking, the manufacturing execution subsystem plays the role of real-time transmission of marking infor-
mation to optimize the marking of automotive tires. In the closed-loop process of automotive tire marking,
real-time accurate marking information enables efficient guidance and facilitates rapid response for reporting
the status of tire marking work. There are several advantages to using the Manufacturing execution subsys-
tem. First, it enables quick responses to changes in the marking status, reduces non-value-added production
activities, and improves the efficiency of marking and process. Second, accurate process status tracking and
complete data recording provide more information for standardized automotive tire marking management.
This facilitates timely monitoring of defective rates, simplifies quality control, and minimizes waste of human
resources and materials. Third, integrating various equipment and intelligent systems ensures a high degree
of automation of the workshop automotive tire marking operations. Finally, the system supports full-process
tracking ofmarked products, offering traceability of man-machine-material information throughout the entire
lifecycle of the finished product.

In the decision control subsystem, the German Siemens PLC is used, a digital arithmetic controller for auto-
mated control of automotive tire marking. This PLC consists of a microprocessor, instructions, data memory,
input/output interfaces, power supply, digital-to-analog conversion and other functional units. Its advantage
is that, in the marking of automotive tires, control instructions from the automotive tire visual inspection sub-
system can be loaded into the memory at any time, enabling real-time storage and transmission of operating
instructions to other equipment for execution.

A work alarm subsystem is used for real-timemonitoring and tracking of the closed loop of automatic marking
of automotive tires. When a fault occurs at work, it responds quickly. The relevant fault information and fault
parts are displayed on the monitor in real time, and the corresponding solution is given.

4. EXPERIMENTS AND ANALYSIS
According to the constructed multi-information fusion laser marking robot system to conduct laser marking
experiments on the surface of automotive tires. In order to ensure the accuracy and comparability of the exper-
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Table 4. Experimental results (low light)

Marking speed (s) Marking accuracy (%) Abandoned tire rate (%) Economic consumption (¥)

Manual 180 90 10 0.5
Single-information robot 21 92 8 0.028
Multi-information fusion robot 21 95 5 0.028

Table 5. Experimental results (normal light)

Marking speed (s) Marking accuracy (%) Abandoned tire rate (%) Economic consumption (¥)

Manual 180 90 10 0.5
Single-information robot 21 95 5 0.028
Multi-information fusion robot 21 98 2 0.028

Table 6. Experimental results (strong light)

Marking speed (s) Marking accuracy (%) Abandoned tire rate (%) Economic consumption (¥)

Manual 180 90 10 0.5
Single-information robot 21 92 8 0.028
Multi-information fusion robot 21 96 4 0.028

imental results, under the same marking experimental environment, the marking experiments are compared
with those of manual and single information robots with the same content, respectively. The marking experi-
ments were performed and recorded by varying light conditions, i.e., low light, normal light, and strong light,
respectively. The experimental results are shown in Tables 4-6. In these tables, marking speed refers to the
time required to complete the marking of a single tire. Economic consumption denotes the cost incurred in
marking one tire.

It is worth noting that during the experiments, the information for the single-information robot to detect and
identify the surface of the automotive tires comes from the line-scanning laser.

As can be seen in Table 5, under normal lighting conditions, the multi-information fusion robot achieved an
8% improvement in marking accuracy compared to manual marking, with a corresponding 8% reduction in
tire scrap. The accuracy of the multi-information fusion robot was improved by 3% and tire scrap was reduced
by 3% compared to the single-information robot. As can be seen in Table 4, in a low light environment, the
marking accuracy of the multi-information fusion robot increased by 5% compared to manual marking, with
a corresponding 5% reduction in tire scrap. The accuracy of the multi-information fusion robot was improved
by 3% and tire scrap was reduced by 3% compared to the single-information robot. As can be seen Table 6, in
a strong light environment, the multi-information fusion robot has a 6% improvement in marking accuracy
and a corresponding 6% reduction in tire scrap compared to manual marking. Compared with the single-
information robot, the accuracy of the multi-information fusion robot was improved by 4%, and the tire scrap
was reduced by 4%. In summary, this shows that the multi-information fusion robot is more accurate under
the same marking conditions and comparable tasks. Frommanual to single-information to multi-information
fusion, the effectiveness of the multi-information fusionmethod in improving marking accuracy and reducing
tire scrap is strongly demonstrated. It is worth noting that, according to the experimental results, different
lighting environments do not have an effect on manual marking.

In addition to accuracy, the multi-information fusion robot also excels in speed. Experimental results also
show that the multi-information fusion robot significantly outperforms manual marking by a factor of nearly
nine. Compared to the single-information robot, the marking speed of the multi-information fusion robot
was not affected despite the fact that it needed to process information from multiple sensors. This suggests
that multi-information fusion technology can not only improve marking accuracy, but also ensure high-speed
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marking efficiency. It is worth noting that, according to the experimental results, regardless of the marking
method, the marking speed is not affected under different lighting conditions.

From an economic point of view, the use of a multi-information fusion robot for tire marking offers significant
cost advantages. The cost of marking with a multi-information fusion robot is reduced by a factor of almost
56 compared to manual methods. This cost reduction is mainly attributable to the fact that electrical energy
consumption replaces the use of traditional tools and materials. In addition, electricity expenditure is lower
compared to the cost of tools and materials for traditional manual marking, further emphasizing the cost-
saving and resource-efficient nature of robotic laser marking.

In summary, the use of robots for automotive tiremarking offers significant advantages over traditional manual
methods in terms of speed, success rate, tire waste and economic outlay. In addition, the multi-information
fusion robot integrates 3D point cloud and 2D image information of automotive tires compared to a single-
information robot, which further highlights its advantages in improving the success rate and reducing tire
waste. Further, the multi-information fusion method is less affected by environmental factors, such as lighting
conditions. These aspects strongly demonstrate the superiority of our proposed multi-information fusion
method in automotive tire marking.

5. CONCLUSIONS
In order to improve the detection and identification and positioning accuracy of automotive tire surfaces,
reduce the marking waste rate, and improve the marking efficiency, a robot vision modeling method based
on the fusion of 3D point cloud information and 2D image information on the surface of automotive tires is
proposed, and an automotive tire vision laser marking robot system is constructed using this method. First,
3D point cloud information and 2D image information on the surface of automotive tires are collected using
multiple information sensors and processed. Then, based on the processed 3D point cloud information and
2D image information on the surface of automotive tires, a “with” and “or” multi-information fusion method
is proposed. Further, based on the multi-information fusion method, a visual laser marking robot system for
automotive tires is constructed.

Laser marking experiments on the surface of automotive tires are conducted based on the constructed automo-
tive tire visual laser marking robot system. During the experimental process, statistics are made for the speed,
accuracy, discard rate and economic consumption of marking, and comparative experiments are conducted
with manual and single-information robots, respectively, under the same marking experimental environment.
The results show that the use of robots for automotive tire marking has significant advantages over traditional
manual methods in terms of speed, success rate, tire waste and economic expenditure. Moreover, the multi-
information fusion robot integrates 3D point cloud and 2D image information of automotive tires compared
to a single-information robot, which further improves the above advantages and proves the superiority of the
multi-information fusion method for automotive tire marking.

In this paper, a robot vision modeling method based on the fusion of 3D point cloud information and 2D
image information on the surface of automotive tires is investigated, and a visual laser marking robot system
for automotive tires is constructed according to this method, and the effectiveness of the system is verified.
However, the rapidly developing and applied deep learning technology can automatically extract features and
optimize the model by learning a large amount of data, and applying it to the model construction of the au-
tomotive tire visual laser marking robot system to improve the accuracy and efficiency of the modeling of
automotive tires is a matter of further research.

First, a suitable deep learning model is selected or customized according to the task characteristics, such as
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image type and feature complexity. Second, a large amount of high-quality image and point cloud data covering
a variety of scenes and labels are acquired by 2D cameras and line-scan lasers, and preprocessing operations
such as image and point cloud data enhancement, normalization, denoising, etc., are performed to improve the
data quality and reduce the difficulty of model training. Third, the preprocessed data is used to train the deep
learning model, and the hyperparameters are adjusted to optimize the performance. Notably, this process may
include migration learning. Fourth, using the trained model to extract key features from the image provides
an accurate basis for marking. Fifth, based on the extracted features, algorithms are designed to optimize
the marking path, reduce redundant operations, and improve marking accuracy and efficiency. Sixth, the
deep learning module is seamlessly integrated into the existing robot system to ensure functional integrity and
compatibility. Finally, multiple rounds of testing are conducted to verify the integration effect of deep learning
technology, including marking accuracy, efficiency and system stability.

With the continuous progress of science and technology and the rapid development of various fields, our
proposed method shows a wide range of practical value and potential application prospects. In this paper, on
the basis of the original, we add the analysis of the potential application of the method in aerospace, energy
and other fields, as well as the exploration of the possible commercial application prospects, in order to fully
demonstrate its strong practical value.

In the aerospace field, high-precision and high-stability information acquisition technology is crucial. The
method proposed in this study realizes accurate measurement and marking of complex surfaces and work-
pieces through the combination of a 2D camera and a line-scanning laser, providing strong support for the
manufacturing and inspection of aerospace equipment. In the manufacturing process of aerospace equipment,
the method can be applied to the dimensional measurement and quality control of precision parts to ensure
the manufacturing accuracy and reliability of the equipment. By generating high-quality point cloud data,
the method can realize fault detection and maintenance of aerospace equipment, improving the operational
efficiency and safety of the equipment.

In the field of energy, especially in the research and development and production of new energy equipment, the
method can be used in the structural design and performance evaluation of new energy equipment, providing
data support for the optimization and improvement of the equipment. Through real-time monitoring of the
operating status of new energy equipment, the method can detect and deal with potential faults in a timely
manner, ensuring stable operation and efficient power generation.

In addition, the method has a wide range of commercial applications. In the field of intelligent manufacturing,
the method can be used for quality inspection and precision control of automated production lines to improve
production efficiency and product quality. By accurately measuring and recording the 3D information of
cultural relics, the method can provide scientific basis and technical support for cultural relics protection and
restoration. In the field of medical imaging, the method can be used to assist doctors in disease diagnosis and
treatment planning, improving the accuracy and efficiency of medical services.

In the future, we will continue to conduct in-depth research on the relevant technologies and applications of
this method, and promote its wide application and in-depth development in more fields.
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