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Abstract
Liver cancer is the sixth commonest cancer and the third leading cause of cancer mortality worldwide. 
Accumulating evidence suggests a pivotal role of the gut microbiome in the progression of chronic liver disease and 
the subsequent development of liver cancer. Additionally, gut microbiome has been shown to contribute to the 
hosts’ antitumor responses following immunotherapy and chemotherapy for liver cancers, highlighting the 
therapeutic potential of gut microbiome modulation in enhancing treatment efficacy and reducing drug resistance. 
Fecal microbiota transplantation (FMT), a novel therapeutic modality to deliver a healthy donor's stool by 
endoscopy or capsule, has demonstrated potential in managing liver diseases and cancers by restoring and 
modulating the recipient’s gut microbiome composition. However, existing data on the clinical application of FMT 
in liver cancers are still limited. This review summarizes the underlying roles and mechanisms of gut microbiome in 
liver cancer and discusses the therapeutic potential of FMT in liver cancer treatment and the management of its 
related complications (e.g., hepatic encephalopathy).
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INTRODUCTION
Primary liver cancer is the sixth commonest cancer and the third leading cause of cancer mortality 
worldwide in 2020, with approximately 906,000 new cases and 830,000 deaths respectively[1]. Primary liver 
cancer includes 75%-85% of hepatocellular carcinoma (HCC), 10%-15% of intrahepatic 
cholangiocarcinoma(CCA), and some other rarer histological subtypes[1]. Hepatitis B, hepatitis C, heavy 
alcohol consumption, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and smoking are major 
risk factors for HCC[2]. Although the molecular pathways leading to carcinogenesis in HCC are complex, 
recent evidence suggests that the gut microbiome plays a significant role in the progression of chronic liver 
disease and the subsequent development of HCC[3,4]. In addition, emerging evidence indicates that the gut 
microbiome may play a role in the host responding to antitumor treatment during immunotherapy and 
chemotherapy. This highlights the therapeutic potential of gut microbiome modulation in enhancing 
treatment efficacy and reducing drug resistance for liver cancer[3,4].

FMT is a novel treatment modality to modulate and restore the recipient’s gut microbiome composition by 
transplanting the functional gut microbiota from healthy donors to patients[5]. FMT solution can be 
delivered into the recipient’s gastrointestinal tract through various routes such as oral capsules, 
esophagogastroduodenoscopy, nasojejunal tube, rectal enema, and colonoscopy[6,7]. FMT has shown high 
efficacy in patients with recurrent and refractory Clostridioides difficile infection (CDI), which has now been 
recommended as a viable treatment option according to the United States, British, and European 
guidelines[8-11]. FMT has also demonstrated therapeutic potential in liver diseases, including alcoholic 
hepatitis[12], NAFLD[13], hepatitis B[14], and liver cirrhosis[15,16].

This review aims to summarize the current literature by exploring the mechanism of the gut microbiome in 
liver cancer and related complications and to discuss the recent advances in the role of FMT in antitumor 
therapies and responses.

DYSBIOSIS IN LIVER CANCERS
HCC is usually the sequelae of chronic liver disease (CLD). The majority of HCCs (80%-90%) are found in 
patients with advanced fibrosis or cirrhosis[17,18]. The development of HCC in patients with viral hepatitis is 
associated with persistent liver inflammation, but the precise mechanism in NAFLD cases remains 
unclear[19]. There is increasing evidence from both animal and human studies that suggests a connection 
between gut microbiota and the development of HCC. Changes in gut microbiome composition and 
microbiome-derived metabolites are thought to be responsible for promoting the progression of CLD and 
HCC occurrence[19,20].

It is widely acknowledged that dysbiosis occurs in HCC[21]. The α-diversity, which refers to the number of 
species present in each stool sample, has been found to be notably reduced in patients with HCC[22-24]. In 
addition, tissue samples from HCC also showed reduced α-diversity compared to patients with benign liver 
disease (e.g., hemangioma)[25]. At the phylum level, compared with the fecal microbiota of healthy 
individuals, the abundance of Firmicutes species was decreased. In contrast, that of Proteobacteria species 
was increased in both CLD and HCC patients[26]. In addition, the intrahepatic analysis indicated that HCC 
patients had a higher abundance of specific microbes in the Stenotrophomonas genus and the Proteobacteria 
phylum. This specific bacterium was very rare among the normal control group[25]. The dysbiosis in HCC 
also displayed a significant decrease in the relative abundance of short-chain fatty acids (SCFAs)-producing 
bacteria, such as Ruminococcaceae, Butyricicoccus, and Lachnospiraceae[27,28].
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The etiologies of HCC can be divided into viral-related and non-viral-related, with different degrees of 
dysbiosis. Liu et al. compared the microbiota profile of HBV-related HCC (HBV-HCC) and non-HBV non-
HCV related HCC (NBNC-HCC) and found that the HBV-HCC patients had a much higher level of species 
richness in fecal microbiota than NBNC-HCC patients[29]. An increase in the levels of proinflammatory 
bacteria (Escherichia-Shigella, Enterococcus) and a decrease in the levels of anti-inflammatory bacteria 
(Faecalibacterium, Ruminococcus, Ruminoclostridium) were observed in NBNC-HCC patients[29]. However, 
the bacterial composition of HBV-HCC patients was completely different from that of NBNC-HCC 
patients, with an increment in the levels of Prevotella, Alloprevotella, Faecalibacterium, Ruminiclostridium 
which were associated with anti-inflammatory potential[29]. The exact reason and clinical significance remain 
unknown.

Microbial dysbiosis has also been reported in different samples of patients with CCA[23,30-33]. An increased 
abundance of Prevotella species was identified in the oral, gut, and bile samples in patients with CCA[23]. In 
addition, the abundance of Actinomyces has been found to increase in the gut and bile[30] but decreased in 
oral samples in patients with CCA[32]. Actinomyces is associated with the disruption of mucosal 
membranes[34]. Zhang et al. found that the impaired gut barrier function could make gut-derived bacteria 
and lipopolysaccharide into hepatocytes, increasing polymorphonuclear myeloid-derived suppressor cells 
(PMN-MDSCs) to create an immunosuppressive environment, which will promote liver carcinogenesis[35]. 
The increased Actinomyces in the gut might be associated with the impaired gut barrier function, leading to 
the increase of Actinomyces in bile and the association with CCA. Therefore, it is now believed that 
dysbiosis has a pivotal role in the pathogenesis of both HCC and CCA.

GUT MICROBIOME-RELATED PATHOGENESIS OF LIVER CANCERS AND 
COMPLICATIONS
The hepatic portal circulation is a process that transports nutrients from the intestines to the liver. During 
this process, the liver is exposed to metabolites and products derived from gut microbiota. This crosstalk 
between the gut and liver is termed as “gut-liver-axis”[3]. As alcoholic liver disease (ALD), NAFLD, liver 
cirrhosis, and associated complications are closely linked to increased bacterial translocation and 
dysbiosis[36,37], it is thought to be one of the key drivers that lead to hepatic microenvironment inflammation 
and progression toward cirrhosis and HCC[3,4].

Experiments in animal models have provided pre-clinical evidence that both microbiota-derived 
metabolites and their activated pathways may play a role in the development of HCC. Fox et al. investigated 
the role of a specific bacteria, Helicobacter hepaticus, in promoting tumorigenesis by chemicals or viruses in 
a transgenic mice model[38]. Their results showed that colonization with H. hepaticus in the gut could 
promote aflatoxin- and HCV transgene-induced HCC without hepatic bacterial translocation or induction 
of hepatitis[38]. In addition, the study from Dapito et al. using an HCC mice model induced by 
diethylnitrosamine (DEN) and hepatotoxin carbon tetrachloride (CCl4) further demonstrated that gut 
microbiota and Toll-like receptor 4 (TLR4) activation were essential in the hepatocarcinogenesis in 
chronically injured livers[39]. It was demonstrated by Zhang et al. that long-term DEN treatment led to a 
notable reduction in the level of Lactobacillus, Bifidobacterium, and Enterococcus species and inflammation 
in the gut[20]. The presence of penicillin or dextran sulfate sodium (DSS)-induced intestinal dysbiosis or 
inflammation significantly increases the risk of tumor formation[20]. Supplementation with probiotics 
significantly alleviated gut dysbiosis, improved intestinal inflammation, and suppressed liver tumor growth 
and multiplicity[20]. Another experiment conducted by Yoshimoto et al. investigated obesity-related HCC by 
using a 7,12-dimethylbenz[a]anthracene (DMBA)-high-fat diet (HFD)-induced HCC mice model[40]. They 
found that obesity could lead to a rise in deoxycholic acid (DCA) levels. Elevated levels of DCA may trigger 
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the senescence-associated secretory phenotype (SASP) in hepatic stellate cells, in turn causing the release of 
inflammatory and tumor-promoting molecules in the liver, promoting the progression of HCC in mice[40]. 
Similarly, Zhang et al. used a high-fat/high-cholesterol (HFHC) diet-induced NAFLD-HCC model[41]. They 
were able to demonstrate that cholesterol-induced NAFLD-HCC formation was associated with gut 
microbiome dysbiosis. They also used germ-free mice receiving FMT products from donor mice fed with 
HFHC, which led to hepatic lipid accumulation, inflammation, and cell proliferation[41].

Epidemiological data showed that the incidence rates of HCC in males were two or three times higher than 
that in females[42], and it is well-acknowledged that sex hormones play a significant role in the gender 
disparity of HCC[43,44]. It is commonly considered that estrogens are protective, while androgens promote 
hepatocellular carcinogenesis[45]. Sex-specific enterotypes may influence the metabolism of hormones, 
subsequently affecting the development of HCC[46,47]. In addition, gut microbiota might be another source of 
sex hormones, as Clostridium scindens has been reported to convert glucocorticoids into androgens[48]. 
Mouse experiments showed that the bacteria involved in bile acid metabolism (e.g., Clostridiales, 
Corynebacterium, Bacillus, Desulfovibrio, Rhodococcus) were different between males and females, and the 
differences became more significant after induction of HCC model (streptozotocin-high fat diet)[49]. This 
study revealed that gut microbiota was involved in the sex-dependent effects on bile acid metabolism, which 
plays a pivotal role in the development of non-alcoholic steatohepatitis (NASH) and NASH-associated 
HCC[50,51]. On the other hand, Huang et al. studied the change of gut microbiota in male and female HCC 
mice models (i.e., liver-specific Tsc1 knockout mice)[52]. They found that the female mice had dysbiosis 
earlier than male mice in the process of developing HCC[52]. Specific bacteria associated with the risk of 
HCC in males (e.g., Paraprevotella, Paraprevotellaceae) and females (e.g., Allobaculum, Erysipelotrichaceae) 
were observed[52]. These studies based on animal models revealed the sex-dependent involvement of gut 
microbiota in the pathogenesis of HCC. More well-designed studies involving human or human-to-mice 
models to investigate the role of gut microbiota in the sexual dimorphism of HCC are needed.

The majority of HCC patients suffer from concurrent liver cirrhosis, which is not only the risk factor for 
liver cancers but also related complications (e.g., hepatic encephalopathy, HE)[53,54]. Concurrent HE can 
interfere with the antitumor therapy and thus negatively affect the prognosis of liver cancer. Multiple 
studies have demonstrated that the beneficial SCFAs-producing bacteria (i.e., Lachnospiraceae and 
Ruminococcaceae) were decreased, and the potentially pathogenic (i.e., Enterobacteriaceae) were increased 
in patients with HE[36,55-57]. This microbial profile has also been associated with cognitive impairment and the 
presence of systemic inflammation[57,58]. These emerging data support that the brain and the "gut-liver axis" 
are closely intertwined, and possibly these clinical manifestations are reflective of the "gut-liver-brain 
axis”[59]. The increasing understanding of the influence of gut microbiota on the development of liver 
cancers provides valuable insight into the use of microbiome modulation as a potential therapy for 
managing liver cancer and its associated complications.

THERAPEUTIC POTENTIAL OF MICROBIOME MODULATION IN ONCOLOGICAL 
TREATMENT FOR LIVER CANCER
Treatment options for liver cancer include surgical resection, chemotherapy, radiotherapy, radiofrequency 
ablation, hepatic artery chemoembolization, immunotherapy, and liver transplantation. In the case of 
advanced cancers, systemic therapy and multikinase inhibitors such as sorafenib and lenvatinib are the 
mainstay of treatment[60,61]. However, fewer than one-third of patients can benefit from these treatments as 
drug resistance and treatment-related adverse events are major roadblocks[62]. On the other hand, since 
2017, the US Federal Drug Administration has approved immune checkpoint inhibitors (ICIs) as a second-
line treatment for advanced HCC with sorafenib resistance. The combination of atezolizumab and 
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bevacizumab has proven superior to sorafenib[63]. An infusion regimen termed STRIDE (Single 
Tremelimumab Regular Interval Durvalumab) significantly improved overall survival versus sorafenib (36 
months overall survival rate 30.7% vs. 20.2%)[64]. However, the overall success rate of ICI monotherapy or 
combination therapy has been reported to be only around 36%[65,66]. In addition, some patients develop drug 
resistance after treatment. Therefore, it would be beneficial if there is an adjunctive therapy to enhance the 
treatment efficacy and reduce the risk of drug resistance for chemotherapy and immunotherapy.

Chemotherapy and targeted agents
The gut microbiota modulates the host response to chemotherapeutic drugs in two major domains: drug 
efficacy and toxicity [Table 1][67]. Jin et al. found that gut microbiota can enhance the chemosensitivity of 
HCC to 5-fluorouracil in vivo by increasing curcumin bioavailability[68]. On the other hand, gut microbiota 
alteration may also affect drug toxicity and treatment-related adverse events (AEs). Inukai et al. compared 
the gut microbiota in patients who developed diarrhea and those who did not after receiving Lenvatinib 
treatment for HCC[69]. The group with diarrhea showed a higher relative abundance of Parabacteroides and 
Prevotella[69]. Similarly, Yamamoto et al. also found an increased relative abundance of Butyricimonas, a 
butyric acid-producing bacteria, in the asymptomatic group than in the group with diarrhea[70]. Butyrate has 
a vital role in suppressing inflammatory and allergic responses[70]. Based on the above preliminary findings, 
chemotherapy combined with adjunctive microbiota modulation may be a promising therapeutic approach.

Immunotherapy
Immunotherapy is a promising oncological treatment by modulating the interaction between the host's 
immune system and cancer cells. Emerging evidence demonstrates the close crosstalk between the gut 
microbiota and patients’ response to ICIs [Table 1]. For example, the role of gut microbiota in modulating 
treatment response among patients on ICI targeting programmed cell death protein 1 (anti-PD-1) has 
garnered increasing attention in recent years[71,72]. Zheng et al. collected stool samples in HCC patients who 
received immunotherapy and revealed that responders had higher taxa richness and more gene counts than 
non-responders[73]. Responders were enriched with some beneficial species, such as Akkermansia 
muciniphila and Ruminococcaceae spp[73]. Similarly, Chung et al. proposed that a skewed Firmicutes/
Bacteroidetes ratio and a low Prevotella/Bacteroides ratio could be predictive markers of non-responders 
among HCC patients receiving ICIs[74]. In contrast, the presence of Akkermansia species predicted a good 
response[74]. Wu et al. also found that responders had a higher level of α-diversity at baseline than non-
responders[75]. They also profiled the serum metabolites and found that responders were enriched with 
Ruminococcus which was positively correlated with serum galactaric acid[75]. Furthermore, Routy et al. 
performed FMT on germ-free or antibiotic-treated mice using fecal samples from epithelial cancer patients 
who responded to ICIs and found that it could show the antitumor effects of PD-1 blockade, while FMT 
from non-responders could not restitute the same effect[76]. In a subgroup of patients with primary PD-1-
refractory melanoma, FMT using a donor from the anti-PD1 responder could overcome drug resistance and 
re-capture anti-PD1 treatment response among 40% (6/15) of them by re-programming the gut microbiome 
and tumor microenvironment[77]. Metagenomics analysis revealed correlations between the relative 
abundance of A. muciniphila and clinical responses to ICIs[76]. Oral administration of A. muciniphila after 
FMT in non-responders has been shown to restore the efficacy of PD-1 blockade[76]. In addition, 
microbiota-derived metabolites also showed an association with clinical outcomes in patients with HCC 
receiving ICIs[78]. Responders had a significantly higher level of secondary bile acids[78]. If these findings can 
be replicated, modulating gut microbiota before immunotherapy by FMT from selected donors enriched in 
certain favorable species may potentially increase the clinical response rate of immunotherapy for liver 
cancer. In addition, subgroup analyses of survival outcomes according to clinical trials which evaluated the 
efficacy of ICIs revealed a discrepancy between viral HCC and non-viral HCC[79-82], implying a potential 
influence of tumor etiologies on treatment response[83]. Considering the variation in dysbiosis[29], more 
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Table 1. Gut microbiome alteration in antitumor therapies for liver cancer

Reference Models Therapies Diseases Implicated microbiota Sequencing 
method

Inukai et al.
[69]

Human Chemotherapy HCC (diarrhea and 
non-diarrhea)

↑ Parabacteroides and Prevotella in the diarrhea group 16S rRNA gene 
sequencing

Yamamoto et 
al.[70]

Human Chemotherapy HCC (diarrhea and 
non-diarrhea)

↑ Butyricimonas, ↓ Citrobacter, Peptostreptococcus, and Staphylococcaceae in non-diarrhea group 16S rRNA gene 
sequencing

Jin et al.[68] Mice Chemotherapy (curcumin 
combined with 5-fluorouracil)

HCC ↑ Richness (Chao 1 index); curcumin treatment significantly ↑ Bifidobacterium and Lactobacillus in gut 16S rDNA 
sequencing

Wu et al.[75] Human Immunotherapy (anti-PD-1) HCC (R and NR) ↑ α-diversity (Shannon and inverse Simpson indexes) in R; ↑ Faecalibacterium, Blautia, 
Lachnospiracea incertae Sedis, Megamonas, Ruminococcus, Coprococcus, Dorea and Haemophilus in R; ↑ Atopobium, 
Leptotrichia, Campylobacter, Allisonella, Methanobrevibacter, Parabacteroides, Bifidobacterium, and Lactobacillus in NR

16S rRNA gene 
sequencing

Lee et al.[78] Human Immunotherapy (ICIs) HCC (R and NR) ↑ Prevotella 9 in NR, ↑ Lachnoclostridium, Lachnospiraceae, and Veillonella in R; ↑Lachnoclostridium and ↓ Prevotella 9 
were associated with better overall survival

16S rRNA gene 
sequencing

Chung et al.
[74]

Human Immunotherapy (nivolumab) HCC (R and NR) NR: a skewed Firmicutes/Bacteroidetes ratio and a ↓ Prevotella/Bacteroides ratio; presence of Akkermansia species 
was associated with good response

16S rRNA gene 
sequencing

Shen et al.[108] Human Immunotherapy (ICIs) HCC (R and NR) ↑Bifidobacterium, Coprococcus, and Acidaminococcus- in patients with disease control 16S rRNA gene 
sequencing

Zheng et al.
[73]

Human Immunotherapy (anti-PD-1 
antibodies)

HCC ↑ Four Lactobacillus species (L. oris, L. mucosae, L. gasseri, and L. vaginalis), Bifidobacterium dentium and 
Streptococcus thermophilus in R

Metagenomic 
sequencing

Mao et al.[109] Human Immunotherapy (anti-PD-1) HCC or advanced 
biliary tract 
cancers

↑ Ruminococcus calidus and Erysipelotichaceae bacterium-GAM147 in response. ↑ Veillonellaceae in NR Metagenomic 
sequencing

Li et al.[84] Human 
and mice

Radiotherapy HCC (R and NR) ↓ Diversity in NR; the distribution of the R group samples was closer to healthy control group samples; At the 
genus level, ↑ Faecalibacterium was observed in the healthy control and R group; ↑ order Clostridiales, family 
Ruminococcaceae, and genus Faecalibacterium in the R group; ↑ order Lactobacillales in the NR group

16S rRNA 
sequencing

Bian et al.[86] Rabbit Transarterial 
chemoembolization

HCC ↑Ruminococcus and Roseburia; ↓ Bacteroides; Parabacteroides and Escherichia after surgery qPCR

HCC: hepatocellular cancer; PHLF: post-hepatectomy liver failure; R: responder; NR: non-responder; ICIs: immune checkpoint inhibitors; qPCR: quantitative polymerase chain reaction.

studies are needed to support the gut microbiome modulation before immunotherapy based on the etiologies of HCC.

Locoregional therapies
The role of gut microbiota in other locoregional treatments for liver cancer has also attracted considerable interest recently [Table 1]. Li et al. analyzed the fecal 
microbiota from HCC patients who received radiotherapy and found that the distribution of microbiota from responders was closer to that found in healthy 
controls[84]. Responders were enriched with specific bacteria at the genus level, such as Faecalibacteriu, while non-responders had a high abundance of 
members of the genus Streptococcus[84]. Further animal experiments demonstrated that gut dysbiosis induced by antibiotics significantly impaired 



Page 7 of Dai et al. Hepatoma Res 2023;9:39 https://dx.doi.org/10.20517/2394-5079.2023.33 13

radiotherapy-induced T-cell infiltration and that FMT could restore the antitumor effects of radiotherapy[84].

Another treatment option for intermediate and advanced liver cancer is transarterial chemoembolization 
(TACE), using localized high concentrations of chemotherapy agents and embolizing feeding vessels by oil 
iodide emulsion[85]. Bian et al. conducted TACE in rabbit HCC models and found that the procedure 
partially reversed the tumor-induced dysbiosis, improving the intestinal barrier and liver functions and 
decreasing the lipopolysaccharide (LPS) level in the blood[86]. Some key operational taxonomic units (OTUs) 
were closely associated with clinical factors, which provides a theoretical basis for the therapy combination 
of TACE with microbiota-targeted intervention in the future[86].

FMT IN LIVER CANCERS AND RELATED COMPLICATIONS
Endoscopic procedures of FMT
FMT can be delivered into patients’  gastrointestinal tract via several routes,  such as 
esophagogastroduodenoscopy (EGD), colonoscopy, feeding tubes, or rectal enemas[87]. Fresh or frozen fecal 
suspensions can be delivered into the duodenum or colon through the working channel of the flexible 
endoscope. Caution needs to be exercised when FMT is given by EGD in patients with a history of stomach 
or duodenal surgery to avoid adverse events such as aspiration[88]. FMT through colonoscopy allows for the 
concomitant diagnosis of colonic diseases and may be a preferable route in some situations[89,90].

Current evidence of FMT in liver cancers and related complications
To date, published data on FMT in liver cancer treatment is unavailable. Yet, it is worth noting that there is 
a recently registered clinical trial to investigate the effect of FMT in overcoming drug resistance to 
atezolizumab/bevacizumab among patients with liver cancers, which has been registered in 
ClinicalTrials.gov (NCT05690048) [Table 2]. Apart from atezolizumab and bevacizumab, the intervention 
group will receive three days of oral vancomycin followed by two rounds of FMT capsules, compared with 
placebo capsules in the control group. We eagerly await the results of this trial.

On the other hand, more published data are available to demonstrate the efficacy and safety of FMT in liver 
cancer-related complications [Table 2]. FMT is now a potential therapeutic option for HE. Bajaj et al. 
conducted a randomized controlled trial (RCT) investigating the safety and efficacy of FMT from donors 
with high levels of Lachnospiraceae and Ruminococcaceae[15]. The results showed that patients receiving a 
single FMT enema developed less severe adverse events (SAE) (20% vs. 80%) and less recurrent HE (0% vs. 
50%) compared with the control group (who were given the standard of care)[15]. Two SAEs (i.e., 
hospitalization) in the FMT group were considered unrelated to the FMT by the independent Data Safety 
Monitoring Board[15]. Furthermore, FMT group showed improved cognition, but the control group did 
not[15]. Microbiome analysis indicated that, after FMT, a significant increase was found in the relative 
abundance of Lachnospiraceaeae and Ruminococcaceaen[15]. Based on these findings, Bajaj et al. conducted 
another RCT treating patients with HE by FMT capsules from a single donor who had enriched 
Lachnospiraceaeae and Ruminococcaceae, demonstrating that oral FMT capsules were safe and well-
tolerated even in patients with cirrhosis and recurrent HE[16]. This trial also confirmed the efficacy of FMT 
in improving duodenal mucosal diversity, dysbiosis, and resolution of HE. Similarly, a recent study 
investigated the efficacy and safety of FMT capsules from different donors in HE[91]. They found that the 
levels of Bifidobacterium and other known beneficial bacteria at baseline and throughout the study were 
higher in responders[91]. Moreover, the fecal SCFAs levels from donors were the lowest among recipients 
with worse cognitive outcomes[91]. These data suggested that the efficacy of FMT can be affected by recipient 
and donor effects. More data exploring the crosstalk between the microbiome of donor and recipient are 
needed before more definitive conclusions can be drawn.
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Table 2. Application of FMT in liver cancer and related complications

Reference Model /study 
type Disease FMT details Clinical outcome Implicated microbiota

Clinicaltrial.gov: 
NCT05690048 

Human/phase II, 
single blind, RCT, 

Liver cancer 
(unresectable HCC, 
BCLC stage C)

FMT via capsule (50 g of fecal matter) 
on day 0 and day 21

The primary outcomes are differential tumoral CD8 T-cell 
infiltration and adverse event documentation of FMT

NA

Clinicaltrial.gov: 
NCT05170971

Human/open 
label

Liver failure Four times of FMT every 5 days, 
follow-up for 2 months

The primary outcomes are the change in liver function, 
coagulation function, MELD score, clinical manifestations, safety 
and adverse events and change of proinflammatory cytokine

The change in gut microbiota will be 
checked

Bloom et al.[91] Human/open 
label (10 subjects)

HE FMT capsules 5 times over 3 weeks, 
follow-up for 6 months

The PHES improved after three doses and five doses of FMT, and 
four weeks after the fifth dose of FMT. One SAE was extended
spectrum beta lactamase Escherichia coli bacteremia

Responders had higher levels of 
Bifidobacterium and other beneficial 
species at baseline and throughout the 
study

Bajaj et al.[16] Human/phase 1, 
RCT (20 subjects)

HE 15 FMT capsules (universal donor with 
high Lachnospiraceae and 
Ruminococcaceae relative abundance), 
follow up for 5 months

All subjects tolerated the procedures (EGD, sigmoidoscopy and 
capsule); ↓ SAEs and number of patients with SAEs in the FMT 
group; ↑ improvement in brain function in the FMT group 
compared to baseline

In the duodenum, ↑ Ruminococcaceae and 
Bifidobacteriaceae and ↓ Veillonellaceae 
and Streptococcaceae post-FMT 
compared to pre-FMT

Bajaj et al.[15] Human/RCT (20 
subjects)

HE Three frozen FMT units (90 mL total) 
were administered by enema and 
retained for 30 min, follow-up for five 
months

↓SAE in FMT group compared to SOC group (8 vs. 2); Five SOC 
group and no FMT participants developed further HE. Cognition 
improved in FMT, but not SOC group

↑ Lactobacillaceae, Bifidobacteriaceae post-
FMT; patients in the FMT arm showed ↑ 
Lachnospiraceaeae and Ruminococcaceae 
after FMT

Sharma et al.[110] Human/open 
label (13 subjects)

Alcohol-associated 
acute-on-chronic 
liver failure

FMT through nasojejunal tube from 
selected family members, follow up 3 
months

Survival at 28 and 90 days was significantly better in the FMT 
arm (100% vs. 60%; 53.84% vs. 25%). More HE and ascites 
resolved in the FMT group compared to the SOC group (100% vs. 
57.14%; 100% vs. 40%). Adverse events were similar in both 
groups

NA

Huang et al.[111] Rats portal hypertension 
and portosystemic 
collaterals

FMT by oral gavage FMT ↓ portal pressure in cirrhotic rats ↓Lachnospiraceae in cirrhotic rats. FMT ↑ 
Bifidobacterium

FMT: fecal microbiota transplantation; BCLC: Barcelona Clinic Liver Cancer; HE: hepatic encephalopathy; MELD: model for end-stage liver disease; PHES: psychometric hepatic encephalopathy score; SAEs: severe 
adverse events; RCT: randomized control trial; SOC: standard of care; EGD: Esophagogastroduodenoscopy.

LIMITATIONS AND FUTURE PERSPECTIVE
Although the safety of FMT has been demonstrated in patients with CDI[90,92,93], inflammatory bowel diseases (IBD)[94-98], other types of cancers[77,99,100], graft 
versus host disease (GVHD)[101,102], and critically ill patients hospitalized in the intensive care unit (ICU)[103], safety issues relating to FMT in patients with liver 
cirrhosis and liver cancer should be taken into consideration. One SAE of extended-spectrum beta-lactamase (ESBL) Escherichia coli bacteremia has been 
reported previously[91]. Portal hypertension, which results in increased intestinal permeability and impaired barrier function, may induce additional risks to 
bacterial translocation, leading to an excessive risk of bacteremia. Recently, a new methodology based on an automatic purification system of FMT, known as 
washed microbiota transplantation (WMT), showed lower AE rates than traditional manual methods[97,104], WMT was regarded as a safer and cleaner type of 
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FMT[105,106], which could be an alternative option in high-risk patients with liver cancers and related 
complications. In addition to the safety issues, cost-effectiveness is another critical area worth further study. 
A multidisciplinary team, including endoscopists, hepatologists, oncologists, microbiologists, pharmacists, 
and other related healthcare professionals, can work together to develop an appropriate and pragmatic 
strategy to help these patients. The primary diagnosis, cancer stage, complications, microbiota profiles, and 
oncological therapies should be considered on an individualized basis to determine the optimal delivery 
route, dose, and frequency of FMT. Selective microbiota transplantation (SMT) by matching selected 
donors could be considered to reduce the potential infective risks further. Under the premise of ensuring 
safety, FMT and other microbiome modulation modalities can be considered adjunctive therapy for liver 
cancer and related complications[107].

CONCLUSION
In conclusion, the role of gut microbiota modulation in patients with liver cancer and related complications 
is biologically plausible and supported by a growing body of literature. More studies on efficacy and safety 
are needed if FMT is to be incorporated into mainstream clinical applications.
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