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Abstract
At the forefront of cancer research is the rapidly evolving understanding of metabolic reprogramming within 
cancer cells. The expeditious adaptation to metabolic inhibition allows cells to evolve and acquire resistance 
to targeted treatments, which makes therapeutic exploitation complex but achievable. 3-phosphoglycerate 
dehydrogenase (PHGDH) is the rate-limiting enzyme of de novo serine biosynthesis and is highly expressed in 
a variety of cancers, including breast cancer, melanoma, and Ewing’s sarcoma. This review will investigate the 
role of PHGDH in normal biological processes, leading to the role of PHGDH in the progression of cancer. With 
an understanding of the molecular mechanisms by which PHGDH expression advances cancer growth, we will 
highlight the known mechanisms of resistance to cancer therapeutics facilitated by PHGDH biology and identify 
avenues for combatting PHGDH-driven resistance with inhibitors of PHGDH to allow for the development of 
effective metabolic therapies.
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INTRODUCTION
Recent advances in anti-cancer treatments have been based on the increased identification of biomarkers 
that allow for tumour-specific therapy. Biomarker-driven therapies allow for the differentiation between 
cancer and host cells, with the potential to decrease the side-effects often associated with chemotherapy 
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in normal tissue. The hallmarks of cancer, such as rapid growth, sustained proliferation, and increased 
invasion and metastasis, can be traced to the activation or suppression of oncogenes, which can then be 
used as biomarkers for targeting therapeutics[1].

The progression of cancer is dependent on the cellular metabolism of the tumour[2]. As such, developing 
therapeutic methods that target tumour metabolism has been a growing field. One-carbon metabolism is of 
importance in cancer metabolism, as this pathway is necessary for the de novo generation of biomass and 
other nutrient precursors. One-carbon metabolism consists of serine biosynthesis, betaine biosynthesis, the 
folate cycle, and the methionine cycle. The products of one-carbon metabolism contribute to nucleotide, 
lipid, and methylation metabolism, as well as nicotinamide adenine dinucleotide phosphate (NADPH), 
reactive oxygen species (ROS), and glutathione synthesis[3,4]. Of these, the serine biosynthetic pathway 
is of interest because the rate limiting enzyme, 3-phosphoglycerate dehydrogenase (PHGDH), is highly 
expressed in a variety of cancers and contributes to drug resistance. Both of these facets of PHGDH 
metabolism are discussed in detail below.

Importantly, tumour metabolism is highly adaptable, and the metabolic systems of cancer cells can 
reprogram in response to nutrient and anabolic precursor availability. As a result, there is a risk of innate 
or acquired drug resistance to metabolic inhibitors. In this review, the requirement of serine synthesis for 
cancer metabolism and tumour progression is explored. Through the biology of PHGDH, mechanisms of 
resistance to current cancer treatments, as well as proposed novel treatments, are identified. Understanding 
the mechanisms of resistance to metabolic treatments allows for the design of conditionally lethal 
combination therapies based on the inherent properties of tumour metabolism that can combat acquired 
resistance. 

THE BIOLOGICAL ROLE OF PHGDH IN CANCER
PHGDH in the untransformed cell
PHGDH is the rate-limiting enzyme of de novo serine biosynthesis. PHGDH catalyses the conversion of 
the glycolytic intermediate 3-phosphoglycerate (3PG) to 3-phosphohydroxypyruvate (3PHP). The PHGDH 
enzymatic reaction utilizes nicotinamide adenine dinucleotide (oxidized form, NAD+; reduced form, 
NADH) as a cofactor, generating NADH as 3PHP is biosynthesized. Phosphoserine aminotransferase 
(PSAT1) subsequently uses glutamate to confer a nitrogen unit onto 3PHP, producing alpha-ketoglutarate 
(αKG) in addition to the serine precursor, 3-phosphoserine (3PS)[5]. Finally, phosphoserine phosphatase 
converts 3PS to serine [Figure 1][6].

Serine is required for a variety of biosynthetic and signalling processes [Figure 2]. Serine itself can 
be used for protein and lipid biosynthesis[7]. The removal of a methylene unit from serine by serine 
hydroxymethyltransferase (cytosolic, SHMT1; mitochondrial, SHMT2) results in the synthesis of other 
amino acids, including glycine and, through intermediates of the methionine cycle, cysteine[8,9]. The 
methylene unit from serine also serves as a one-carbon donor for the folate cycle. The products of the folate 
cycle and the methionine cycle contribute to purine and pyrimidine synthesis, homocysteine recycling for 
DNA methylation processes, and the generation of NADH, NADPH, and adenosine triphosphate (ATP)[10,11]. 
Additionally, de novo serine biosynthesis utilizes glutamate and produces αKG, which can be converted 
to D-2-hydroxyglutarate (D-2HG), an oncometabolite[5]. As a result, the increased expression of PHGDH, 
as well as the other enzymes in the serine biosynthetic pathway, indicates that cells are utilizing these 
processes for proliferation and production of biomass.

Serine also plays a role in downstream signalling in the cell. When activated, pyruvate kinase (PK) 
catalyses the conversion of phosphoenolpyruvate to pyruvate, and is a key checkpoint for glycolysis[12]. 
As such, PK serves an important role in the occurrence of the Warburg effect, that describes tumour 
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Figure 1. PHGDH expression drives resistance to a variety of chemotherapeutics (shown in red) through modulation of metabolic 
pathways. 3PG: 3-phosphoglycerate; 2PG: 2-phosphoglycerate; PEP: phosphoenolpyruvate; PKM2: pyruvate kinase M2; TCA 
cycle: citric acid cycle; αKG: α-ketoglutarate; D-2HG: D-2-hydroxyglutarate; PHGDH: 3-phosphoglycerate dehydrogenase; 3-PHP: 
3-phosphohydroxypyruvate; PSAT: phosphoserine aminotransferase; 3PS: 3-phosphoserine; PSPH: phosphoserine phosphatase; 
NAD+: nicotinamide adenine dinucleotide, oxidized; NADH: nicotinamide adenine dinucleotide, reduced; Glu: glutamate; SHMT: serine 
hydroxymethyltransferase; DHFR: dihydrofolate reductase

Figure 2. Role of serine in biological processes in the cell. 3PG: 3-phosphoglycerate; PEP: phosphoenolpyruvate; PKM1/2: pyruvate 
kinase isoforms M1/M2; PHGDH: 3-phosphoglycerate dehydrogenase; 3-PHP: 3-phosphohydroxypyruvate; PSAT: phosphoserine 
aminotransferase; 3PS: 3-phosphoserine; PSPH: phosphoserine phosphatase; NAD+: nicotinamide adenine dinucleotide, oxidized; 
NADH: nicotinamide adenine dinucleotide, reduced; Glu: glutamate; αKG: α-ketoglutarate; SPT: serine palmitoyltransferase; 
SHMT1: serine hydroxymethyltransferase 1; 5,10-meTHF: 5,10-methylene tetrahydrofolate; mTHF: 5-methyl tetrahydrofolate; THF: 
tetrahydrofolate; GSH: reduced glutathione; HCY: homocysteine; SAH: S-adenosyl homocysteine; SAM: S-adenosyl methionine
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cells as more highly glycolytic than oxidative[13]. In its inactive form, PK shunts glucose carbons back 
through glycolytic intermediates, supporting the utilization of glucose for biomass synthesis rather than 
mitochondrial energy production[14]. PK exists in the body in two isoforms (isoform M1, PKM1; isoform 
M2, PKM2). PKM1 is mainly found in skeletal muscle and brain cells. PKM2 is expressed at a significantly 
higher ratio in proliferating cells and is the more dominant isoform in cancer; however, PKM1 has been 
shown to be expressed in certain cancers and cancer-associated fibroblasts as well[13,15]. Importantly, 
PKM2 is enzymatically activated by the direct binding of serine to an allosteric site[16]. Inactive PKM2 can 
therefore respond to changes in serine availability and direct glycolytic intermediates through 3PG into 
the biosynthesis of serine, activating PKM2. PKM2 expression is also mediated by a series of pathways, 
including phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR)[14,17]. 

Incidences of decreased PHGDH
Serine deficiency can be extremely detrimental to cells, resulting in limited cellular proliferation and cell 
cycle arrest[18]. The first report of PHGDH deficiency was described in 1996, where two brothers with 
decreased plasma concentrations of serine and glycine presented with a severe neurological syndrome[19]. 
This decrease in serine and glycine was associated with decreased PHGDH expression and activity in the 
brains of the patients. Importantly, subsequent studies found that, although alternate pathways of obtaining 
serine exist, PHGDH deficiency resulted in significantly lower plasma serine levels[20]. Later studies found 
that phenotypes of PHGDH deficiency can exist on a spectrum and identified Neu-Laxova syndrome as 
a more severe example of PHGDH deficiency. Neu-Laxova syndrome is an autosomal recessive disorder 
caused by mutations to PHGDH and subsequent loss of serine, and is characterized by neurological 
impairment, impaired fetal development, and skeletal anomalies[20,21]. 

At the cellular level, PHGDH deficiency can result in loss of DNA methylation. As the methylene unit 
provided to the folate cycle by the conversion of serine to glycine can transfer into the methionine cycle, 
serine indirectly supports the recycling of homocysteine to methionine, as well as the generation of 
precursors for S-adenosylmethionine (SAM)[22,23]. SAM is a common methyl-group donor required for 
DNA methylation[24]. In acute serine-starvation conditions, SAM is no longer used to methylate DNA 
and RNA[25]. Importantly, metabolic remodelling in cells during acute serine starvation allow for the 
upregulation of serine biosynthesis and serine uptake, to compensate for this loss[26].

De novo serine biosynthesis also provides the precursors for the generation of phosphatidylserine and 
sphingolipids; PHGDH deficiency can alter sphingolipid homeostasis by prompting the generation 
of deoxysphingolipids[27,28]. Sphingolipids are produced by the enzyme serine palmitoyltransferase 
(SPT) that incorporates serine into palmitoyl-coA to produce a precursor to sphingosine. With 
decreased environmental serine, SPT instead utilizes alanine as a cofactor, resulting in the generation 
of deoxysphingolipids[27,29]. Deoxysphingolipids cannot be incorporated into cellular membranes, and 
increased levels of deoxysphingolipids can result in mitochondrial dysfunction[30].

The results of decreased serine and loss of PHGDH activity are generally not beneficial to cells, unless 
extracellular serine concentrations are sufficiently high to support cellular utilization of the amino acid. 
The mechanism of negative regulation of PHGDH, therefore, is critical to explore. In melanoma, PHGDH 
expression is transcriptionally downregulated by wildtype p53[31]. It was found that PHGDH was a 
transcriptional target of the tumour suppressor p53, and that suppression of PHGDH resulted in promotion 
of apoptosis in p53-wildtype melanoma. These findings indicate the importance of PHGDH in the baseline 
functioning of the cell, but also highlight the utility of increased PHGDH as an oncogene in cancer. 

THE TUMORIGENIC CONSEQUENCES OF ELEVATED PHGDH
The increased expression of serine synthetic enzymes can signal that a cell is proliferating and generating 
biomass at a rapid rate, a hallmark of cancer[32]. PHGDH has been demonstrated to be upregulated in a wide 
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variety of biologically distinct cancers, including colorectal cancer[33], gastric cancer[34], breast cancer[35,36], 
melanoma[37], Ewing’s sarcoma[38], cervical cancer[39], pancreatic cancer[40], thyroid cancer[41], colon cancer[42], 
lung adenocarcinoma[43], and non-small cell lung cancer[44]. Furthermore, increased PHGDH expression 
has been linked to brain metastasis[45]. 

Mutations to TP53
As previously stated, wildtype p53 can transcriptionally decrease gene expression of PHGDH[31]. Most of the 
cancers that present an overexpression of PHGDH harbour TP53 mutations, including colorectal cancer 
(55%-60% TP53 mutation), intestinal gastric cancer (66% TP53 mutation), melanoma (85% TP53 mutation), 
and non-small cell lung cancer (50% TP53 mutation)[46-49]. This suggests that cancers with non-wildtype 
TP53 may have increased PHGDH expression, though this has not yet been explored. Additionally, mutant 
p53 can regulate PKM2 through an mTOR-mediated phosphorylation at Tyr105[50,51]. The effects that 
mutant p53 can have on serine synthetic enzymes and downstream metabolic enzymes can contribute to 
mutant p53-driven tumorigenesis. 

Cell growth and proliferation
Increased PHGDH activity results in increased de novo serine biosynthesis. As previously described, serine 
supports a variety of cellular processes, including amino acid, nucleotide, and lipid synthesis, increased 
DNA methylation, and indirect αKG generation. De novo serine biosynthesis can in turn drive the synthesis 
of glycine, as well as the synthesis of cysteine from homocysteine within the methionine cycle, supporting 
protein synthesis[8,52]. Glycine is also directly incorporated into purine nucleotides. Furthermore, serine can 
be incorporated into lipids to produce phosphoserine and is a precursor to sphingosine, from which all 
sphingolipids are derived[53]. These processes support the generation of biomass and nucleic acid replication 
for the rapid proliferation of cancer cells.

Redox homeostasis
The increased production of glycine and cysteine from serine can also contribute to maintenance of redox 
balance in cells, as these are the precursors for glutathione[54]. Glutathione, which exists in a reduced form 
(GSH) and an oxidized form (GSSG is the primary ROS scavenger of the cell[55]. Generation of αKG, an 
essential component of the citric acid (TCA) cycle, also contributes to maintaining redox balance, as αKG 
has antioxidative functions in the cell[56]. Furthermore, PHGDH can directly catalyse the conversion of 
αKG to D-2HG, an oncometabolite[5]. This reverse enzymatic activity requires the oxidation of NADH to 
NAD+, an important co-factor in metabolism and redox homeostasis[5,57]. 

The NAD+ salvage pathway
PHGDH utilizes NAD+ as a co-factor for enzymatic activity, producing NADH during the synthesis of 
3PHP from 3PG[58]. In order to be utilized, NAD+ must be continually synthesized from tryptophan or 
regenerated from NADH. The NAD+ salvage pathway occurs through the recycling of nicotinamide to 
nicotinamide mononucleotide, and is therefore required for functional serine biosynthesis[59]. Conversely, 
mitochondrial serine catabolism has been demonstrated to supplement NADH levels through the folate 
cycle, suggesting that PHGDH and serine metabolism are directly regulated by NAD+/NADH availability[60]. 

Metastasis
Increased PHGDH expression has been demonstrated to not only promote cancer growth and proliferation, 
but also drive secondary tumour formation and metastasis[61]. In a study on lung metastasis, increased 
PHGDH increased hypoxia-inducible factor (HIF)-target gene expression. As increased PHGDH results in 
elevated production of glutathione, the resultant hypoxic conditions could be maintained by glutathione, 
subsequently executing metastatic programs[61]. Furthermore, in a study in brain metastases, increased 
PHGDH expression was correlated with increased metastatic potential to the brain. Interestingly, in this 
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study, inhibiting PHGDH attenuated metastasis without affecting extra-cranial tumour growth, suggesting 
that the consequences of increased PHGDH expression were directly related to upregulated metastasis[45]. 
Finally, this study highlighted the limited environmental availability of serine in the brain, demonstrating 
the subsequent reliance on de novo serine biosynthesis[45].

Taken together, baseline PHGDH expression contributes to de novo serine biosynthesis in the cell and 
supports a multitude of cellular pathways. Overexpression of PHGDH drives numerous pathways that are 
particularly useful for the initiation and progression of cancer.

THE ROLE OF INCREASED PHGDH IN CANCER DRUG RESISTANCE 
Given that increased PHGDH contributes to tumorigenesis, the role of PHGDH in cancer resistance is 
multi-faceted. Elevated PHGDH expression drives a reliance on certain metabolic pathways that cancer 
therapeutics directly target, thus resulting in a series of inhibitors to which cancers with increased PHGDH 
can develop resistance [Figure 1].

Tyrosine kinases
Tyrosine kinases catalyse the phosphorylation of tyrosine residues, and have been shown to be 
constitutively active in oncogenic programs[62]. Sorafenib targets multiple tyrosine kinases, primarily the 
rapidly accelerated fibrosarcoma kinase (RAF) pathway, but also the vascular endothelial growth factor 
receptor and platelet-derived growth factor receptor pathways[63,64]. The inhibition of RAF-1 by sorafenib 
leads to inhibition of cellular proliferation and tumour growth. RAF-1 inhibition elevates ROS levels 
through stimulation of the Raf/MEK/Erk pathway, causing apoptosis[65]. Sorafenib has been approved 
for use in hepatocellular carcinoma (HCC), renal cell cancer, and thyroid cancer[66]. A study exploring 
the mechanisms driving sorafenib resistance found that increased PHGDH expression was a critical for 
this process in HCC[64]. As PHGDH and the serine synthesis pathway generate antioxidants (including 
glutathione and αKG), elevated PHGDH can combat the increased ROS levels induced by sorafenib 
treatment, thereby repressing apoptosis. Additionally, A-RAF, a RAF paralog, increases activation of PKM2 
in the presence of serine, offering an additional target for sorafenib and another resistance mechanism in 
PHGDH-overexpressed cancers[14,67]. 

Epidermal growth factor receptor
Erlotinib is an inhibitor of epidermal growth factor receptor (EGFR), another tyrosine kinase associated 
with a number of signalling cascade pathways, including the Ras/Raf/MEF/ERK, PI3K/Akt, and STAT 
pathways[68]. The MEF/ERK pathway in particular links EGFR signalling to increased glycolysis, and Akt 
pathway signalling links EGFR to increased PKM2 activity[69,70]. EGFR has been demonstrated to be a driver 
of lung adenocarcinoma, and erlotinib treatment has been approved for treatment of non-small cell lung 
cancer in patients with and without EGFR mutations[71,72]. 

Erlotinib binds to EGFR and inhibits downstream signalling cascades. Disruption of these signalling 
cascades results in decreased cell cycle progression, oxidative stress, and apoptosis. PHGDH is upregulated 
in erlotinib-resistant lung adenocarcinomas, likely due to the upregulation of glutathione and αKG 
synthesis as a cellular response to oxidative stress[73]. Furthermore, increased PHGDH expression and 
serine biosynthesis drives increased PKM2 activity and glycolysis, increasing the utilization of EGFR-
related pathways.

HIFs
HIFs contain two subunits that have transcription factor activity in hypoxic cells. The α-subunit HIF2α 

mediates redox homeostasis and can therefore modulate the effects of drugs such as sorafenib by decreasing 
resultant ROS levels and improving oxygen supply[74]. HIF2α is regulated by c-Myc activation and promotes 
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hypoxic cell proliferation[75]. Therapies targeting HIF2α have therefore been explored as replacements 
for some tyrosine kinase inhibitors, such as sunitinib, in clear-cell renal cell carcinoma[76]. PHGDH is 
significantly overexpressed in HIF2α knockout tumours, as well as tumours that have shown sunitinib 
resistance[76]. The redox homeostasis maintenance conferred by PHGDH overexpression may be implicated 
here. 

Interestingly, HIF1α, but not HIF2α, can also regulate the expression of SHMT, the enzyme that converts 
serine to glycine[77]. Increased SHMT1/2 expression can drive serine catabolism, increasing mitochondrial 
NADH production and fuelling the NAD+ salvage pathway required for PHGDH activity and serine 
biosynthesis[59,77].

The proteasome 
Based on the potential role of c-Myc in resistance to HIF2α inhibitors, the role of NMYC in systems 
associated with PHGDH has been explored. NMYC activates ATF4, subsequently increasing PHGDH 
expression and activating a dependence on the serine biosynthetic pathway[78-80]. Proteasome inhibitors 
downregulate c-Myc, and have therefore been utilized to combat c-Myc-driven cancers[81]. Bortezomib 
is a proteasome inhibitor that has been highly effective for the treatment of multiple myeloma, a cancer 
in which c-Myc is highly active[82]. Proteasome inhibition by bortezomib results in the accumulation of 
unfolded proteins in the endoplasmic reticulum, resulting in cell death from the overproduction of reactive 
oxygen species (ROS)[83]. PHGDH is upregulated in bortezomib-resistant multiple myeloma; interestingly, 
this mechanism has also been identified as being through increased glutathione synthesis [84-86] and 
subsequent ROS scavenging. 

Mitogen-activated protein kinase kinase
Mitogen-activated protein kinases (MAPK) and extracellular signal-regulated kinases (ERK) make up a 
series of proteins that transduce signals from the extracellular environment to inform cellular processes. 
This pathway can be overactive in some cancers, and activates transcription factors that are responsible 
for the progression of cancers such as melanoma[87,88]. In melanoma, tumour growth is enhanced through 
activation of the MAPK pathway, which is primarily driven by activating mutations in two oncogenes: 
BRAF and NRAS[89]. Mitogen-activated protein kinase kinase (MEK) enzymes are a part of the MAPK/ERK 
pathway, and activate the final kinases in this signalling pathway[88]. MEK inhibitors target this pathway 
and inhibit cell proliferation, ultimately causing apoptosis[90]. Importantly, BRAF mutations can increase 
susceptibility to MEK inhibitors; however, NRAS mutations that can over-activate MEK/ERK signalling can 
lead to resistance to MEK inhibitors[87,91]. 

In an NRAS mutation model of melanoma, PHGDH was found to be upregulated. PHGDH is upregulated 
in melanoma at baseline, and is also upregulated in MEK inhibitor-resistant melanomas[91,92]. Overactive 
MEK/ERK signalling in BRAF- and NRAS-mutated cancers can overexpress PHGDH through ATF4 
activation, driving utilization of the serine synthesis pathway to generate glutathione as a resistance 
mechanism. In addition, increased levels of folic acid, which can occur through increased flux of carbons 
from serine synthesis through the folate cycle, is a possible mechanism of resistance to MEK inhibitors in 
BRAF inhibitor-resistant melanomas[91,92]. 

Cisplatin
PHGDH is elevated in cervical adenocarcinoma, and is associated with poorer prognosis[93]. The first-
line therapy for cervical adenocarcinoma is platinum-based chemotherapy. Cisplatin induces the DNA 
damage response in cells and causes mitochondrial apoptosis through Bcl2[93]. Given that PHGDH drives 
the indirect synthesis of nucleotides, upregulation of PHGDH could improve the DNA damage response in 
cells treated with cisplatin. PHGDH knockdown in cervical adenocarcinoma resulted in a decrease in Bcl2 
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expression, suggesting that baseline high PHGDH could also result in increased Bcl2, thereby mitigating 
the mitochondrial apoptotic response[93]. Interestingly, in ovarian carcinoma, increased PHGDH is a marker 
of cisplatin sensitivity, rather than resistance[94]. Further exploration of this and other pathways involved in 
cisplatin resistance is therefore needed.

Other therapies
Elevated PHGDH also has the potential to play a role in resistance to therapies that have not yet been 
mechanistically explored. A critical therapy to therefore mention is the use of folate cycle inhibitors such 
as methotrexate and raltitrexed[95]. Methotrexate targets dihydrofolate reductase (DHFR), while raltitrexed 
targets thymidylate synthase (TYMS). These drugs require functioning folate cycles in order to be effective, 
and increased expression of folate-related enzymes is highlighted as a current mechanism of resistance[96,97]. 
As increased serine synthetic pathway activity can contribute more methyl units to the folate cycle, elevated 
PHGDH could be directly related to resistance to methotrexate treatment.

THE INHIBITION OF PHGDH TO COMBAT CHEMO-RESISTANCE
Single-agent inhibition of PHGDH
Given the increased expression of PHGDH in a variety of cancers, the single-agent inhibition of PHGDH 
seems to be a promising prospect for cancer therapy. A series of small molecule inhibitors against 
PHGDH have been developed, primarily targeting the enzymatic activity of PHGDH. These inhibitors 
include NCT-503, CBR-5884, PKUMDL-WQ-2101, BI-4924, and others under preclinical and clinical 
development[35,98-102]. It is important for the field to validate any finding with small-molecule inhibitors with 
knockdown and rescue or structural analysis to ensure that the effects of the drug are as a result of PHGDH 
biology and not an off-target effect of small-molecule inhibitors as a class of inhibitors. Iterations of these 
compounds have shown increasingly less off-target effects, with structure-based approaches used to 
synthesize PKUMDL-WQ-2101 in order to confirm specific binding to PHGDH[101]. PKUMDL-WQ-2101 
and NCT-503 have been widely used in in vitro and in vivo research to interrogate the role of PHGDH and 
serine metabolism in normal and cancer cells[101,103].

When cancer cells with elevated PHGDH expression are treated with high doses of NCT-503, cellular 
proliferation is attenuated and, in some cases, cell death is observed[38,85,103]. This phenotype can also be 
observed in vivo, as numerous studies have demonstrated that NCT-503 treatment results in decreased 
tumour growth for tumours and cell line-derived xenografts of PHGDH-high cancers. Knockout studies 
of PHGDH have also suggested mild suppressive effects on proliferation[64]. Furthermore, metabolites 
downstream of the serine biosynthetic pathway, such as one carbon units, folate intermediates, and 
pyrimidine intermediates, were also dysregulated by PHGDH inhibition[102,103].

As of yet, direct PHGDH inhibition has not been tested in human clinical studies. However, as cells 
with increased PHGDH expression can develop resistance to apoptotic cell death by various drug 
treatments, cells treated with PHGDH inhibitors can rapidly alter their metabolism to take advantage of 
other mechanisms of fuel oxidation and redox maintenance[104]. As a result, PHGDH inhibition must be 
approached in a different way to optimize it for clinical development. 

DUAL-AGENT INHIBITION OF PHGDH AND ASSOCIATED PATHWAYS
Given the highly adaptable nature of cancer metabolism, synergistic drug combinations are the future of 
metabolism-based drug resistance. Identifying increased PHGDH expression as a resistance mechanism for 
a variety of cancer therapeutics offers the opportunity to combine PHGDH inhibition with small molecule 
therapeutics. For example, increased PHGDH expression has been associated with both erlotinib and 
cisplatin resistance. Treatment with NCT-503 in these systems conferred sensitivity to the targeted therapy 
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erlotinib and the chemotherapy cisplatin, respectively[73,93]. Furthermore, increased PHGDH expression 
was associated with resistance to sorafenib[64]. Treatment with NCT-503 mildly suppressed proliferation 
in hepatocellular carcinoma cells, but combining NCT-503 with sorafenib caused complete attenuation of 
proliferation and induced significant apoptosis[64]. 

Beyond the known therapies that PHGDH confers resistance to, the combination of NCT-503 with 
the targeting of other cellular pathways can mitigate resistance. An understanding of the downstream 
mechanistic actions of PHGDH activity can unveil new therapies that could have action in PHGDH-
overexpressed cancers. Given that PHGDH activity requires the NAD+ salvage pathway, a study that 
explored the use of NCT-503 with a nicotinamide phosphoribosyltransferase (NAMPT) inhibitor. This 
combination with a NAMPT that blocks the NAD+ salvage pathway resulted in synergistic cell death[38]. 
Recent studies have also explored the metabolic implications and pro-survival adaptations that occur as a 
result of PHGDH inhibition, implicating decreased TCA cycle activity, mTOR-independent and -dependent 
autophagy, and enhanced lipid metabolism and formation of lipid bodies[28,103,105,106]. The combination of 
PHGDH inhibition with inhibitors of these pro-survival metabolic adaptations should therefore yield 
synergistic and dramatic results in PHGDH-high cancers.

CONCLUDING REMARKS
3-phosphoglycerate dehydrogenase (PHGDH) expression in cancer has been linked to shorter progression-
free survival, increased rates of metastasis, and poorer overall survival. An in-depth analysis of the 
biological consequences of enhanced PHGDH expression shows the links between de novo serine 
biosynthesis and a series of metabolic pathways that are targeted by current chemotherapies. In particular, 
cancers are capable of developing resistance to chemotherapies that induce apoptosis through increased 
ROS by increasing PHGDH, as PHGDH generates the necessary metabolic precursors for antioxidant and 
ROS scavenging activity. Therefore, increased levels of PHGDH, while contributing to tumorigenicity, can 
contribute to the innate or acquired resistance of cancers to current chemotherapies.

The direct inhibition of PHGDH by small-molecule inhibitors results in a decrease in cellular proliferation 
in vitro, with marginal inhibition of tumour growth in vivo. Inhibition of PHGDH also results in a series 
of metabolic adaptations that can acutely sensitize tumour cells to various chemotherapies. Current and 
future research on the adaptive mechanisms of resistance to PHGDH is needed to harness the upregulation 
of PHGDH in cancer. A multi-agent metabolic therapy can then be developed utilizing PHGDH as a 
biomarker for treatment efficacy and potential resistance.
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